1	Cost-effectiveness analysis of patent foramen ovale closure versus
2	medical therapy alone after cryptogenic stroke.
3	
4	
5	Yoko Shijoh ^{1*} , Shota Saito ² , Zhehao Dai ^{3,4} , Sachiko Ohde ¹
6	
7	
8	¹ Graduate School of Public Health St. Luke's International University, Chuo-city, Tokyo,
9	Japan
10	² Center for Clinical Epidemiology and Health Technology Assessment, St. Luke's
11	International University, Chuo-city, Tokyo, Japan
12	³ Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-city,
13	Tokyo, Japan
14	⁴ Department of Cardiovascular Medicine, St. Luke's International Hospital, Chuo-city,
15	Tokyo, Japan
16	
17	* Corresponding author
18	Email: <u>19mp214@slcn.ac.jp</u> (YS)
19	
20	

2

21 Abstract

22 Background

23	Closure of a patent foramen ovale reduces the risk of recurrent stroke compared with
24	medical therapy alone in young patients with cryptogenic strokes revealed by randomized
25	control trials. Some cost-effectiveness analyses outside Japan have shown that patent foramen
26	ovale closure is cost-effective, but no studies have examined cost-effectiveness in Japan. The
27	objective of this study is to assess cost-effectiveness, from the perspective of a Japanese
28	healthcare payer, of patent foramen ovale closure versus medical therapy alone for the
29	patients with patent foramen ovale related cryptogenic strokes.
30	
31	Methods
32	A cost-effectiveness study was conducted by developing a decision tree and a Markov
33	model. Probabilities and a 5.9-year time horizon followed the RESPECT study. Utilities and
34	costs were based upon published studies and assumptions. The model cycle was one month.
35	All assumptions were assessed by experts, including a cardiologist and a statistical expert.
36	The target population comprised patients with cryptogenic stroke and patent foramen ovale,
37	aged 60 years or younger. Incremental cost-effectiveness ratio was evaluated. Then one-way
38	sensitivity analyses and probabilistic sensitivity analyses were conducted to assess
39	robustness.
40	
41	Results
42	Incremental cost-effectiveness ratio of patent foramen ovale closure compared with

43 medical therapy was estimated at ¥3,318,152 per quality-adjusted life years gained. One-way

44 sensitivity analysis showed that the stable state utility score difference between patent

- 45 foramen ovale closure and medical therapy had the largest impact on incremental cost-
- 46 effectiveness ratio. Patent foramen ovale closure is cost-effective at a stable state utility score
- 47 difference of >0.051, compared with medical therapy. Probabilistic sensitivity analyses
- 48 demonstrated that patent foramen ovale closure was 50.3% cost-effective with a willingness-
- 49 to-pay threshold of ¥5,000,000 / quality-adjusted life years.
- 50

51 Conclusions

- 52 From a healthcare payer perspective, patent foramen ovale closure may be cost-
- 53 effective compared with medical therapy for Japanese patients with cryptogenic stroke who

54 were ≤ 60 years.

55 Introduction

Patent foramen ovale (PFO) is an opening in the septum between the right and left atria that failed to close at birth. Relative to the total number of general autopsy findings, the prevalence of PFO is reportedly 26% (1). Under certain hemodynamic conditions, such a PFO can be forced open by a pressure gradient that favors right-to-left shunting, thereby enabling blood and bloodborne substances to pass from the venous to the arterial circulation (2). This is the mechanism whereby PFO is associated with paradoxical embolism, which is the most common cause of cryptogenic stroke in young adults (3).

63 Approximately 25% of cerebral infarctions are of unknown cause, but some are 64 thought to be due to thrombi from the right heart system that entered the left heart system 65 through right-left shunts, such as a PFO. These are called paradoxical embolisms. However, 66 thrombi in the right heart system are often not detected in cases of cerebral infarction with 67 PFO, and no treatment showing clear effectiveness has been established for prevention of 68 recurrent stroke in cases in which aspirin is commonly used (4). Possible treatments to 69 prevent recurrent stroke in cryptogenic stroke patients with a PFO include medical treatment 70 with antiplatelet agents or anticoagulants, percutaneous PFO closure, and surgical PFO 71 closure.

