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Genome-wide association study identifies new
locus associated with OCD
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Obsessive-compulsive disorder (OCD) is a heritable disorder,
but no definitive, replicated OCD susceptibility loci have yet
been identified by any genome-wide association study (GWAS).
Here, we report results from a GWAS in the largest OCD case-
control sample (N = 14,140 OCD cases and N = 562,117 con-
trols) to date. We explored the genetic architecture of OCD,
including its genetic relationships to other psychiatric and non-
psychiatric phenotypes. In the GWAS analysis, we identified one
SNP associated with OCD at a genome-wide significant level.
Subsequent gene-based analyses identified additional two genes
as potentially implicated in OCD pathogenesis. All SNPs com-
bined explained 16% of the heritability of OCD. We show sub-
stantial positive genetic correlations between OCD and a range
of psychiatric disorders, including anxiety disorders, anorexia
nervosa, and major depression. We thus for the first time pro-
vide evidence of a genome-wide locus implicated in OCD and
strengthen previous literature suggesting a polygenic nature of

this disorder.
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Introduction
Obsessive-compulsive disorder (OCD) is a chronic mental
illness that affects approximately 2-3% of the general popu-
lation1;2. It is characterized by obsessions and compulsions
that vary in type and severity across patients, with most
showing a waxing and waning illness course. Age at onset
is usually in early to late adolescence but diagnosis and
initiation of treatment are often delayed by several years3;4.
OCD frequently co-occurs with other disorders, particularly
tic disorders, eating disorders, depressive disorders, and anx-
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iety disorders5–8. Although anxiety is a common symptom
of OCD, OCD is currently considered to be distinct from
anxiety disorders in terms of its epidemiological, clinical
and pathophysiological presentation. This uniqueness is
recognized in DSM-5 and ICD11, which separate OCD,
along with several related disorders, into a separate disorder
category, Obsessive Compulsive and Related Disorders
(OCRDs)2.

Although its pathogenesis is yet to be fully elucidated,
it is now clear that complex genetic factors play a role
in the susceptibility to and/or development of OCD. The
heritability of obsessive-compulsive (OC) symptoms as
estimated by twin studies is between 27 and 47% in adults
and between 45 and 65% in children9–11. SNP-based
heritability of OCD, estimated using genome complex trait
analysis (GCTA) is between 28-37%, with higher estimates
for childhood-onset OCD, in line with heritability estimates
from twin studies12;13. GCTA analyses further indicate
that much of the genetic risk for OCD arises from common
variation in multiple loci, each with a small effect, acting in
concert12. Although rare variants exerting larger effects may
also play a role in OCD development14–17, less work has
been done in this area.

Two genome-wide association studies (GWAS) of OCD as
well as a combined meta-analysis of 2,688 cases and 7,037
controls have been published to date13;18;19. However, all
three studies were significantly under-powered based on es-
timates that suggest a need for tens to hundreds of thou-
sands of individuals (cases and controls) for definitive gene
identification in psychiatric disorders with complex inheri-
tance20. Accordingly, no definitive, replicated OCD suscep-
tibility loci have yet been identified by any study. Neverthe-
less, while small, these prior GWASs did demonstrate signif-
icant SNP-based heritability, indicating that a well-powered
OCD GWAS with a much larger sample size would likely
identify genome-wide significant loci and more accurate SNP
effects, similar to what has been demonstrated for other major
psychiatric disorders21–23. Such findings will provide insight
into the biological underpinnings of OCD and may improve
follow-up analyses and contribute to (multimodal) models for
risk prediction. In addition, the frequent co-occurrence seen
between OCD and other psychiatric illnesses appears to be
due, at least in part, to shared genetic susceptibility. Cross-
disorder studies demonstrate that OCD is genetically corre-
lated with a range of other psychiatric disorders, most notably
Tourette syndrome (TS), anorexia nervosa (AN), and major
depressive disorder (MDD)24;25, all of which are highly co-
morbid with OCD.

Here, we performed a GWAS in a substantially expanded
case-control sample (N = 14,140 OCD cases and N = 562,117
controls). We explored the genetic architecture of OCD, in-
cluding its genetic relationships to other psychiatric and non-
psychiatric phenotypes, such as TS, AN, and MDD. In the
GWAS analysis, we identified one SNP associated with OCD
at a genome-wide significant level. Subsequent gene-based

analyses nominated two additional genes as potentially im-
plicated in OCD pathogenesis. All SNPs combined explained
16% of the heritability of OCD. We also show substantial
positive genetic correlations between OCD and a range of
psychiatric disorders, including those with anxiety disorders
and MDD.

Methods
Samples
We analyzed genomic data from 17 OCD case-control co-
horts (11,312 OCD cases and 557,230 controls in total)
not included in any previous OCD GWAS publications. In
addition, three previously published GWAS datasets (two
from the International OCD Foundation-Genetics Consor-
tium (IOCDF-GC)18 and one from The OCD Collaborative
Geneticws Association Study (OCGAS)19) were re-analyzed
using newly matched control samples that were genotyped
with the same microarrays as the cases (2,828 cases and 4,887
controls). In total, 20 cohorts comprising 14,140 OCD cases
and 562,117 controls of European ancestry were included in
the analyses. Among these, 323 cases were part of a parent-
proband trio; in these cases, parents were used as pseudo con-
trols. A total of 12,607 cases met DSM-IV26 or ICD10 crite-
ria for OCD, while the remaining 1,533 cases were based on
self-reported OCD diagnosis. Supplementary Table S1 pro-
vides an overview of the individual cohorts, cohort-specific
sample and analytic details can be found in the Supplemen-
tary data. Data collections were approved by the relevant
institutional review boards at all participating sites, and all
participants provided written informed consent.

