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What is already known about this subject 

Genetic variants affecting SLCO1B1 (statin transporter) gene function increase 
concentrations of unmetabolized statin molecules (mostly simvastatin and atorvastatin). 
Previous studies of statin-treated patients have reported reduced likelihood of achieving 
target cholesterol levels plus increased adverse effects and medication non-adherence 
mainly in the first year of treatment.   

However, little data have been available on key outcomes over longer follow-ups or on 
outcomes by sex, despite large differences in statin treatment patterns between men and 
women.    

What this study adds 

In 69,185 UK Biobank participants reporting simvastatin or atorvastatin use at baseline 
assessment, substantially more women had clinically high total cholesterol (>5 mmol/L) 
compared to men (42% vs. 25%). Female carriers of the SLCO1B1*5 (decreased SLCO1B1 
function) genetic variant were especially likely to have high cholesterol, despite being on 
statin treatment.  

In primary care records of atorvastatin and simvastatin prescribing (>10 years follow-up), 
female carriers of SLCO1B1*5 were more likely to stop statins. In men, SLCO1B1*5 was 
only associated with discontinuing statin treatment in the first year after starting treatment.  
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ABSTRACT 

Objective: To estimate the effect of the SLCO1B1*5 genotype (decreases statin transport) 
on cholesterol control and treatment duration in male and female primary care patients 
prescribed common statin medications. 

Methods and Analysis: 69,185 European-ancestry UK Biobank cohort participants 
prescribed simvastatin or atorvastatin (aged 40 to 79 years at first prescription; treatment 
duration 1 month to 29 years, mean 5.7 years). Principal outcomes were clinically high total 
cholesterol (>5mmol/L) at baseline, plus treatment discontinuation. 

Results: 48.4% of 591 females homozygous for SLCO1B1*5 decreased function genotype 
had raised cholesterol, vs. 41.7% of those with functioning SLCO1B1 (Odds Ratio 1.31: 95% 
Confidence Intervals 1.1 to 1.55, p=0.001). Fewer males had high cholesterol, and the 
genotype effect was attenuated. In primary care prescribing, females homozygous for 
SLCO1B1*5 were more likely to stop receiving these statins (29.5%) than women with 
normal SLCO1B1 (25.7%) (Hazard Ratio 1.19: 95%CI 1.03 to 1.37, p=0.01), amounting to 
five discontinuations per 100 statin-years in the SLCO1B1*5 group vs four in the normal 
SLCO1B1 function group. This remained significant after the first year of treatment (HR for 
discontinuing >1 year after first prescription 1.3: 95%CI 1.08 to 1.56; p=0.006). In men 
SLCO1B1*5 was only associated with treatment discontinuation in the first year. 

Conclusions: In this large community sample of patients on commonly prescribed statins, 
the SLCO1B1*5 decreased function variant had much larger effects on cholesterol control 
and treatment duration in women than in men. Efforts to improve effectiveness of statin 
therapy in women may need to include SLCO1B1*5 genotype-guided statin selection. 
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INTRODUCTION 

Elevated low-density lipoprotein cholesterol (LDL-C) level is a major risk factor for 
myocardial infarction and stroke (1). Statins are the most commonly prescribed cholesterol-
lowering drugs and reduce cardiovascular morbidity and mortality in higher risk patients 
(2,3). However a major barrier to effectiveness is medication non-adherence, often due to 
reported side effects including muscle pain (4). The STRENGTH study included 509 
hypercholesterolaemic patients who were randomised to simvastatin, atorvastatin or 
pravastatin and discontinuation of treatment due to adverse effects was significant for 
simvastatin (Odds Ratio: 2.8, 95% Confidence Intervals 1.3–6.0) and atorvastatin (OR 1.6: 
95%CI 0.7–3.7) in 16 weeks follow-up(5). However, a systematic review of randomised 
controlled trials (n=74 102) found no differences between placebo and statin groups for 
developing muscle symptoms and discontinuation of treatment (6), perhaps because trial 
participants are generally healthier than many older people prescribed statins. 

Genetic polymorphisms in the solute carrier organic anion transporter 1B1 (SLCO1B1) gene, 
which encodes organic anion transporter polypeptide 1b1 (OATP1B1) and transports statins 
into tissues, may influence the effectiveness of lipid lowering therapy(7–11). Decreased 
hepatocellular concentrations of statins results in lower efficacy for reducing LDL-C, and 
increased systemic exposure to statins increases the risk of developing muscle weakness 
and muscle pain (12). SLCO1B1*5 is a single nucleotide polymorphism (SNP, rs4149056 
T>C) resulting in an amino acid substitution in SLCO1B1 (p.Val174Ala), increasing plasma 
levels of simvastatin by 221% and atorvastatin by 144% (13). A meta-analysis of 13 
atorvastatin studies found SLCO1B1*5 was associated with atorvastatin-related adverse 
drug reactions (OR 1.57, p=0.01) (14), yet literature linking SLCO1B1*5 (5,9,10) to statin’s 
evidence is mixed and mostly focussed on shorter term outcomes (statin-related myotoxicity 
is predominantly reported in the first year of treatment, with median onset of 1 month after 
treatment initiation) (11). A 2013 study of UK primary care recruited 77 patients with statin-
induced myopathy and found SLCO1B1*5 significantly increased risk of myopathy compared 
to controls (OR per *5 allele 2.1, 95%CI 1.3 to 3.2) (15), but more research is needed linking 
genotype and GP data. 