72 Recently, several randomized controlled trials showed that percutaneous transcatheter 73 closure reduces the risk of recurrent stroke compared with medical therapy alone, among 74 relatively young patients with cryptogenic stroke complicated by a PFO (5–7). The Japanese 75 government approved a percutaneous transcatheter closure device, AMPLATZER PFO 76 Occluder, and its procedure in 2019 for secondary prevention of ischemic stroke in patients 77 ≤ 60 years who had a cryptogenic stroke that was probably attributable to a PFO. Until 2020, 78 AMPLATZER PFO Occluder was the only device approved in Japan for PFO closure. Soon 79 after the government approved the device and procedure, the Japan Stroke Society, the 80 Japanese Circulation Society, and the Japan Cardiovascular Intervention Treatment Society 81 released guidelines for percutaneous PFO closure for cryptogenic stroke (4). These 82 guidelines were based upon evidence from three randomized control trials (RCTs) in 2017: 83 RESPECT (5), REDUCE (6) and CLOSE (7), which focused on efficacy and safety with an 84 appropriate patient background. The guidelines raised the clinical issue of postoperative 85 atrial fibrillation rate, which was higher in the PFO closure group than in a non-closure

86 group in a meta-analysis that included the three aforementioned RCTs (8–10).

87 Reduction of the recurrent stroke rate is important, not only from a clinical 88 perspective, but also from a health economic perspective. Some cost-effectiveness analyses 89 outside Japan have compared PFO closure and medical therapy alone for cryptogenic stroke 90 patients and have shown that PFO closure is cost-effective for quality-adjusted life years 91 (QALYs) gained. (11–16). However, there have been no cost-effectiveness analyses in Japan 92 and such analyses, which include cost information, utility scores, and a lifetable would be 93 more convincing than cost-effectiveness analyses done outside Japan. Therefore, our 94 objective was to assess the cost-effectiveness, from a Japanese healthcare payer perspective, 95 of PFO closure with AMPLATZER PFO Occluder for risk reduction of recurrent stroke in 96 patients with cryptogenic stroke that was probably attributable to a PFO, compared to 97 medical therapy alone.

98

6

100 Method

101 Model overview

102	We developed a decision tree and Markov model to assess the cost-effectiveness of
103	PFO closure compared with medical therapy alone. (Fig 1) For the Markov model, we
104	proposed a model consisting of four health states: stable after cryptogenic stroke, post-minor
105	recurrent stroke, post-moderate recurrent stroke, and death. (Fig 1) We used a modified
106	Rankin Scale (mRS) to categorize post-minor stroke as mRS 0 to 2 and post-moderate
107	recurrent stroke as mRS 3 to 5. The time horizon was derived from the RESPECT study
108	median follow-up period, which was 5.9 years (5). The model cycle was one month. QOL
109	scores for each condition can be calculated, and to calculate an incremental cost-effectiveness
110	ratio (ICER), the incremental cost increase per PFO closure was divided by the QALYs
111	gained by the closure. Five million yen per QALY was determined as the cost-effectiveness
112	willingness-to-pay that the Japanese government sets as the ICER threshold in the cost-
113	effectiveness evaluation system. We conducted one-way sensitivity analyses with varied key
114	assumptions to assess robustness. The model was discounted at 2.0%, which is a basic
115	discount rate in the guidelines for preparing cost-effectiveness evaluations for the central
116	social insurance medical council in Japan. All analyses were performed using TreeAge Pro
117	software.

118

119 **Fig 1. The model structure.**

A decision tree (upper picture) shows that a patient who had a PFO enters this model after a cryptogenic stroke and is assigned either a PFO closure or medical treatment. PFO closure has three possible outcomes: complication, non-complication, or death. The Markov model (lower picture) shows four health states: stable after cryptogenic stroke, post-minor recurrent

124 stroke, post-moderate recurrent stroke, and death. We used a modified Rankin Scale to

- 125 categorize strokes.
- 126 Abbreviations. PFO, patent foramen ovale; mRS, modified Rankin Scale.
- 127

128 Patients

129 The target population included cryptogenic stroke patients who had a PFO, aged ≤ 60 130 years, based on the indication for AMPLATZERTM PFO Occluder in Japan. The Japanese 131 government approved AMPLATZERTM PFO Occluder based on the RESPECT study results 132 of "rates of 0.58 events per 100 patient-years and 1.07 events per 100 patient-years, 133 respectively (hazard ratio with PFO closure vs. medical therapy, 0.55; 95% confidence 134 interval [CI], 0.31 to 0.999; p=0.046 by the log-rank test)." Thus, patients in the model 135 represent the RESPECT trial, a multi-center, randomized, open-label, controlled clinical trial 136 with blinded adjudication of end-point events (5).