Genetic data formatting, cleaning, alignment,
and individual GWASs
First, the data of each participating cohort were analyzed
individually (see Supplementary Methods for details). Ge-
netic data were imputed using either the Haplotype Refer-
ence Consortium (HRC)27 or 1000 Genomes Project Phase
3 reference panels28. The resulting GWAS summary statis-
tics were then harmonized before a conjoint meta-analysis
was conducted. Each summary statistic data set was trans-
formed to ’daner’ file format following ricopili29 specifica-
tions. Next, each dataset was cleaned of variants that were
likely to have poor underlying genotype data. All variants
had to meet the following criteria for inclusion: minor allele
frequency (MAF) > 1% in cases and controls, imputation-
quality (INFO) score > 0.8 and < 1.2. If the effect mea-
sure, p-value or standard error (SE) was missing or was out of
bounds (infinite), the SNP was removed. Only biallelic SNPs
were retained in the data. Once cleaned summary statistics
were produced, all datasets were aligned to the HRC refer-
ence panel27. If variants were reported on different strands,
they were flipped to the orientation in the HRC-reference.
Furthermore, strand-ambiguous A/T and C/G SNPs were re-
moved if their MAF was > 0.4. In case A/T and C/G SNPs
showed a MAF < 0.4 allele frequencies were compared to
frequencies in the HRC-reference. If an allele frequency
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match was found, i.e., the respective allele was also the mi-
nor allele in the HRC reference, same strand orientation was
assumed. If an allele mismatch was found, i.e. the allele had
a frequency > 0.5 in HRC, it was assumed that alleles were
reported on different strands and alleles were flipped subse-
quently. Marker-names were uniformly switched to those
present in the HRC reference. If a variant did not overlap
with the variants in the HRC reference, it was removed.

Genome-wide association meta-analysis
Inverse variance weighted meta-analysis was conducted on
20 European cohorts using METAL30. Heterogeneity was
assessed with Cochran’s I2 statistic. The genomic control
factor (λ1000) was calculated for each individual GWAS
and for the overall meta-analysis to identify residual popu-
lation stratification or systematic technical artifact. GWAS
summary statistics were subjected to linkage disequilibrium
(LD) score regression (LDSC) analyses on high-quality
common SNPs (INFO score > 0.9) to examine the LDSC
intercept as an alternative evaluation of test statistic inflation
due to residual artifact or population stratification, and to
estimate the genetic heritability from the meta-analysis and
genetic correlations between cohorts. The genome-wide
significance threshold for the GWAS was set at a p-value of
5.0x10−8. Sign tests on the top SNPs (inclusion threshold of
p = 0.0001, p = 0.00001, p = 0.000001, and p = 5.00x10−8)
were performed between each individual cohort as well
as ’leave-one-out’ meta-analyses to identify any cohort in
which the summary statistics significantly deviated from the
rest of the cohorts.

Polygenic risk scoring
OCD polygenic risk scores (PRS) were calculated to as-
sess the predictive value of the new meta-analysis. For this
purpose, we conducted three ’leave-one-out’ GWAS meta-
analyses that each excluded one of three samples (IOCDF-
GC, OCGAS, and Psych_Broad) and tested how well the
PRS predicted case-control status in the excluded sample.
We selected these three datasets based on their previous in-
volvement in a recent meta-analysis (IOCDF-GC and OC-
GAS; see above) and their availability at the site that con-
ducted the analysis (Psych_Broad). PRS were generated at
eight p-value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
and 1) as a weighted sum of the risk allele dosages. The con-
tribution of PRS was measured by comparing Nagelkerke’s
preudo-R2 of the full model (including principal components
(PCs), sex, and PRS) and of the reduced model (adjusted for
PCs and sex).

Gene-based analyses

Conventional MAGMA (C-MAGMA) We used conventional
MAGMA (C-MAGMA v1.07)31 to test genetic associations
at the gene level for the combined effect of SNPs in or near
protein-coding genes while adjusting for LD between the
SNPs and the size of the gene. We used the 1000 Genomes
reference panel (Phase 3)28 to control for LD. SNPs were

mapped to genes if they were located within 10 kb of the
gene coding region. The significance threshold was set using
Bonferroni correction (i.e. 0.05/20,031 tests performed: p <
2.50×10−6).

Expression informed analysis (E-MAGMA, S-PrediX-
can, S-MultiXcan) We conducted gene-based tests informed
by expression quantitative trait loci (eQTL) to identify genes
that are enriched for association signal. We used a novel
eQTL-informed gene-based test (E-MAGMA)32 that assigns
SNPs to genes based on significant associations (FDR-
corrected p < 0.05) with tissue-specific eQTLs in 48 GTEx
tissues (v8). E-MAGMA is conducted in MAGMA (v1.07)
by modifying gene annotation files by integration of eQTL
information and uses the 1000 Genomes reference panel
(Phase 3) to model LD. The significance threshold was
set using Bonferroni correction across all tissues at p <
2.51×10−7 (i.e. 0.05/199,421 tests performed).