Though sex-differences in cholesterol levels are known, with LDL generally lower in men 
(16) and higher total cholesterol levels in women whilst treated with statins (17),  previous 
studies have mainly focused on men and effects in women are understudied (18–20). In 
addition, women have greater risk of adverse drug reactions, yet many cardiovascular risk 
models do not take into account female-specific factors (21). Historically UK guidelines for 
prescription of statins for cardiovascular disease (CVD) prevention used the same clinical 
cut points for high cholesterol (>5 mmol/L) and LDL (>3 mmol/L) for men and women(22). 
Current UK clinical recommendations are to begin atorvastatin treatment when 10-year CVD 
risk is >10% and to assess statin effectiveness if 40% reduction in non-HDL cholesterol is 
achieved 3 months after treatment initiation (23). Women have lower body weight and a 
higher percentage of body fat compared to men, which might lead to higher concentrations 
of lipophilic drugs such as simvastatin and atorvastatin (24) and increased risk of adverse 
events, which may be exacerbated by the SLCO1B1*5 decreased function genotype which 
increases concentrations of unmetabolized drugs (12).  

We therefore aimed to determine whether women prescribed simvastatin or atorvastatin 
were as likely as men to achieve cholesterol levels below clinically high cut points using data 
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from the UK Biobank, a large cohort of community volunteers followed in primary care and 
hospital electronic medical records for over 10 years. Secondly, we tested whether the 
SLCO1B1*5 decreased function genotype was associated with discontinuing statin 
treatment (in the first year and the longer term) in males and females separately. Statins are 
known to impact inflammation (25) and diabetes risk (3), so we also assessed C-reactive 
protein, alanine aminotransferase and HbA1c at baseline. We also investigated effects on 
self-reported side effects (including nausea and fatigue) and muscle symptoms. Considering 
the strong evidence for SLCO1B1*5 affecting patients on simvastatin or atorvastatin and, 
that GPs prescribe them interchangeably, we examined both together. 
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METHODS 

UK Biobank cohort 

The UK Biobank recruited 503,325 community-based volunteers aged 40-70 years who 
visited one of 22 assessment centres in Wales, Scotland or England in 2006-2010 (26). 
Comprehensive questionnaires on demographic, lifestyle and health information data were 
collected at the baseline assessment. Blood samples for genetic and biochemical analyses, 
and anthropometric measures were taken. This study of atorvastatin and simvastatin 
comprises two distinct analysis sections. First using the data from baseline assessment only, 
and second using the linked GP (primary care) data available in 230,096 (45.7%) 
participants (Figure 1). 

Baseline assessment 

The UK Biobank baseline assessment included self-reported medications; we analysed 
simvastatin and atorvastatin.   

Lipid levels were measured in the UK Biobank baseline data and were categorized based on 
NHS reference levels at the time of assessment (22,27): high total cholesterol (>5mmol/L), 
high LDL-C (>3mmol/L), high triglycerides (>2.3mmol/L). We used pre-diabetic Hba1c level 
(>47mmol/mol) (28), high C-reactive protein (CRP) (>10mg/L) (29), high alanine 
aminotransferase (ALT) (>25 IU/L for females, >33 IU/L for males) (30) as statin use may 
worsen these variables.   

We also analysed self-reported symptoms associated with statin use which may cause 
discontinuation of the treatment (31). We used “Headaches for 3+ months” (Data-Field: 
3799), “Frequency of tiredness/lethargy in last 2 weeks” (Data field: 2080), and any reported 
pain for 3+ months (combining Data-Fields 3404, 3571, 3741, 3414, 3773, 2956).  

General Practice (GP) data 

More than 57million prescriptions for 230,096 (45.7%) participants in the primary care data 
were available. The GP data was up to August 2016 (England TPP system supplier) and 
September 2017 (Wales EMIS/Vision system). Drug name, quantity, date of prescription, 
drug code (in clinical Read v2, British National Formulary (BNF), or dm+d (Dictionary of 
Medicines and Devices) format, depending on suppler) are available. We identified 
prescribing records for Simvastatin (Zocor, Simvastatin, Simvador) 10 mg, 20mg, 40mg and 
80mg and for Atorvastatin (Atorvastatin, Lipitor) 10mg, 20mg, 40mg, 60mg and 80mg to 
analyse the date first prescribed, date last prescribed, number of total prescriptions, and 
average number of prescriptions over the treatment span.  