137

138 Probabilities and Utilities

139 Probabilities for each outcome obtained from published literature are shown in Table 140 1. Probabilities for recurrent ischemic stroke were estimated on a monthly cycle based on the 141 RESPECT study primary endpoint. We assumed that the recurrent ischemic stroke rate 142 persists during the simulation. In the decision tree, we set atrial fibrillation and flutter as 143 procedural complications, because calculation of low-incidence, serious adverse events 144 (SAEs) is impractical and should only address clinically problematic SAEs. This conclusion 145 was based on guidance from the Japan Stroke Society, the Japanese Circulation Society, and 146 the Japan Cardiovascular Intervention Treatment Society for percutaneous patent foramen 147 ovale closure for latent cerebral infarction. This statement argued that meta-analysis clarified 148 the effectiveness of this treatment, despite the increased risk of postoperative atrial 149 fibrillation (8–10).

We assumed that the utility score of each health status remained unchanged until the health status changed. The previous assumption of a stable utility score was used from the cost-effectiveness analysis, which was 0.88 for closure-stable utility and 0.8 for medical

8

153 therapy-stable utility (15). This assumption was based on expert opinion and some previous 154 studies showing a positive impact of the closure procedure on quality of life. Mirzada N (17) 155 explained that the prospect of effective secondary prevention of ischemic recurrences could 156 certainly contribute to better physical, mental, and social functioning in patients who undergo 157 PFO closure. Results reported by Evola S (18) indicated a reasonable association with 158 improvement of migraines, due to a reduction in the frequency and severity of migraine 159 attacks. Lelakowska M (19) also reported that the utility score value of the SF-36 total score 160 was markedly higher 6 months after PFO closure compared with pre-PFO closure.

Based on previous mortality rate reports on cryptogenic stroke patients (20), we used average values of mortality indices categorized into three spans: post-stroke mortality within 1 year, post-stroke mortality within 5 years, and post-stroke mortality within 10 years. Recurrent clinical ischemic stroke was assumed to be 68% for post-minor strokes and 32% for post-moderate strokes, assumptions supported by Grau AJ (21).

We set atrial fibrillation utility using a previous study (22), and minor stroke utility and moderate utility using a Japanese study calculated with the modified Rankin Scale and EQ-5D Japanese version (23).

169

170 **Cost and Lifetime table**

Our analysis was conducted from a healthcare payer perspective using direct medical costs, including costs for PFO closure procedures, closure complications, medications, follow-up, and stroke care. Procedure costs, medication costs, and follow-up costs were derived from Japanese claim data (24). Treatment costs for acute clinical ischemic stroke and post-clinical ischemic stroke were obtained from previous studies in Japan ^{23, 25}. We used the 2018 Japanese lifetime table to obtain the annual probability of natural death (26).

177

178 Sensitivity analysis

One-way sensitivity and probabilistic sensitivity analyses evaluated the impact ofassumptions shown by the sensitivity analysis range in Table 1. Lifetime horizon was set as

9

181 the upper value of time to follow-up, which was 38.3 years, calculated as 84.2 (average life 182 expectancy in Japan) minus 45.9 (mean age of patients in the RESPECT study (5)). We set 183 5.9 years as the lower value of the time horizon, which is the base case value derived from 184 the RESPECT study (5) median follow-up period. The PFO closure risk ratio of recurrent 185 stroke was obtained from the RESPECT study (5) and we used 95% confidence intervals of 186 the PFO closure risk ratio of recurrent stroke (0.31-0.999) as the lower and upper range. In 187 the RESPECT study (5), the rate of atrial fibrillation or flutter did not differ significantly 188 between the PFO closure and medical therapy groups. The risk ratio was 1.69 and 95% 189 confidence interval was 0.50 to 5.73. We use 1.69 for the base value and 0.50 for the lower 190 value. However, the meta-analysis found that "the rate of newly detected atrial fibrillation in 191 the PFO closure plus medical therapy group and the medical therapy alone group were 4.3%192 and 0.7%, respectively, which shows that PFO closure plus medical therapy significantly 193 increased the risk of newly detected atrial fibrillation by more than 4 times compared with 194 medical therapy alone (RR 4.69, 95% CI 2.17 to 10.12)"(8). We thus used the upper 95% 195 confidence interval limits of newly detected atrial fibrillation in the meta-analysis as the 196 upper range of atrial fibrillation or flutter rate hazard ratio between closure and non-closure. 197 Other probability scores were set at $\pm 10\%$, based on expert opinion. 198 Previous cost-effectiveness studies have shown that stable state utility scores between 199 closure and medical therapy have the widest range for ICERs (11,13–15). No studies report a 200 difference in stable utility scores between closure and medical therapy, and stable utility 201 scores were thus all based on assumption. To clarify the threshold of a stable utility score 202 difference for cost-effectiveness, we set a lower stable utility score difference of 0 and an 203 upper stable utility score difference of 0.08, which was the baseline. Other utility scores and 204 costs were set at $\pm 10\%$ and $\pm 20\%$, respectively, based on expert opinion.