We used S-PrediXcan33 to integrate expression quantita-
tive trait loci (eQTL) information with our GWAS summary
statistics and identify genes whose genetically predicted ex-
pression levels were associated with OCD. S-PrediXcan esti-
mates gene expression weights by training a linear prediction
model in samples with both gene expression and SNP geno-
type data. The weights are then used to predict gene expres-
sion from GWAS summary statistics, while incorporating the
variance and covariance of SNPs from an LD reference panel.
We used expression weights for 48 tissues from the GTEx
Project (v8)34 and LD information from the 1000 Genomes
Project (Phase 3)28 (see web resources). These data were
integrated with β values and standard errors from the OCD
GWAS meta-analysis to test the association between imputed
levels of gene expression and OCD risk. The significance
threshold was set at p < 1.67×10−7 using Bonferroni correc-
tion (i.e. 0.05/299,996). Next, we used S-MultiXcan, which
integrates the Predixcan associations across the 48 GTEx tis-
sues into a single test, thus maximizing statistical power. We
applied a transcriptome-wide significance threshold of p <
2.31×10−6 (i.e. 0.05/21,601 tests).

Chromatin informed (H-MAGMA) We further conducted
gene-based tests that integrated genetic results with Hi-C
information using H-MAGMA35. SNPs were assigned to
genes by leveraging regulatory (chromatin interaction) rela-
tionships in human brain tissue. H-MAGMA is conducted in
MAGMA (v1.07) using the 1000 Genomes reference panel
(Phase 3) to model LD. The significance threshold was set us-
ing Bonferroni correction (i.e. 0.05/24,358: p< 2.05×10−6).

Functional annotation of GWAS findings We
also performed an extensive functional annotation for all
SNPs in genomic areas identified by our lead SNPs using
FUMA (see web-resources)36 to identify the most likely
causal variants. In addition, the list of genes significantly
associated with OCD, as indicated by at least one of the four
gene-based methods (Table 2; except LOC101928274 as it is
neither contained in the gene catalog of FUMA nor in the ex-
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pression data) was used to create expression heatmaps to vi-
sualize the average expression value of the associated genes.
Further, a differential gene expression analysis (DEG) was
performed to test the expression of associated genes against
all other genes for each expression data set (tissue and devel-
opmental stage) using GTEx v8 and BrainSpan data37.

Tissue and cell-type enrichment analysis
To determine if there are specific tissues or cell-types whose
gene expression profiles are enriched for OCD risk variation,
we used an analysis protocol recently described in Bryois
et al.38. Consistent with this we utilized their code-base
for this analysis, and in particular the sets of genes that
mark different highlighted tissue and cell-type datasets (see
web-resources for data source).

We selected 3 datasets that had been preprocessed by Bryois
et al.38 for inclusion in this analysis. The first features
tissue-specific gene expression data derived from GTEx39,
with a total of 37 tissues represented. The second and third
datasets are derived from Zeisel et al.40, and represent 1)
broad cell-type groups across the entirety of the mouse ner-
vous system, and 2) a high-resolution single cell-type map of
the same data. In Zeisel et al.40, a total of 39 broad cell-type
groups and 265 individual cell-types are represented.

We followed the analysis protocol described in Bryois et al.38

for the analyses of 37 tissues from GTEx and 39 broad cell-
type groups from Zeisel et al.40, and utilized a simplified ap-
proach for the analysis of each of the 265 individual cell-
types from Zeisel et al.40. For the tissue and broad cell-type
group datasets, we conducted the full protocol from Bryois
et al38 which included analyzing tissue/cell-type enrichment
using both LDSC41 and MAGMA31. For each dataset, p-
values were adjusted for a false discovery rate of 5%. We
only considered a tissue or cell-type significantly enriched
if the FDR-adjusted p-value was less than 0.05 in both the
LDSC and MAGMA-based tests. Due to the high computa-
tional demands of analysing 265 individual cell-types across
the mouse nervous system in LDSC, we limited the assess-
ment protocol to using MAGMA only, and considered a cell-
type as significant if it had an FDR-adjusted p-value of less
than 0.05. All statistical analyses downstream of LDSC and
MAGMA (namely, p-value adjustment) were done using R
v3.6.1, and all plotting was done inside of R v3.6.1 using the
package ggplot2 v3.2.142.

Overlap of the genome-wide significant locus
with high-confidence chromatin interactions
To derive chromatin interactions found in brain tissue that
overlap with the genome-wide significant region(s) from the
OCD GWAS, we submitted a corresponding analysis job to
FUMA36 on May 3rd 2020 using the OCD GWAS sum-
stats as input. We selected the following chromatin inter-
action datasets for inclusion: 1) Promoter anchored loops
from the PsychENCODE project43, 2) loops from fetal cor-
tex tissue, from Giusti-Rodriguez et al. 201944, and 3) loops
from adult cortex tissue, also from Giusti-Rodriguez et al.