Participants with a date of last prescription at least 3 months prior to the censoring date were 
defined as having discontinued treatment. The censoring date was either the date of 
deduction (removal from GP list, where available) or 28 Feb 2016 where no deduction date 
was present (i.e., still registered at an available practice). Data after 28 Feb 2016 is 
incomplete, depending on GP provider (see UK Biobank documentation (32)). We also 
evaluated prescriptions for other statins (Cerivastatin, Fluvastatin, Pravastatin and 
Rosuvastatin) to identify patients switching treatments from Simvastatin or Atorvastatin. 

Muscle symptoms were ascertained from ICD-10 codes (33) and converted to Read codes 
used in UK primary care records (using UK Biobank-provided diagnostic code maps), 
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available for up to 11 years follow-up after baseline assessment. We included ICD-10 codes 
for myopathy, myositis or myalgia (G72.0; G72.8; G72.9; M60.8; M60.9; M79.1). 

SLCO1B1*5 genotype 

Directly genotyped genetic variants (n=805,426) were obtained by UK Biobank using two 
near-identical platform: the Affymetrix Axiom UKB array (in 438,427 participants) and the 
Affymetrix UKBiLEVE array (in 49,950 participants). The central UK Biobank team performed 
imputation in 487,442 participants and the number of genetic variants reached ~96 million 
(34).  Different ancestral groups when analysed together can cause bias in genetic studies 
(35), thus we included 451,367 (93%) genetically European ancestry participants.  

We analysed the SLCO1B1*5 genetic variant rs4149056 (C allele, directly genotyped) with 
well-documented effects on simvastatin and atorvastatin related side effects in the literature, 
particularly on muscle symptoms (36).  Genotype data was not returned to participants as 
part of the study.  

Statistical analyses  

Associations between genotype and biochemical variables at the baseline were tested by 
logistic regression, adjusting for age and the first ten principal components of genetic 
ancestry to control for population substructure.  

The association between genotype and discontinuation was tested using Cox’s proportional 
hazards regression models. We also performed Kaplan-Meier plots. Participants entered the 
model at the date of first prescription of statins and exited on the date of first incident 
outcome or end of records, thus providing an ‘intention to treat’ analysis reducing any effect 
of genetically associated discontinuation of treatment. We tested the associations between 
GP-diagnosed muscle symptoms that occurred in the first 3 months and 3 months or longer 
after the first prescription date using time to event models. 

To estimate the Genetically Moderated Treatment Effect (GMTE) we used “TWIST” 
(Triangulation with a Study) (37): a novel pharmacogenetic causal inference approach to 
estimate population average effect on total cholesterol if all SLCO1B1*5 homozygotes could 
experience the same treatment effect as non-carriers. In brief, several assumptions common 
to pharmacogenetic analysis are tested (primarily that genetic variant SLCO1B1*5: does not 
predict whether an individual receives statin treatment; is not associated with any 
confounders predicting statin use or cholesterol; and only affects cholesterol through the 
interaction with statins). From this analysis the most efficient and robust estimate of the 
GMTE is derived. 

Sensitivity analysis 

a) We conducted competing risk regression model for discontinuation or death to check 
whether the estimate is drastically changed when accounting for the competing risk 
of mortality. 

b) We also tested for interactions between SLCO1B1 genotype and sex with 
discontinuation of treatment within year 1 and discontinuation after one year of 
treatment. 

Patient and public involvement 
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Patients and participants are extensively involved in the UK Biobank study itself. No patients 
were involved in developing the research question or the outcomes tested in this analysis. 

RESULTS 

Characteristics and associations at UK Baseline assessment  

There were 26,185 female and 41,445 male European-ancestry UK Biobank participants 
who reported atorvastatin or simvastatin treatment at baseline assessment. The mean age 
was 61.6 years (SD 5.7) for females and 61.4 (SD 6.1) for males (Table 1) (see 
Supplementary Table 1 for details including heterozygotes).  

42.1% (10,485/24,907) of women and 25.3 % (9,995/39,527) of men had clinically high total 
cholesterol levels (>5mmol/L), significant in logistic regression models adjusted for age 
(Odds Ratio 2.2: 95% Confidence Intervals 2.11 to 2.26, p=5*10-439). The association was 
significant and effect consistent after further adjustment for assessment centre, highest 
education level attained, weight, waist circumference, and smoking status (OR 1.94: 95%CI 
1.86 to 2.01, p=8*10-256).  