- 205 Cost-effectiveness acceptability curves were determined for the probabilistic
- 206 sensitivity analysis on the parameter uncertainty at a 5.9-year time horizon. Triangular or
- 207 gamma distributions were chosen for each parameter (Table 1) and the model was run 10000
- times.
- 209

11

210 Table 1. Probabilities of events, life years, and utility scores for base model inputs and

211 sensitivity analyses.

Base v	Reference	
Closure	Medical therapy	
0.00%	—	RESPECT study (5)
0.58%	1.07%	RESPECT study (5)
1.40%	0.83%	RESPECT study (5)
0.88	0.8	Tirschwell et al. (15) MHLW life table 2018
	Base v Closure 0.00% 0.58% 1.40% 0.88	Base value Closure Medical therapy 0.00% 0.58% 1.07% 1.40% 0.83% 0.88 0.8

	Base value	Ra	nge / Distribu	tion	Reference
		lower	Upper	Distribution	
Time horizon	5.9	5.9	38.3	_	RESPECT study (5), WHO Life expectancy (27)
Closure risk ratio of recurrent stroke	0.54	0.31	0.999	Triangular	RESPECT study (5)
PFO closure atrial fibrillation or flutter HR	0.50	1.69	10.12	Triangular	REDUCE study (6)
Post-stroke mortality rate within 1 year	6.00%	5.40%	6.60%	-	Linxin Li et al. (20)
Post-stroke mortality rate within 5 years	24.9%	22.4%	27.4%	-	Linxin Li et al. (20)
Post-stroke mortality rate within 10 years	45.5%	41.0%	50.1%	-	Linxin Li et al. (20)
% of ischemic stroke mRS0-2	68.0%	61.2%	74.8%	-	Grau AJ et al. (21)
% of ischemic stroke mRS3-5	32.0%	28.8%	35.2%	-	Grau AJ et al. (21)
Medical therapy stable state utility	0.800	0.720	0.880	-	Tirschwell et al. (15)
Stable state utility difference	0.080	0.000	0.080	Triangular	expert opinion
Minor stroke utility	0.779	0.701	0.857	-	Hattori et al. (23)
Moderate stroke utility	0.338	0.304	0.372	-	Hattori et al. (23)
Atrial fibrillation utility	0.725	0.653	0.798	-	Reynolds MR et al. (22)
Medical device and procedural costs	¥1,830,000	¥1,464,000	¥2,196,000	gamma	expert opinion
Clinical moderate stroke	¥1,758,423	¥1,406,738	¥2,110,108	-	Kamae et al. (25)
Clinical minor stroke	¥1,024,306	¥819,445	¥1,229,167	-	Kamae et al. (25)
Aspirin	¥9,408	¥7,526	¥11,290	-	Claims data.
DOAC after atrial fibrillation	¥185,196	¥148,157	¥222,235	-	Claims data.
Follow-up cost first year in closure	¥56,556	¥45,245	¥67,867	-	Claims data.
Follow-up cost after 2-year in closure	¥39,960	¥31,968	¥47,952	-	Claims data.
Follow-up cost non-closure	¥31,164	¥24,931	¥37,397	-	Claims data.
Post-clinical moderate stroke cost	¥4,135,524	¥3,308,419	¥4,962,629	-	Hattori et al. (23)
Post-clinical minor stroke cost	¥1,940,172	¥1,552,138	¥2,328,206	-	Hattori et al. (23)

²¹²

213 Notes. Probabilities, utility scores, and cost ranges were set at $\pm 10\%$, $\pm 10\%$ and $\pm 20\%$,

214 respectively, based on expert opinion.

215	Abbreviations.	MHLW, ministry	of health,	labour and	welfare;	PFO,	patent foramen oval	e;
-----	----------------	----------------	------------	------------	----------	------	---------------------	----

- 216 HR, hazard ratio; mRS, modified Rankin Scale; DOAC, novel direct oral anticoagulants.
- 217

218 **Results**

219 Base case analysis

- According to the analysis results, PFO closure yielded 4.849 QALYs at a cost of
- 221 ¥2,377,004 and medical therapy yielded 4.385 QALYs at a cost of ¥836,280 over a 5.9-year
- time horizon (Table. 2). ICER of PFO closure compared with medical therapy was estimated
- 223 at ¥3,318,152 per QALY gained; therefore, PFO closure is cost-effective compared with
- 224 medical therapy, based on the ICER threshold set by the Japanese government in the cost-
- 225 effectiveness evaluation system.
- 226

227 Table 2. Base case cost-effectiveness analysis

	Treatment	Total cost	Incremental Cost	Total QALY	Incremental Effectiveness	ICER
	Medical Therapy	¥ 836,280		4.385		
	Closure	¥ 2,377,004	¥ 1,540,724	4.849	0.464	3318152
~						

228

229 Abbreviations. QALY, quality-adjusted life-years; ICER, incremental cost-effectiveness

ratio.