201944. All other parameters were set to default settings
(SNP2GENE: a) maximum p-value of lead SNPs < 5x10−8,
maximum p-value cutoff < .05, r2 threshold to define inde-
pendent significant SNPs ≥ .6, second r2 threshold to de-
fine lead SNPs ≥ .1, reference population: 1000G phase 3
EUR, maximum distance between LD blocks to merge into
a locus < 250kb. b) Positional gene mapping: distance to
genes or functional consequences of SNPs on genes to map:
50 kb, SNP filtering: minimum CADD score ≥ 12.37, maxi-
mum RegulomeDB score = 7, annotation datasets eQTL cata-
logue: PsychENCODE, FANTOM5, Brain Open Chromatin
Atlas. c) Gene eQTL mapping: Tissue types from Brain-
Seq Brain, BRAINEAC, GTEx v8 Brain, eQTL; eQTL p-
value threshold: only significant snp-gene pairs with FDR
< .05. GENE2FUNC: all background genes used, gene ex-
pression datasets: GTEx v8:54 tissue types, 30 general tis-
sue types, 29 different ages of brain samples, and 11 general
developmental stages of brain samples, Benjamin-Hochberg
(FDR) correction was used to test for multiple testing in gene-
enrichment analyses, maximum adjusted p-value for gene set
association < .05, minimum overlapping genes with gene
sets ≥ 2).

SNP-based heritability and genetic correla-
tion with other traits
The proportion of variance in liability to OCD that could
be explained by the aggregated effect of all included SNPs
(SNP-based heritability) was estimated using LDSC41. The
SNP heritability is based on the estimated slope from the re-
gression of the SNP effect sizes from the GWAS on the LD
score. Genetic correlations between OCD and 82 other dis-
orders/traits of potential relevance to OCD were estimated
in cross-trait LDSC, a method that computes genetic correla-
tions between GWASs without bias from ancestry differences
or sample overlap45. The genetic correlation between traits
is based on the estimated slope from the regression of the
product of Z-scores from two GWASs on the LD score and
represents the genetic covariation between two traits based
on all polygenic effects captured by the included SNPs. The
source studies of the GWAS summary statistics used are sum-
marized in Supplementary Table S9. The genome-wide LD
information used by these methods was based on European
populations from the HapMap 3 reference panel45;46 (see
web resources). The GWAS summary statistics were filtered
to only include SNPs that were part of the 1,290,028 mil-
lion genome-wide HapMap 3 SNPs used in the original LD
score regression studies45;46. As a follow-up, we repeated
the same analyses separately for three OCD subsets: 1) in-
cluding only clinical samples, 2) including only (large-scale)
biobank samples, and 3) including only data sets that were
not primarily ascertained for OCD (AUS and iPSYCH).

Results
Genome-wide association results
Prior to conducting the GWAS meta-analysis, QQ plots and
genomic inflation factors (reported in Supplementary Table
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S1 as λ1000) from each of the individual GWAS data sets
were evaluated, and no evidence for significant residual
population stratification was observed. The final GWAS
meta-analysis contained 20 data sets consisting of 14,140
OCD cases, 562,117 controls and 7,027,156 autosomal
SNPs. No significant residual stratification effects were
observed (Supplementary Figure S1 QQ plot; λ = 1.151;
λ1000 = 1.005). One SNP (rs2581789, p = 2.1x10−8, OR =
0.92) exceeded the genome-wide threshold for significance
(See Figure 1 for Manhattan plot, Figure 2 for regional plot
of rs2581789, and Figure 3 for a forest plot showing the
effect sizes in each individual cohort for rs2581789). This
SNP is located in the intergenic region between SFMBT1
and RFT1 on chromosome 3p21.1. The LD block tagged
by rs2581789 spans 325.8 kb (LD r² > 0.6) and encom-
passes 12 genes, including NEK4, ITIH1, ITIH3, ITIH4,
ITIH4-AS1, MUSTN1, STIMATE-MUSTN1, STIMATE,
MIR8064, SFMBT1, RFT1, and PRKCD. Eight additional
independent GWAS loci with p-values < 1.0x10−5 were
identified (corresponding association data, genomic regions,
and genes in LD with the lead SNP are reported in Table
1, see Supplementary Figure S2-S9 for regional plots and
Supplementary Figures S10-S17 for forest plots of each
SNP).

This SNP (rs2581789) has previously been reported to be
associated with schizophrenia (SCZ)47 and a combined
SCZ/bipolar disorder (BP) phenotype48, as well as with
anthropomorphic traits such as body mass index (BMI)49

and waist-hip-ratio49, and with psychological traits such
as worry50–52 and well-being53. Other top-ranked SNPs
identified in this analysis have also been previously reported
to be significantly associated with psychological traits such
as anxiety54, depressive symptoms53, neuroticism50;52;53;55,
hurt50, worry too long after embarrassment50;52, nervous
feelings50 and worry/vulnerability54, as well as with
cognitive performance and educational attainment56 (see
Supplementary Table S2 for a full list of previously reported
significant associations of the top nine SNPs identified in the
OCD GWAS).

Polygenic risk scoring
In the ’leave-one-out’ PRS analyses we observed signifi-
cantly higher OCD PRS among OCD cases compared to the
controls in each target sample, explaining 3.9%, 3.5%, and
3.3% of overall phenotypic variance of IOCDF-GC, OCGAS,
and Psych_Broad, respectively (Supplementary Figure S18).