The SLCO1B1*5 impaired statin intracellular transport genotype (rs4149056 CC 
homozygous) was present in 2.26% of female study participants (n=591). This group was 
more likely to have clinically raised total cholesterol compared to females with normal 
function (rs4149056 TT homozygous) genotype (OR 1.31: 95%CI 1.10 to 1.55, p=0.001) in 
logistic regression models adjusted for age and genetic principal components of ancestry 1 
to 10 (Table 2). 48.4% of female SLCO1B1*5 homozygotes had raised cholesterol, 
compared to 41.7% of the SLCO1B1 normal function group (excess 6.7%: 95%CI 2.6 to 
10.9, p=0.001). Females SLCO1B1*5 homozygotes were also more likely to have raised 
LDL (OR 1.42: 95%CI 1.2 to 1.69, p=4.4*10-5) (44.8% vs. 36.2%; excess 8.6%: 95%CI 4.3 to 
12.6, p=4*10-5).  

In our TWIST causal analysis (37) of high/low total cholesterol we estimated that if all female 
SLCO1B1*5 homozygotes could experience the same treatment effect as non-carriers their 
risk of high cholesterol would reduce by 6.34% (95%CI 3.33 to 9.35, p=3.7*10-5) i.e. from 
48.4% (the number of female SLCO1B1*5 homozygotes with high cholesterol) to 42.1%. 
This equates to 37 women (6.34% of 591 female SLCO1B1*5 homozygotes in analysis). In a 
complimentary analysis treating total cholesterol as a continuous outcome we estimated that 
SLCO1B1*5 homozygous females would have 0.147 mmol/L lower total cholesterol if they 
could be treated with a lipid-lowering medication unaffected by the genotype. This suggested 
a reduction in the number of *5 homozygotes with high total cholesterol from 48.4% to 
40.7%, corresponding to 46 SLCO1B1*5 homozygous women with cholesterol <5mmol/L 
where currently it is >5mmol/L. We used the ‘robust’ GMTE estimate, which estimates the 
GMTE in treated individuals, then subtracts the GMTE estimate in untreated (but eligible) 
individuals. This guards against off-target genetic effects that could directly influence the 
likelihood of being treated with a statin and/or an individual’s cholesterol level. 

Males homozygous for the SLCO1B1*5 decreased function variant (n=927, 2.24% of 41,445 
males in study) were also more likely to have raised total cholesterol than SLCO1B1 normal 
function homozygotes (29.1% vs. 24.7%; OR 1.27: 95%CI 1.09 to 1.47, p=0.001), with 
similar trends for raised LDL (30.2% vs. 27.1%; OR 1.18: 95%CI 1.02 to 1.37, p=0.025) 
(Table 2). 
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At UK Biobank baseline, female SLCO1B1*5 homozygotes were more likely to report having 
headaches for ≥3 months than women homozygous for the SLCO1B1 normal function 
genotype (OR 1.58: 95%CI 1.1 to 2.29; p=0.01), but there was no association with frequency 
of tiredness / lethargy in last 2 weeks and chronic pain for ≥3 months (Table 2). High CRP 
level, ALT level, Hb1Ac and total cholesterol was associated with SLCO1B1*5 homozygous 
genotype in females (Table 2). Males homozygous for SLCO1B1*5 were not more likely to 
report headaches, fatigue or pain compared to normal function homozygotes. 

GP prescribing data on simvastatin and atorvastatin 

There were 29,574 female and 39,611 male UK Biobank participants of European ancestry 
who received at least one prescription of simvastatin or atorvastatin in the available GP data 
(from 1990 to 2017, see Methods and Figure 1). The length of simvastatin or atorvastatin 
treatment spanned from a single prescription to 607 prescriptions over 28.2 years (mean 5.7 
years, SD 4.7 in females).  

Female SLCO1B1*5 homozygotes (n=691) ranged from a single prescription to 24.7 years 
(mean 5.4, SD 4.5) whereas in male (n=947) prescriptions were up to 29.3 years (mean 6.6, 
SD 4.9). See Table 1 for details.  

SLCO1B1*5 association with discontinuing simvastatin or atorvastatin treatment  

We identified patients who discontinued atorvastatin or simvastatin treatment as those where 
their last prescription date was >3 months prior to the censoring date of the GP data (or 
death). Participants with prescriptions on or after the censoring date are assumed to have 
not discontinued. The overall rate of discontinuation was 23.3% (16,139 of 69,185 
participants included in the analysis) i.e. of 69,185 participants who received at least one 
prescription of simvastatin or atorvastatin in the available GP data 53,046 (76.7%) were still 
on treatment. 

29.5% of female SLCO1B1*5 homozygotes discontinued vs 25.6% of normal function (Table 
1). The association was significant in time-to-event analysis adjusted for age and genetic 
principal component of ancestry (HR: 1.19, 95%CI 1.03 to 1.37, p=0.015). Yet male 
SLCO1B1*5 homozygotes were not more likely to discontinue (HR 1.05: 95%CI 0.92 to 1.2, 
p=0.44). See Figure 2A for detailed estimates and Figure 2B for cumulative incidence plots 
of SLCO1B1*5 homozygotes association with discontinuing treatment (plots are truncated to 
15 years for clarity; full plot Supplementary Figure 1; see Supplementary Table 2 for details). 
There was a significant interaction between sex and SLCO1B1*5 with discontinuation of 
treatment (p=0.02). The association between genotype and discontinuation in females was 
consistent in Fine and Gray’s competing risks models accounting for the competing risk of 
mortality (sub-HR: 1.19, 95%CI 1.04 to 1.37, p=0.012). 