231

232 Sensitivity analysis

Results of one-way sensitivity analysis indicated that the stable state utility score
difference between closure and medical therapy had the largest impact on the ICER (Fig 2).
With a lower value estimate of 0.00, ICER in the sensitivity analysis was ¥46,327,317 per

13

236 QALY gained, exceeding acceptable limits of cost-effectiveness. To be cost-effective,

thresholds of the stable state utility score difference between closure and medical therapyshould be 0.051 (Fig 3).

239 The second largest impact on ICER was the time horizon. PFO closure at the lifetime 240 horizon, which was 38.3 years setting as the upper value of time to follow-up, changed to a 241 dominant economic strategy, resulting in cost reduction and gain in QALY with a base case 242 value having a stable state utility score difference compared with medical therapy (Figure 4). 243 Probabilistic sensitivity analyses demonstrated that PFO closure was 50.3% cost-244 effective with a willingness-to-pay threshold of ¥5,000,000/OALY at a 5.9-year time horizon. 245 (Figure 5) This result of this probabilistic sensitivity analysis means that PFO closure may be 246 cost-effective, but there is still roughly a 50% chance of its not being cost-effective. 247

Figure 2. One-way sensitivity analysis of PFO closure VS medical therapy.

249 The impact of parameter variation using a willingness-to-pay threshold of ¥5,000,000/QALY.

250 The hatched bars and black bars show the upper (high estimate) and lower values of the

251 parameter, respectively. Bars are aligned in order of impact from largest to smallest.

252 Abbreviations. PFO, patent foramen ovale; mRS, modified Rankin Scale; DOAC, novel

253 direct oral anticoagulants.

254

Figure 3. One-way sensitivity analysis: The stable state utility score difference between

256 **PFO closure and medical therapy.**

257 The stable state utility score difference between PFO closure and medical therapy, which is

the largest impact of parameter variation, is shown with ICER. The dashed line represents a

- willingness-to-pay (WTP) threshold of ¥5,000,000/QALY and a utility score difference of
- 260 0.051 at that WTP threshold.

261 Abbreviations. WTP, willingness-to-pay; ICER, incremental cost-effectiveness ratio.

262

Figure 4. One-way sensitivity analysis: Time horizon closure vs. medical therapy.

- 264 Time horizon closure vs. medical therapy, which is the second largest impact of parameter
- 265 variation, is shown with ICER.
- 266 Abbreviations. ICER, incremental cost-effectiveness ratio.
- 267

268 Figure 5. Cost-effectiveness acceptability curves.

- 269 Willingness-to-pay (JP¥) is shown with percent cost-effectiveness. The dashed line is a
- 270 willingness-to-pay threshold (WTP) of ¥5,000,000/QALY and the percent cost effectiveness
- 271 is 50.3% at a WTP of ¥5,000,000/QALY.
- 272 Abbreviations. WTP, Willingness-to-pay.

273

15

275 **Discussion**

276	We evaluated the cost-effectiveness in Japan of PFO closure compared to medical
277	therapy after cryptogenic stroke. The analysis revealed that PFO closure is cost-effective in
278	the base case model, resulting in an ICER of ¥3,318,152 per QALY gained. Previous cost-
279	effectiveness analyses outside Japan also revealed that PFO closure is cost-effective
280	compared with medical therapy for cryptogenic stroke patients (11-16). A cost-effectiveness
281	study in the U.S. (11) showed that PFO closure achieved an ICER of \$21,049 at five years. In
282	a U.K. study (15), ICER was reportedly £20,951 at four years. Both results are consistent
283	with the Japanese situation. However, one-way sensitivity analysis showed that the stable
284	state utility score difference between PFO closure and medical therapy had the largest impact
285	on ICER. In other words, a stable state utility score difference below 0.051 rendered a result
286	that was not cost-effective. This was the most important finding of this study because we
287	assumed a base case utility score. Probabilistic sensitivity analysis also supports the result
288	that PFO closure was only 50.3% cost-effective with a willingness-to-pay threshold of
289	¥5,000,000/QALY at a 5.9-year time horizon.
290	Assumptions of previous cost-effectiveness studies were based on expert opinions and
291	some published literature, which indicated that PFO closure not only reduces recurrent stroke,
292	but also patient anxiety about recurrent stroke. Study authors further indicated that PFO
293	closure also reduces PFO-related migraine so that such reduction may improve the stable
294	utility score, but we cannot be certain whether the utility score difference between PFO
295	closure and medical therapy exceeds 0.051 without a reliable utility score for patients who
296	have backgrounds similar to those in the RESPECT study. In addition, Japanese utility score
297	evidence is important because of the difference in life expectancy and medical care systems
298	in other countries. Hence, the Japanese stable utility score after PFO closure and medical
299	therapy among patients with cryptogenic stroke and PFO aged ≤ 60 years needs to be

16

determined through further studies. With new utility score evidence, Japanese criteria for
PFO closure should be changed by releasing the quality indicator score to show that patient
quality of life improves.