Gene-based analyses
We identified 18 genes that were significantly associated
with OCD in at least one of the four gene-based methods
(C-MAGMA, E-MAGMA, H-MAGMA, and S-PrediXcan)
following correction for multiple hypothesis testing at the
experiment-wide or transcriptome-wide level (see Table 2 for
a list of all significant genes; full results can be found in
Supplementary Tables S3, S4, S5, and S6). Genes identi-
fied by the four methods partially overlapped (Venn-diagram,

Supplementary Figure S19). C-MAGMA revealed five genes
significantly associated with OCD : PER1, SFMBT1, CTC1,
TMEM107, and NEFH at a Bonferroni-corrected significance
threshold of p < 2.50×10−6 (Supplementary Table S3). H-
MAGMA identified 14 risk genes across 7 genomic regions
associated with OCD (Bonferroni-corrected p < 2.05x10−6;
Supplementary Table S4). Using E-MAGMA, we identi-
fied one gene that was significantly associated with OCD
(CTC1 in whole blood, p < 2.51x10−7, Supplementary Ta-
ble S5). CTC1 was also the most significantly associated
gene using S-PrediXcan (whole blood, p = 3.04x10−7), but
did not survive multiple testing correction in this analysis
(p < 1.78x10−7) (Supplementary Table S6). We therefore
meta-analyzed the tissue-specific S-PrediXcan associations
(i.e. combining association signals across 48 GTEx tissues)
using S-MultiXcan to generate a single test statistic (see Sup-
plementary Table S7) for each gene. This approach yielded
two significant (p < 2.31x10−6) genes: TMEM107 (p =
2.44x10−7) and RPL35 (p = 1.01x10−6).

Functional annotation of GWAS findings
The functional annotation of individual GWAS findings
(FUMA) is presented in Supplementary Table S8) and in
the regional annotation plot for the genome-wide significant
chromosome 3 locus (see Supplementary Figure S20). We
explored tissue-specific expression patterns for 17 of the
18 genes resulting from the gene-based tests (excluding
LOC101928274 for which no information was available).
Results are visualized for the 54 GTEx tissues (see Sup-
plementary Figure S21) and for Brainspan gene expression
data (Supplementary Figures S22 and S23). Deferentially
Expressed Gene (DEG) set analyses were conducted to test
whether the set of 17 genes implicated by one or more gene-
based tests are significantly up-regulated or down-regulated
in any of the tissues. No significant differences were found
(Supplementary Figures S24, S25, and S26).

Tissue and cell-type enrichment analyses
We performed association tests for enrichment between OCD
GWAS summary statistics and three gene expression pro-
files from human tissues and mouse cell-types. No tissue or
cell-type was significantly associated with OCD after FDR
correction for both the LDSC and MAGMA methods (Sup-
plementary Figure S27A), thus failing to reach our criterion
for significance. Nevertheless, tissues derived from brain re-
gions clustered preferentially at the top of the results dis-
tribution. Also, no broad cell-type category reached signif-
icance for both LDSC and MAGMA (Supplementary Figure
S27B). Here, the top-ranking result was ’telencephalon pro-
jecting excitatory neurons’. A further eight types included
three types of di- and mesencephalon inhibitory neurons from
the midbrain, two types of di- and mesencephalon excita-
tory neurons (one from thalamus and one from midbrain),
and two types of telencephalon inhibitory interneurons from
the hippocampus/cortex. In the high-resolution single cell-
type analysis using MAGMA, nine specific cell-types were
significantly enriched for OCD after FDR-correction (Sup-
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plementary Figure S28).

Overlap of the genome-wide significant locus
with high-confidence chromatin interactions
Genome-wide significant hits in other psychiatric GWAS
studies have been shown to be enriched in overlap with
brain-specific chromatin interactions44;57, and we sought to
determine if this overlap (and potential subsequent mecha-
nism of effect) existed for the genome-wide significant lo-
cus. We utilized FUMA36 to determine if the genome-wide
significant locus from the GWAS (lead SNP located at hg19
chr3:53096230) overlapped with any high-confidence chro-
matin interactions derived from either PsychENCODE57 or
fetal and adult cortex from Giusti-Rodriguez et al.44. While
several loops connected the locus with a distal gene on the
same chromosome (see Supplementary Figure S29), follow-
up analyses did not reveal any genes with an obvious dosage
sensitivity.

SNP-based heritability and genetic correla-
tions with other traits
The SNP-based heritability of OCD as obtained from LD-
score regression was estimated to be 0.164 (SE = 0.012).
In genetic correlation analyses between OCD and summary
statistics from 82 behavioral, cognitive, psychiatric, neuro-
logical, allergic/immunologic, metabolic, and anthropomor-
phic traits 31 of the 82 traits investigated had significant ge-
netic correlations after correction for multiple testing (Fig-
ure 4 and Supplementary Table S9). In particular, OCD
showed significant positive genetic correlations with all psy-
chiatric disorders, with especially high correlations with anx-
iety disorder (rg = 0.627, SE = 0.057, FDR-corrected p =
6.11x10−27, AN (rg = 0.588, SE = 0.04, FDR-corrected p
= 1.91x10−48), and MDD (rg = 0.54, SE = 0.042, FDR-
corrected p = 6.58x10−36). OCD was also positively corre-
lated with alcohol dependence, while cannabis use disorder
and other substance-use traits did not show significant cor-
relations. Moreover, OCD was significantly genetically cor-
related with several cognitive/SES related traits, including a
positive correlation with memory and negative correlations
with intelligence, income, and job satisfaction. Also, some of
the anthropomorphic traits (BMI, waist-hip-circumference,
and hip-circumference) and auto-immune disorders (Crohn’s
disease, ulcerative colitis, and inflammatory bowel disease)
showed a significant negative correlation with OCD. In addi-
tion, significant correlations of substantial effect (r > |0.25|)
were found with neuroticism, suicidality, tiredness (all pos-
itive), and with subjective well-being (negative). Somewhat
less prominent, but also significant was the positive corre-
lation with childhood maltreatment. Genetic correlations
with neurological, substance use, cardiovascular, and fertil-
ity traits were weak and non-significant.
As follow-up sensitivity analyses, we repeated the genetic
correlation analyses for clinically-ascertained samples and
biobank samples separately, as well as for the full OCD
GWAS sample excluding the two datasets that were not pri-
marily ascertained for OCD (AUS and DOTS). The resulting
correlations were similar, though not identical, across these