In analysis stratified by whether discontinuation occurred within 12 months of beginning 
treatment or greater than 12 months, male decreased function homozygotes were more 
likely to discontinue in the first 12 months (HR 1.25, 95%CI 1.02 to 1.53, p=0.03), whereas 
female decreased function homozygotes were more likely to discontinue treatment in the 
long term (1+ years) (HR 1.3, 95%CI 1.08 to 1.56, p=0.006) (Figure 2A). 

2,160 women who discontinued treatment of Simvastatin or Atorvastatin switched to another 
statin within 12 months of discontinuation (1208 to Pravastatin, 895 to Rosuvatatin, 56 to 
Fluvastatin and 1 to Cerivastatin). 24.5% of female SLCO1B1*5 homozygotes who 
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discontinued Simvastatin or Atorvastatin switched treatment compared to 24.3% of normal 
function carriers (OR 1.04: 95%CI 0.75 to 1.44, p=0.81). See Supplementary Table 3 for all 
the details. 

In secondary analysis we investigated whether sufficient data on dose of atorvastatin or 
simvastatin in SLCO1B1*5 homozygotes at the time of discontinuation was available, though 
this analysis is limited by the low number of homozygotes in different dose groups and due 
to lack of data on instructions from GPs (e.g. number of tablets per day), data which is not 
available in the UK Biobank-linked GP data. See Supplementary Table 4 for tabulation of 
available data. 

SLCO1B1*5 associations with GP-diagnosed muscle symptoms  

110 female and 96 male participants had GP recorded muscle symptoms in the 3 months 
after their first prescription of atorvastatin or simvastatin. 848 female and 1026 male 
participants had GP recorded muscle symptoms greater than 3 months after the first 
prescription of atorvastatin or simvastatin (i.e. the stable treatment period). This was lower 
than expected based on previous literature (2,5,9), with similar rates in the different 
genotype groups. In the first 3 months, there was no significant association between muscle 
symptoms and genotype. After 3 months, female SLCO1B1*5 heterozygotes were more 
likely to experience muscle symptoms compared to female normal function homozygotes 
(OR 1.19, 95%CI 1.03 to 1.4, p=0.02). However, there was no significant association with 
muscle symptoms in males in any group of SLCO1B1*5 genotype (see Supplementary Table 
5). 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.12.21264886doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.12.21264886
http://creativecommons.org/licenses/by/4.0/


IN SUBMISSION – DO NOT SHARE 

DISCUSSION 

We aimed to assess the success of cholesterol control in men and women taking simvastatin 
or atorvastatin, including examining the contribution of the SLCO1B1*5 genetic variant that 
impairs intracellular transport of these statins. In UK Biobank participants taking simvastatin 
or atorvastatin at baseline assessment, 42% of females and 25% of males had clinically high 
total cholesterol (>5mmol/L), despite treatment (OR 2.2: 95%CI 2.11 to 2.26, p=5*10-439), 
with consistent results for LDL also observed. We found that females homozygous for 
SLCO1B1*5 (i.e. with reduced protein function) were more likely to have high cholesterol 
(compared to common “normal function” homozygotes). In the linked GP electronic clinical 
records data, female SLCO1B1*5 reduced function homozygotes were more likely to 
discontinue simvastatin or atorvastatin treatment: 5 discontinuations per 100 patient years 
on statins, compared to 4 per 100 in the normal function genotype group.  

The difference between males and females could be due in part to males being more likely 
to adhere to statin therapy (38), and is consistent with previous reports of females having 
higher total cholesterol levels whilst treated with statins (17). UK guidelines for prescription 
of statins for prevention of CVD at the time of UK Biobank baseline assessment used the 
same clinical cut point for high total cholesterol (>5 mmol/L) in males and females (22). The 
current UK clinical recommendations are to assess statin effectiveness by measuring 
percentage reduction in non-HDL cholesterol after 3 months of treatment (23), in part 
acknowledging the sex difference (this analysis was not possible in the cross-sectional UK 
Biobank cholesterol data). A systematic review of randomised controlled trials (RCTs) with 
74,102 subjects found that statin therapy was not associated with discontinuation of 
treatment compared with placebo (10), yet our analysis shows that for a subset of patients – 
especially females carrying the SLCO1B1*5 genotype – medication adherence is affected.  