303 The goal of the basic act on stroke and cardiovascular disease countermeasures of 304 2018 is to promote healthy life expectancy. Our results may promote a cost-effective, healthy 305 life expectancy by reducing recurrent ischemic strokes, which remain the leading cause of 306 long-term disability. However, most reports on utility scores of stroke patients are from 307 Europe and the United States, and very few studies with cases exist in Japan. When 308 evaluating utility scores, it is necessary to use a reliable, validated measurement scale, but 309 there are few such scales at present. Especially for new procedures or treatments, such as 310 PFO closure, there is no evidence that shows the exact utility score after releasing RCTs all 311 over the world. Without reliable utility scores, cost-effectiveness studies will always lack 312 core information and can only offer hypotheses regarding economic impact. 313 In April 2019, the Ministry of Health Labour and Welfare (MHLW) of Japan 314 introduced a cost-effectiveness evaluation system. The aim of the system is to utilize results 315 of cost-effectiveness evaluations that will not be used for reimbursement decisions, but for 316 post-listing price adjustments (28). Thus, utility score research should be performed using 317 national grants for accurate evaluation of cost-effectiveness studies. 318 With an accurate utility score, PFO closure become a new component of a 319 cardiovascular disease prevention strategy for the Japanese population. Our cost-effectiveness 320 analysis of PFO closure supports this conclusion and can serve as a reference to consider 321 whether political resources of the basic act on stroke and cardiovascular disease 322 countermeasures should be allocated. 323

324 Conclusion

- 325 From a healthcare payer perspective, PFO closure may be cost-effective compared
- 326 with medical therapy in Japanese patients ≤ 60 years with cryptogenic strokes that are
- 327 probably attributable to a PFO.

328

329 Author contributions

- 330 **Conceptualization:** Yoko Shijoh, Shota Saito, Zhehao Dai, Sachiko Ohde.
- 331 Data curation: Yoko Shijoh, Shota Saito, Zhehao Dai, Sachiko Ohde.
- 332 Formal analysis: Yoko Shijoh, Shota Saito, Zhehao Dai, Sachiko Ohde.
- 333 Funding acquisition: N/A
- 334 Investigation: Yoko Shijoh, Shota Saito, Zhehao Dai, Sachiko Ohde.
- 335 Methodology: Yoko Shijoh, Shota Saito, Zhehao Dai, Sachiko Ohde.
- 336 **Project administration:** Yoko Shijoh.
- 337 Resources: N/A
- 338 Software: N/A
- 339 Supervision: Sachiko Ohde.
- 340 Validation: Yoko Shijoh, Shota Saito.
- 341 Visualization: Yoko Shijoh, Shota Saito.
- 342 Writing original draft: Yoko Shijoh.
- 343 Writing review & editing: Yoko Shijoh, Shota Saito, Zhehao Dai, Sachiko Ohde.

344

345 Acknowledgements

- 346 We wish to thank the timely help given by Dr. Ataru Igarashi, Associate Professor,
- 347 Unit of Public Health and Preventive Medicine, School of Medicine, Yokohama City
- 348 University, Yokohama, Japan, for useful discussions in analyzing data.