three OCD sub-samples (see Supplementary Figure S30).
As an example for differences in the sub-samples, only the
clinically-ascertained OCD samples had significant genetic
correlations with ADHD and PTSD. Generally, the biobank-
derived OCD samples showed less pronounced correlations
than the other two subsets, which might be expected due to
their smaller case sample sizes.

Discussion
In this GWAS, containing approximately five times the num-
ber of individuals diagnosed with OCD than previous stud-
ies13;18;19, we report the first definitive genome-wide signifi-
cant locus for OCD (rs2581789 on chromosome 3p21.1). All
SNPs combined in our analysis explained 16% of the heri-
tability of OCD. We also showed substantial positive genetic
correlations between OCD and a range of psychiatric disor-
ders, including anxiety disorders, AN, and MDD.
Our top SNP rs2581789 resides in a gene-rich genomic
region (see Figure 2 for a regional association plot and a
list of genes in the region). This region has previously been
associated with a broad range of other psychiatric disorders
and related traits, including SCZ47, well-being52, and the
worry-subcluster of neuroticism50. Of note, this SNP was
also identified in a recent cross-disorder meta-analysis of
eight psychiatric disorders from the Psychiatric Genomics
Consortium (PGC)24 (p = 6.51x10−14 without the 23andMe
data). Although the PGC cross-disorder analysis used a
subset of the samples included in the current study, these
previously published OCD cases13 represent only 20% of the
cases in the current analysis, and did not have the power to
identify any individual locus with genome-wide significance
for OCD alone13. Despite being under-powered in the cross-
disorder analysis24, OCD was among only three of the eight
phenotypes that were shown to contribute to the rs2581789
association results with m-values > 0.9 (SCZ and BP being
the other two). These findings indicate that the genome-wide
significant SNP in this study is not solely associated with
OCD, but rather with multiple psychiatric phenotypes,
reflecting a pleiotropic effect, possibly contributing to a
shared underlying neurobiological susceptibility across a
subset of psychiatric disorders and other neurobehavioral
traits. These findings add to the confidence that this SNP,
and the encompassing 3p21.1 region, is robustly, but not
uniquely associated with OCD. Notably, another recent
manuscript58, reported one genome-wide significant region
for a compulsive disorder factor (rs9821797 on chromosome
3p21.31, P = 3.61x10−9, r2 with rs2581789 < 0.01 and D
< 0.2 in European ancestry individuals), using structural
equation modeling and summary statistics from 11 major
psychiatric disorders. This locus reached a p-value of
4.32x10−4 in the present OCD GWAS, although it should be
noted that there was partial overlap between samples using
the same sample as the PGC CDG study (see above).

Gene-based analyses, incorporating multiple types of func-
tional annotations, including eQTLs, fetal and adult brain
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Hi-C information, and enrichment of tissue and single-cell
RNAseq data, revealed no consistent associations. This is
likely due to the absence of multiple, independent genome-
wide association loci from the primary GWAS, as these are
typically necessary to have enough statistical power for such
studies. However, two genes were identified by three of
the four gene-based methods: the Transmembrane Protein
107 gene (TMEM107) and the CST Telomere Replication
Complex Component 1 gene (CTC1), both located in the
same locus on chromosome 17 (see Table 2 for the respective
results of the four different gene-based methods). Given that
SNPs in these genes were not identified as genome-wide
significant in the primary GWAS meta-analysis, there is not
yet sufficient evidence to consider the potential role(s) of
genes or SNPs in these loci in the etiology of OCD.

Our analyses of the shared genetic risk between OCD and
other psychiatric disorders provides deeper insights into
the etiology of OCD. Previous work, including the cross-
disorder analyses discussed above24;58, have confirmed the
shared genetic risk between OCD and two neuropsychiatric
disorders that are highly co-morbid with OCD - TS12;59 and
AN60;61. The above mentioned cross-disorder analyses also
identified other psychiatric disorders as being correlated
with OCD, albeit less strongly (SCZ, BP, and MDD). The
present study, with its substantially increased sample size,
confirms the genetic relationships between OCD and all of
these disorders (TS, AN, SZ, BP, and MDD), and for the
first time also shows significant genetic correlations between
OCD and anxiety disorders, ADHD, as well as ASD (see
Figure 4, Supplementary Figure S30 and Supplementary
Tables S9 and S10).