As the studied statins are mainstays of cardiovascular disease prevention, and non-
adherence is a major barrier to treatment effectiveness, prescribing an appropriate statin 
without high risk of adverse events and with higher efficacy at first intervention could reduce 
discontinuation and improve control of cholesterol, especially in women. We used TWIST 
(37): a novel pharmacogenetic causal inference framework for estimating population 
average genetically modified treatment effect (GMTE) on total cholesterol if all SLCO1B1*5 
homozygotes could experience the same treatment effect as non-carriers. Treating total 
cholesterol as a binary outcome (>5mmol/L vs. <5mmol/L) we estimate their risk of high total 
cholesterol would reduce 6.34% from 48.4% to 42.1%. Of the 591 female SLCO1B1*5 
homozygotes in the study, this corresponds to 37 women meeting the cholesterol target if 
they could be prescribed a lipid-lowering medication not affected by SLCO1B1*5. Next, we 
repeated the analysis treating total cholesterol as a continuous outcome. From this we 
estimated that female *5 homozygotes would have 0.147 mmol/L lower total cholesterol if 
they could be treated with a lipid-lowering medication unaffected by the genotype. This 
suggested a reduction in the number of *5 homozygotes with high total cholesterol from 
48.4% to 40.7%, corresponding to 46 SLCO1B1*5 homozygous women who currently have 
high total cholesterol (>5mmol/L) gaining control if prescribed an alternative lipid-lowering 
medication not affected by SLCO1B1*5. 

In males we found no excess discontinuation in SLCO1B1*5 homozygotes when analysing 
the whole prescribing period (3 discontinuations per 100 statin-years in both *5 homozygotes 
and “normal” functioners). Previous analyses have specifically investigated the first 12 
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months after beginning statin therapy (41,42), and in analysis restricted to this period male 
*5 homozygotes were more likely to discontinue than the normal function homozygote group, 
whereas females were more likely to discontinue in the longer term. The difference between 
males and females in both cholesterol control whilst on simvastatin or atorvastatin treatment, 
and in likelihood of discontinuing treatment, may have implications for interventions (specific 
statin prescribed, and dose) and subsequent cardiovascular outcomes. This significant 
interaction between SLCO1B1*5 genotype and sex could be due to females having lower 
mean muscle mass and body weight, and higher percentage of body fat compared to males, 
leading to higher concentrations of unmetabolized simvastatin and atorvastatin (24), with 
SLCO1B1*5 therefore causing increased discontinuation of treatment due to side effects 
(12). 

Though we observe raised cholesterol levels in SLCO1B1*5 homozygotes at the UK 
Biobank baseline assessment, and increased likelihood of discontinuing GP-prescribed 
simvastatin and atorvastatin therapy, we found limited evidence of SLCO1B1*5 associations 
with GP-diagnosed muscle symptoms. This could be due to underreporting of statin-
associated pain (by the patients themselves, or under-recording by GPs in the clinical 
record; 3.4% of participants prescribed simvastatin or atorvastatin received a relevant GP 
diagnosis (including myalgia, myositis), compared to previous studies with systematic 
ascertainment of muscle effects that reported up to 25% of patients with muscle symptoms 
(5,9,43). A recent systematic review of RCTs reported that statins were not associated with 
clinically confirmed muscle disorders, consistent with our results (patients may report muscle 
symptoms, but these are not clinically confirmed) (44). Additionally, our ability to analyse 
dose was limited due to data availability, and SLCO1B1*5 has been linked to muscular 
complaints (and atorvastatin intolerance) especially in patients receiving high doses of 
atorvastatin (45). However, statins are known to impact inflammation (25) and diabetes risk 
(3): we found that female SLCO1B1*5 homozygotes (but not male) treated with atorvastatin 
or simvastatin at baseline assessment had higher C-reactive protein, alanine 
aminotransferase and HbA1c, further emphasising the increased importance of appropriate 
prescribing in females. 

Additionally, it is thought that a “nocebo” effect is common, where  patients treated with 
statins report more symptoms thought to be associated with statins (4). Yet we find genotype 
(which the participants and GPs were not told about) to be associated with both cholesterol 
and discontinuation, so it is likely that statin pharmacokinetics and pharmacodynamics are 
being affected and causing adverse effects: as genotypes are inherited at conception and 
are not altered by later factors, associations with genotypes provide less confounded 
evidence than conventional observational associations (46). This is supported by our 
findings that female UK Biobank SLCO1B1*5 homozygotes who self-reported statin therapy 
at baseline were significantly more likely to report headaches than normal function 
homozygotes (12.7% of *5 group reported chronic headache for 3+ months compared to 
9.6% of normal group). However, we did not find a difference in reports of chronic pain (pain 
in any site for 3+ months), perhaps because the available questions in UK Biobank did not 
ask about muscle pain specifically.  