350		References
351	1.	Homma S, Sacco RL. Patent foramen ovale and stroke. Circulation.
352		2005;112(7):1063–72.
353	2.	Calvert PA, Rana BS, Kydd AC, Shapiro LM. Patent foramen ovale: Anatomy,
354		outcomes, and closure. Nat Rev Cardiol. 2011;8(3):148-60.
355	3.	Sastry S, Riding G, Morris J, Taberner D, Cherry N, Heagerty A, et al. Young Adult
356		Myocardial Infarction and Ischemic Stroke. The Role of Paradoxical Embolism and
357		Thrombophilia (The YAMIS Study). J Am Coll Cardiol. 2006;48(4):686–91.
358	4.	Japan Stroke Society, Japanese Circulation Society and JCITS. Guidance of patent
359		foramen ovale closure for cryptogenic ischemic stroke (in Japanese) [Internet]. 2019
360		[cited 2021 Aug 2]. Available from:
361		https://www.jsts.gr.jp/img/tebiki_seninsei_noukousoku.pdf
362	5.	Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, et al.
363		Long-Term Outcomes of Patent Foramen Ovale Closure or Medical Therapy after
364		Stroke. N Engl J Med. 2017;377(11):1022–32.
365	6.	Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, et
366		al. Patent Foramen Ovale Closure or Antiplatelet Therapy for Cryptogenic Stroke. N
367		Engl J Med. 2017;377(11):1033–42.
368	7.	Mas J-L, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, et al.
369		Patent Foramen Ovale Closure or Anticoagulation vs. Antiplatelets after Stroke. N
370		Engl J Med. 2017;377(11):1011–21.
371	8.	Ando T, Holmes AA, Pahuja M, Javed A, Briasoulis A, Telila T, et al. Meta-Analysis
372		Comparing Patent Foramen Ovale Closure Versus Medical Therapy to Prevent
373		Recurrent Cryptogenic Stroke. Am J Cardiol [Internet]. 2018;121(5):649-55.
374		Available from: https://doi.org/10.1016/j.amjcard.2017.11.037

375	9.	Vaduganathan M, Qamar A, Gupta A, Bajaj N, Golwala HB, Pandey A, et al. Patent
376		Foramen Ovale Closure for Secondary Prevention of Cryptogenic Stroke: Updated
377		Meta-Analysis of Randomized Clinical Trials. Am J Med [Internet]. 2018;131(5):575-
378		7. Available from: https://doi.org/10.1016/j.amjmed.2017.11.027
379	10.	Mojadidi MK, Elgendy AY, Elgendy IY, Mahmoud AN, Elbadawi A, Eshtehardi P, et
380		al. Transcatheter Patent Foramen Ovale Closure After Cryptogenic Stroke: An
381		Updated Meta-Analysis of Randomized Trials. JACC Cardiovasc Interv.
382		2017;10(21):2228–30.
383	11.	Volpi JJ, Ridge JR, Nakum M, Rhodes JF, Søndergaard L, Kasner SE. Cost-
384		effectiveness of percutaneous closure of a patent foramen ovale compared with
385		medical management in patients with a cryptogenic stroke: from the US payer
386		perspective. J Med Econ [Internet]. 2019;22(9):883-90. Available from:
387		https://doi.org/10.1080/13696998.2019.1611587
388	12.	Leppert MH, Poisson SN, Carroll JD, Thaler DE, Kim CH, Orjuela KD, et al. Cost-
389		effectiveness of patent foramen ovale closure versus medical therapy for secondary
390		stroke prevention. Stroke. 2018;49(6):1443-50.
391	13.	Hildick-Smith D, Turner M, Shaw L, Nakum M, Hartaigh B, Evans RM, et al.
392		Evaluating the cost-effectiveness of percutaneous closure of a patent foramen ovale
393		versus medical management in patients with a cryptogenic stroke: from the UK payer
394		perspective. J Med Econ [Internet]. 2019;22(2):131-9. Available from:
395		https://doi.org/10.1080/13696998.2018.1548355
396	14.	Pickett CA, Villines TC, Resar JR, Hulten EA. Cost effectiveness and clinical efficacy
397		of patent foramen ovale closure as compared to medical therapy in cryptogenic stroke
398		patients: A detailed cost analysis and meta-analysis of randomized controlled trials. Int
399		J Cardiol [Internet]. 2018;273:74–9. Available from:

		21
400		https://doi.org/10.1016/j.ijcard.2018.07.099
401	15.	Tirschwell DL, Turner M, Thaler D, Choulerton J, Marks D, Carroll J, et al. Cost-
402		effectiveness of percutaneous patent foramen ovale closure as secondary stroke
403		prevention. J Med Econ [Internet]. 2018;21(7):656-65. Available from:
404		https://doi.org/10.1080/13696998.2018.1456445
405	16.	Pickett CA, Villines TC, Ferguson MA, Hulten EA. Cost effectiveness of percutaneous
406		closure versus medical therapy for cryptogenic stroke in patients with a patent foramen
407		ovale. Am J Cardiol [Internet]. 2014;114(10):1584-9. Available from:
408		http://dx.doi.org/10.1016/j.amjcard.2014.08.027
409	17.	Mirzada N, Ladenvall P, Hansson PO, Eriksson P, Taft C, Dellborg M. Quality of life
410		after percutaneous closure of patent foramen ovale in patients after cryptogenic stroke
411		compared to a normative sample. Int J Cardiol [Internet]. 2018;257:46-9. Available
412		from: https://doi.org/10.1016/j.ijcard.2018.01.120
413	18.	Evola S, Kauroo BAW, Trovato RL, Alioto L, D'Amico G, Fonte G, et al. The
414		percutaneous closure of patent foramen ovale (PFO): Impact on the quality of life. Int J
415		Cardiol [Internet]. 2013;168(2):1622–3. Available from:
416		http://dx.doi.org/10.1016/j.ijcard.2013.01.015
417	19.	Lelakowska M, Matusik PT, Podolec PS, Olszowska M, Nessler JM, Podolec N, et al.
418		Transcatheter closure of atrial septal communication: Impact on quality of life in mid-
419		term follow-up. Adv Clin Exp Med. 2019;28(8):1079-85.
420	20.	Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, et al. Incidence,
421		outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic
422		attack and ischaemic stroke: A population-based study. Lancet Neurol [Internet].
423		2015;14(9):903–13. Available from: http://dx.doi.org/10.1016/S1474-4422(15)00132-
424		5