In addition, our analyses of genome-wide genetic correla-
tions between OCD and a wide range of additional brain-
and non-brain-based traits identified a number of significant
results that warrant a more in-depth study in the future (see
also below for potential limitations of our study). The sig-
nificant negative association between genome-wide genetic
risk for OCD and BMI, body-fat and hip circumference may
be reflective of the shared genetic risk between OCD and
AN, while the positive genetic correlation between OCD and
tiredness, loneliness, neuroticism, and suicidality may repre-
sent the known clinical overlap of OCD, anxiety and MDD
at a genetic level. Less clear regarding its interpretation is
the significant genetic correlation between OCD and child-
hood maltreatment. Prior clinical studies have reported in-
creased rates of childhood maltreatment in individuals with
OCD62;63, which may correlate with co-occurring depression
and anxiety. However, further studies are needed to shed light
on the genetic relationship and the overlap in genetic contri-
butions to their etiology.

One potential study limitation is the fact that, due to poten-
tially higher than normal rates of psychiatric co-morbidity
in many of our OCD datasets (e.g. through inclusion of
individuals diagnosed with more severe OCD), our results
may be biased towards identifying genes that contribute to

multiple comorbid psychiatric disorders, or alternatively to
an underlying trait related to general psychopathology, rather
than to OCD specifically. A substantial proportion of new
samples in the current study were derived from large-scale
biobanks and national registers, two of which were drawn
from studies that originally aimed to study other psychiatric
disorders, such as depression (AUS), or that included a
higher-than-average number of cases with depression,
ADHD, and ASD (iPSYCH). As such, there is a larger
degree of heterogeneity in our meta-analysis which likely
influenced the genetic correlation results. We conducted
sensitivity analyses to address and to mitigate these potential
biases by dividing the OCD meta-analysis into three subsets
including a) only samples from large-scale biobanks, b)
only clinical samples, and c) excluding the two studies
with comorbid ascertainment (AUS and iPSYCH) from the
analysis. We observed in part substantial changes in the point
estimates of the genetic correlations with some disorders
and traits (e.g. depression, anxiety disorders, and ADHD).
We are currently conducting additional analyses to further
address these limitations and will update the current version
of this manuscript as soon as these results become available.
Our observations echo similar results in other disorders (e.g.
MDD) that call for more sophisticated analytical approaches
(e.g. through inclusion of sensitivity meta-analytic methods
based on structural equation modelling and other techniques)
in order to combine samples with heterogeneous ascertain-
ment. As with these other disorders the limitations inherent
in our study design and in the available samples should
be addressed in future genetic studies of OCD. In light
of the above highlighted results, it is of note that we also
performed leave-one-out polygenic risk score analyses using,
among others, the previously published OCD meta-analysis
of clinically-ascertained cases13, which was used in all
previous cross-disorder studies mentioned above. We found
significant overlap in genetic liability between the prior
OCD GWAS meta-analysis and leave-one-out GWAS data
using predominantly samples that were newly added (mostly
from large-scale biobanks) to our current meta-analysis (see
Supplementary Figure S18). Once sample sizes sufficiently
large to identify and replicate clear OCD susceptibility
genes are collected, further analyses such as functional
characterization, Mendelian randomization, and additional
genetic correlation analyses may prove to be useful with the
goal of further elucidating the underlying genetic etiology of
OCD.

In sum, the present study provides insights into the current
state of the largest GWAS for OCD to date. Our study identi-
fied the first definite genome-wide significant association of a
locus with OCD (on chromosome 3p21.1). We are confident
that with inclusion of additional samples (in the near future)
we will be able to add new genome-wide significant regions
to our current findings and further our understanding of OCD
genetics. With these new meta-analysis results we will then
also be able to use approaches (e.g., Mendelian Randomiza-
tion and other) that will allow us to study the causal rela-
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tionship between the genetic underpinnings of closely related
disorders.
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Table 1. LD-independent genomic regions with p < 1x10−6 in the OCD meta-analysis and their associated genes

SNP CHR BP P OR SE A1/A2 FRQ_A FRQ_U INFO genes.6.50kb(dist2index)

rs2581789 3 53096230 2.138x10−8 0.91677 0.0155 C/T 0.328 0.353 0.996 NEK4(-241.3),ITIH1(-220.2),
ITIH3(-203.2),ITIH4(-181.5),
ITIH4-AS1(-186.9),MUSTN1(-177.2),
STIMATE-MUSTN1(-114.7),
STIMATE(-114.7),MIR8064(-165.7),
SFMBT1(0.0),RFT1(0.0),PRKCD(49.0)

rs13262595 8 143316970 1.585x10−7 1.07573 0.0139 A/G 0.454 0.424 0.993 LINC00051(0.0),TSNARE1(0.0)
rs674094 11 57665336 1.844x10−7 1.08622 0.0159 A/C 0.319 0.332 0.99 SERPING1(-233.0),MIR130A(-206.6),

YPEL4(-197.9),CLP1(-186.0),
ZDHHC5(-146.7),MED19(-135.5),
TMX2(-106.9),TMX2-CTNND1(-28.7),
SELENOH(-104.3),BTBD18(-96.1),
CTNND1(-28.3)

rs79712033 2 147846501 1.999x10−7 1.17975 0.0318 A/G 0.945 0.937 0.971 -
rs7219489 17 8121622 2.79x10−7 1.08405 0.0157 G/T 0.732 0.727 0.994 ALOXE3(-49.4),HES7(-44.2),PER1(-15.9),