This study has several strengths: it is a large cohort study with longitudinal electronic primary 
care and hospital medical records follow-up of patients, with a follow-up period considerably 
longer than in most previous studies, combined with genotype and self-report data. Yet there 
are several limitations, firstly that the UK Biobank participants are somewhat healthier than 
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the general population (47). The magnitude of poor control of cholesterol in women in this 
relatively healthy cohort is therefore particularly disappointing. Secondly, only 45% of 
participants have available primary care data at the time of analysis – when more data 
becomes available, further investigation of prescriptions and diagnoses will be possible. As 
noted, questions about pain at UK Biobank baseline were nonspecific, and recording of 
statin adverse effect related symptoms in medical records may not be complete. However, 
given that study participants were not informed about their genotypes, the associations 
observed for metabolizer status are likely robust. Future work could improve ascertainment 
of adverse effects with systematic measurements, including of biochemical evidence of 
muscle damage. A further limitation is that we have no direct data on why the studied 
women were not moved onto different statins or prescribed sufficient doses to achieve target 
cholesterol levels.  

Trials are showing that genotype-guided treatment for antiplatelet therapy reduces adverse 
events (48). Though a recent systematic review reported that safety concerns were limited in 
statin therapy (44) this was in the general population; in sub-populations carrying the 
SLCO1B1*5 decreased function variant, especially women, tailoring the specific statin or 
dose may improve outcomes, and could highlight patients to target with novel agents for 
cholesterol lowering (49). 

In conclusion, in the large UK Biobank community volunteer study, women prescribed 
atorvastatin or simvastatin were more likely to still have clinically raised cholesterol levels 
than men. In women, the SLCO1B1*5 decreased function variant was associated with raised 
cholesterol levels and discontinuation of treatment during a follow-up of >10 years. Efforts 
are needed to improve effectiveness of statin therapy in women, including establishing 
whether SLCO1B1*5 genotype-guided statin selection to one without high risk of adverse 
events and with higher efficacy in that patient could aid in reducing discontinuation rates.  
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Figure 1. Cohort flowchart 

 

 

 

A) shows a flowchart illustrating the number of UK Biobank participant eligible for analysis 
(i.e. with sufficient genetic and medication data). B) Illustrates the two subsets of UKB used 
in analyses: the baseline analysis of self-reported prescriptions (available in all participants), 
the primary care prescribing data available in ~45% of the whole sample (up to 2017).  
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Figure 2. SLCO1B1*5 genotype association with discontinuing GP-prescribed 
simvastatin and atorvastatin treatment 

 

 

 

Associations between SLCO1B1*5 genotype (reduced function compared to normal 
genotype, i.e. rs4149056 CC homozygotes vs TT homozygotes) and discontinuing GP-
prescribed simvastatin or atorvastatin treatment in males and females separately. 2A) shows 
the number of “cases” (discontinuing treatment) and “controls” (remained on treatment) for 
the normal and reduced-function homozygous groups, the number of discontinuations per 
100 person years on treatment in the two groups, and the Hazard Ratio from Cox’s 
proportional hazards regression models. Also shown are the associations from stratified 
analyses of short term (stopped less than one year after beginning treatment) and longer 
term (stopped greater than one year after beginning treatment). See Supplementary Table 2 
for details, including for the normal/reduced (*1/*5) heterozygous group. 2B) show the 
cumulative incidence over time of discontinuing treatment in males and females, stratified by 
SLCO1B1*5 genotype. X-axis is censored at 15 years for figure clarity, see Supplementary 
Figure 1 for complete plots. 
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Table 1. Characteristics of UK Biobank participants on simvastatin or atorvastatin 
therapy 

 

 

 

    SLCO1B1*5 status∞ 
    Female Male 

    
Normal 
function 

(*1/*1)  

Reduced 
function 
(*5/*5) 

Normal 
function 

(*1/*1) 

Reduced 
function 
(*5/*5) 

- Baseline assessment (self-reported)  
  

 
  

n (% of 26,185 females or 41,445 males) 18,925(72.27) 591(2.26) 29,996(72.38) 927(2.24) 
Age, years Min-max 40-70 41-70 40-70 40-70 
  Mean (SD) 61.7(5.7) 61.6(5.8) 61.4(6.1) 61.6(6.1) 
Weight, kg  Mean (SD) 76.3 (15.4) 76.3 (15.7) 89.3(15.2) 89.8(14.9) 
BMI Mean (SD) 29.5(5.6) 29.5(5.6) 29.31(4.5) 29.4(4.3) 
LDL, n >3mmol/L (% of genotype group) 6,492(36.17) 250(44.8) 7,743(27.1) 267(30.2)) 
Triglycerides, n >2.3mmol/L (%) 5,040(26.63) 178(30.12) 9,841(32.81) 345(37.22) 
Total cholesterol, n >5mmol/L (%) 7,485(41.65) 270(48.39) 7,069(24.7) 258(29.05) 
HbA1c, n >47mmol/mol (%) 2,526(13.99) 105(18.52) 4,558(15.94) 124(13.98) 
- Primary Care data   