22

425	21.	Grau AJ,	Weimar C	C, Buggle F	, Heinrich A,	Goertler M,	Neumaier S, e	et al. The
-----	-----	----------	----------	-------------	---------------	-------------	---------------	------------

- 426 German Stroke Data Bank. Stroke. 2001;32(11):2559–66.
- 427 22. Reynolds MR, Zimetbaum P, Josephson ME, Ellis E, Danilov T, Cohen DJ. Cost-
- 428 effectiveness of radiofrequency catheter ablation compared with antiarrhythmic drug
- 429 therapy for paroxysmal atrial fibrillation. Circ Arrhythmia Electrophysiol.
- 430 2009;2(4):362–9.
- 431 23. Hattori N, Hirayama T, Katayama Y. Medical care for chronic-phase stroke in Japan.
 432 Neurol Med Chir (Tokyo). 2012;52(4):175–80.
- 433 24. Igaku-tsushinsha. Medical Treatment Fee Point April 2020. 2020.
- 434 25. Kamae I, Hashimoto Y, Koretsune Y, Tanahashi N, Murata T, Phatak H, et al. Cost-
- 435 effectiveness Analysis of Apixaban against Warfarin for Stroke Prevention in Patients
- 436 with Nonvalvular Atrial Fibrillation in Japan. Clin Ther [Internet]. 2015;37(12):2837–

437 51. Available from: http://dx.doi.org/10.1016/j.clinthera.2015.10.007

- 438 26. Ministry of Health, Labour and W. Life Tables [Internet]. 2018 [cited 2021 Aug 2].
 439 Available from:
- 440 https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/geppo/nengai18/index.html
- 441 27. WHO. WORLD HEALTH STATISTICS 2020 MONITORING HEALTH FOR THE
- 442 SDGs [Internet]. World Health Organization. 2020 [cited 2021 Aug 2]. p. 1–77.
- 443 Available from: https://www.who.int/publications/i/item/9789240005105
- 444 28. Ministry of Health Labour and Welfare. Cost-effectiveness evaluation system in Japan
- 445 [Internet]. 2019 [cited 2021 Aug 2]. Available from:
- 446 https://www.mhlw.go.jp/content/12404000/000480976.pdf

447

Base-case					
Stable state utility difference	0.08			0	
Time horizon	38.3 🖾	5.9			
Medical device and procedural costs	1464000	2196000			
Closure risk ratio of recurrent stroke	0.31	0.999			
Risk ratio of complication for PFO	0.5	10.12			
Discount rate	0.02	0.04			
Post-clinical moderate stroke cost	4962629	3308419			
Follow-up cost after 2-year in closure	31968	47952			
Atrial Fibrillation utility	0.798	0.653			
Post-clinical minor stroke cost	2328206	1552138			
Follow-up cost non-closure	37397	24931			
% of ischemic stroke mRS3-5	0.352	0.288			
Minort Stroke utility	0.701	0.857			
Medical therapy stable state utility	0.880	0.720			
Follow-up cost first year in closure	45245	67867			
% of ischemic stroke mRS0-2	0.748	0.612			
Moderate stroke utility	0.304	0.372			
Clinical moderate stroke	2110108	1406738			
Clinical minor stroke	1229167	819445			
DOAC after atrial fibrillation cost	148157	222235			
Post-stroke mortality rate within 5 year	0.2241	0.2739			
Post-stroke mortality rate within 1 year	0.054	0.066			
Aspirin cost	11290	7526			
Post-stroke mortality rate within 10 year	0.4095	0.5005			_
-	·10	10	30	5	0
				Millions	
Incremental cost-effectiveness ratio (JPY/QALY)					

□ Upper value
 □ Lower value

Cost-effectiveness acceptability curve