MIR6883(-23.2),VAMP2(-5.4),TMEM107(0.0),
SNORD118(0.0),MIR4521(0.0),BORCS6(0.0),
AURKB(0.0),LINC00324(0.0),CTC1(0.0),
PFAS(0.0),SLC25A35(19.5),RANGRF(20.4),
ARHGEF15(41.9),ODF4(71.5)

rs9535127 13 31606961 5.725x10−7 1.07659 0.0148 T/C 0.487 0.49 0.993 TEX26(-7.3)
rs7128224 11 77360928 5.817x10−7 1.0835 0.016 T/G 0.316 0.308 0.989 LOC646029(-24.2),AQP11(0.0),CLNS1A(0.0),

RSF1(0.0),AAMDC(121.2),INTS4(178.8),
KCTD14(315.8),NDUFC2-KCTD14(315.8)

rs424541 22 29863922 8.089x10−7 0.91439 0.0181 C/T 0.818 0.789 0.997 AP1B1(-29.4),RFPL1S(0.0),RFPL1(0.0),
NEFH(0.0),THOC5(0.0),NIPSNAP1(36.9),
NF2(85.6)

rs34289388 2 208280861 9.928x10−7 1.08741 0.0171 G/A 0.8 0.788 0.998 -

Notes: SNP: single-nucleotide polymorphism; CHR: chromosome; BP: base pair position (hg19); P: p value; OR: odds ratio for allele1; A1/A2: effect allele/ reference
allele; FRQ_A: frequency of allele1 in affected cases; FRQ_U: frequency of allele1 unaffected controls; INFO: imputation INFO score; genes.6.50kb(dist2index):
list of genes within the region of LD-friends.6 (variants with LD-r2 >0.6 to index SNP) (±50 kb), in brackets distance to index SNP in kb.
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Table 2. Genes significantly associated with OCD, as indicated by 4 gene-based methods

Locus Top genes BP start BP stop N SNPs p value Gene-based method*

C-MAGMA E-MAGMA H-MAGMA S-MultiXcan

3p21.1 SPCS1 52738971 52745162 59 2.57x10−7

NEK4 52742465 52804965 43 1.47x10−6

TMEM110 52870772 52931612 34 1.04x10−6

SFMBT1 52933221 53080089 274 2.83x10−7

9q33.3 RPL35 127620158 127624260 N/A 1.01x10−6

9q33.3 HSPA5 127997132 128003609 72 5.49x10−7

11q12.1 TIMM10 57295936 57298276 27 3.73x10−7

12q24.23 LOC101928274 118501398 118541753 209 1.22x10−6

VSIG10 118501398 118541753 209 1.22x10−6

13q12.3 MEDAG 31480328 31499709 84 1.07x10−7

13q13.3 POSTN 38136720 38172981 333 1.52x10−6

17p13.1 ACAP1 7239848 7254797 105 2.47x10−8

17p13.1 PER1 8043788 8059723 30 8.89x10−8

TMEM107 8076555 8079717 13 1.39x10−7

SNORD118 8076772 8076905 7 2.38x10−7

BORCS6 8091651 8094225 14 6.63x10−8

17p13.1 CTC1 8128139 8151413 134 2.30x10−7

22q12.2 NEFH 29876181 29887279 27 4.74x10−7

F

Notes: P values thresholds for each gene-based method was calculated using Bonferroni correction, for the total number of tests performed
for a given method. The P value for the most significant gene-based association is reported in the Table. C-MAGMA: 2.50x10−6

(N=20,031 tests); E-MAGMA: P<2.51x10−7 (N=199,421 tests); H-MAGMA: P<2.05x10−6 (N=24,358 tests); S-MultiXcan: P<2.31x10−6

(N=21,601 tests). The table describes the locus, top gene-based associations within each locus (top genes), location of the associated gene
in base pairs (hg19) (BP start and BP stop, respectively), the number of SNPs included in the model (N SNPs), ae.g., .* Black shading
indicates the method with the most significant gene-based P value; grey shading indicates a significant association for the same gene using
a different gene-based method.
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Fig. 1. Manhattan plot of the results from the GWAS meta-analysis of OCD: The y-axis represents –log10 p values for association of variants with OCD, from meta-
analysis using an inverse-variance weighted fixed effects model. The x-axis represents chromosomes 1 to 22. The horizontal red line represents the threshold for genome-wide
significance. The index variant of the one genome-wide significant locus is highlighted as a green diamond.
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Fig. 2. Regional plot of the genome-wide significant locus rs2581789. The –log10(p-value) of SNPs in the OCD meta-analysis GWAS is shown on the left y axis. The
recombination rates expressed in centimorgans (cM) per Mb (Megabase) (blue line) are shown on the right y axis. Position in Mb is on the x axis. Only the SNPs with
association p-value less than 0.1 were plotted. The most associated SNP is shown as a purple diamond.
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Fig. 3. Forest plot of SNP rs13262595. The plot shows the effect estimate with 95%-confidence interval for each cohort contributing to the meta-analysis and for the inverse
variance weighted meta analysis. The table lists INFO (imputation score), p-value, f_ca(n) (frequency cases), f_co(n) (frequency controls), ln(OR), and STDerr (standard
error) for each of the contributing cohorts and for the meta-analysis. At the top, + indicates a positive direction of effect, - a negative direction of effect while ? indicates that
the SNP was not contained in the respective cohort.
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Fig. 4. Genetic correlations (rg) between OCD and a broad range (N=82) of other phenotypes. Error bars represent 95% confidence intervals and asterisks indicate
significant associations after FDR correction for multiple testing. Non-significant correlations with SE > 0.5 are excluded from display.
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