 
   

n (% of 29,574 females or 39,611 males) 21,345(72.17) 691(2.34) 28,608(72.22) 947(2.39) 
Age at first statin prescription  Min-max 40-78.9 40.3-77.31 40-79.2 41.1-78.2 

Mean (SD) 61,9 (7.1) 61.9(7.3) 60.9 (7.2) 61.1(6.9) 
Years between first and last statin* Min-max 0.002-28.2 0.01-24.7 0.002-27.2 0.01-29.3 
  Mean (SD) 5.7(4.8) 5.4(4.5) 6.6 (4.8) 6.6(4.9) 
Muscle diagnoses^ prior to statin* n (%) 560(2.62) 19(2.75) 499(1.74) 19(2.01) 
MI/angina diagnoses¥ prior to statin* n (%) 1,078(5.05) 36(5.21) 3,151(11.01) 107(11.3) 
Muscle diagnoses after first statin* n (%) 776(3.64) 26(3.76) 880(3.08) 34(3.59) 
MI/angina after first statin* n (%) 2,875(13.47) 98(14.18) 6,978(24.39) 211(22.28) 
Discontinuation ever, n (%) n (%) 5,476(25.65) 204(29.52) 6,119(21.39) 212(22.39) 
Discontinuation in 1 year, n (%) n (%) 2,489(11.66) 86(12.45) 2,333(8.15) 95(10.03) 
Discontinuation in year 1+, n (%) n (%) 2,987(17.62) 118(21.77) 3,786(15.49) 117(14.53) 
 
∞rs4149056 genotype (“Reduced function” = CC homozygotes; “Normal function” = TT homozygotes), ^Primary 
care-diagnosed muscle symptoms (myopathy, myositis or myalgia), ¥Hospital inpatient diagnosis of MI or angina, 
*simvastatin or atorvastatin prescription. See Supplementary Table 1 for full table including heterozygotes (*1/*5 
group). 
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Table 2. SLCO1B1 genotype associations with baseline analyses in patients who reported statin treatment 

  SLCO1B1 Female Male 
Outcomes *5 status ∞ N cases (%*) OR 95%CIs p N cases (%*) OR 95%CIs p 
  

     
  

    
  

Total  Normal 7,485(41.65) * 
  

  7,069(24.7) * 
  

  
cholesterol Reduced 270(48.39) 1.31 1.1 1.55 0.001 258(29.05) 1.27 1.09 1.47 0.001 
  

     
  

    
  

LDL Normal 6,492(36.17) * 
  

  7,743(27.1) * 
  

  
  Reduced 250(44.8) 1.42 1.2 1.69 4*10-5 267(30.2) 1.18 1.02 1.37 0.025 
  

     
      

  
TG Normal 5,040(26.63) * 

  
  9,841(32.81) * 

  
  

  Reduced 178(30.12) 1.19 0.98 1.44 0.078 345(37.22) 1.26 1.1 1.46 0.001 
      
Headache Normal 1,807 (9.58) * 

  
  1,523 (5.09)  * 

  
  

  Reduced 75 (12.71) 1.38 1.08 1.77 0.01 56 (6.04) 1.22 0.92 1.61 0.16 
  

     
  

    
  

Fatigue/ Normal 3,017 (16.56) * 
  

  3,676 (12.64) * 
  

  
tiredness Reduced  93 (16.26) 0.96 0.76 1.21 0.737 111 (12.35) 0.98 0.8 1.2 0.872 
  

     
  

    
  

Pain Normal 9,741(51.47) *   13,184(43.95) *   
  Reduced 289(48.9) 0.9 0.76 1.05 0.203 409(44.12) 1 0.88 1.15 0.918 
  

     
  

    
  

HbA1c  Normal 2,526(13.99) * 
  

  4,558(15.94) * 
  

  
  Reduced 105(18.52) 1.4 1.13 1.75 0.002 124(13.98) 0.86 0.71 1.04 0.12 
  

     
  

    
  

CRP level Normal 1,937 (10.24) * 
  

  2,542 (8.47) * 
  

  
  Reduced 80 (13.54)  1.45 1.05 2 0.022 76 (8.20) 0.94 0.66 1.35 0.757 
  

     
  

    
  

ALT level Normal  5,867 (32.64) * 
  

  7,747 (27.07) * 
  

  
  Reduced 207 (37.10) 1.21 1.01 1.44 0.033 249 (28.10) 1.07 0.92 1.25 0.358 
 

∞ "Normal" function = no copies of SLCO1B1*5 genotype (rs4149056 TT homozygotes). ∞ "Reduced" function = 2 copies of SLCO1B1*5 
genotype (rs4149056 CC homozygotes). * % of genotype group with phenotype. LDL = Low-density lipoprotein cholesterol; TG = triglycerides; 
CRP = C-reactive protein; ALT = alanine aminotransferase. See Supplementary Table 2 for full results. 
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