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Abstract 
Purpose: In 1H MRS-based thermometry of brain, averaging temperatures measured from more than one 
reference peak offers several advantages including improving the reproducibility, i.e., precision, of the 
measurement. This paper proposes theoretically and empirically optimal weighting factors to improve the 
weighted average of temperatures measured from three references.  

Methods: We first proposed concepts of equivalent noise and equivalent signal-to-noise ratio in terms of 
frequency measurement and a concept of relative frequency that allows the combination of different peaks 
in a spectrum for improving the precision of frequency measurement. Based on these, we then derived a 
theoretically optimal weighting factor and proposed an empirical weighting factor, both involving 
equivalent noise levels, for a weighted average of temperatures measured from three references, i.e., the 
singlets of NAA, Cr, and Ch, in 1H MR spectrum. We assessed these two weighting factors by comparing 
their errors in measurement of temperatures with the errors of temperatures measured from individual 
references; we also compared these two new weighting factors with two previously proposed weighting 
factors. These errors were defined as the standard deviations (SDs) in repeated measurements or in Monte 
Carlo studies.  

Results: Both the proposed theoretical and empirical weighting factors outperformed the two previously 
proposed weighting factors as well as the three individual references in all phantom and in vivo 
experiments. In phantom experiments with 4 Hz or 10 Hz line broadening, the theoretical weighting 
factor outperformed the empirical one, but the latter was superior in all other repeated and Monte Carlo 
tests performed on phantom and in vivo data.  

Conclusion: The proposed weighting factors are superior to the two previously proposed weighting 
factors and can improve the reproducibility of temperature measurement using the 1H MRS-based 
thermometry.  

Key words:  
1H MR spectroscopy, thermometry, temperature, frequency, Cramer-Rao lower bound, equivalent noise, 
optimally weighted average 
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Abbreviations and syllables: A, amplitude; Ch, choline; Cr, creatine; CRLB, Cramer-Rao Lower 
Bound; MC, Monte Carlo; MRS, magnetic resonance spectroscopy; NAA, N-acetyl-aspartate; NMR, 
nuclear magnetic resonance; ppm, part per million; R2B, ratio to the best; SD, standard deviation; SNR, 
signal to noise ratio; SNRe, equivalent signal to noise ratio; TA/σ, weighted average temperature using 
weighting factor A/σ; Tc, combined or average temperature; TNAA, temperature measured using NAA as a 
reference; δ, frequency in ppm; σe, equivalent noise. 
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1. Introduction 
1H MRS-based thermometry of the brain seeks to measure brain temperature and its variation across the 
brain.1-5 Unlike other MR-based thermometric methods that measure relative temperature changes 
spatially or temporally, and unlike other invasive techniques that enable measurement of absolute 
temperature with neurosurgical interventions, 1H MRS-based thermometry can measure absolute 
temperature, non-invasively.6 This makes this technique especially useful in pre-clinical or clinical 
physiology and pathophysiological studies such as those measuring temperature of neonatal brain,7 
diagnosing intracranial tumors,8 monitoring brain trauma9 and image-guided thermal ablation.10 Another 
less exploited feature of 1H MRS-based thermometry is that it allows quantification of brain metabolites 
simultaneously, without an additional scan. 1H MRS can be used to study correlations between 
temperature and metabolism in brain development, pathophysiology of disorders and with treatment.11, 12   

The 1H MRS thermometry measures temperature based on frequency differences between temperature-
dependent water and temperature-independent references (e.g., prominent singlets of metabolites). A 
commonly used reference is the peak of N-acetyl-aspartate (NAA) at 2.01 ppm. Simultaneous use of 
multiple references, such as NAA, creatine (Cr), and choline (Ch) peaks, is preferrable because: (1) a 
preselected reference may not be sufficiently prominent13 or even undetectable;14 and (2) weighted 
average of temperatures derived from multiple references may improve reproducibility of temperature 
measurement.8,15 However, the performance of a weighted average of temperatures depends on the 
averaging weighting factors and an unoptimized average may be inferior to the best single reference.15 

Here we proposed a concept of equivalent noise in terms of frequency measurement based on the Cramer-
Rao Lower Bound (CRLB) for frequency and derived an optimized weighting and presented an empirical 
weighting for weighted average of temperatures obtained from multiple references. We assessed our 
weightings and compared their performances with other previously proposed weightings using phantom 
data and in vivo data from human brain. 

 

2. Methods and materials 

2.1 Theory 
2.1.1 Cramer-Rao lower bounds and equivalent noise for frequency measurement 
We calculated the CRLB of frequency measurement for an MRS signal with Lorentzian line shape: 

���� � ∑ ����������������	�
� 	 ε�n�    [1a] 

� � 0, . . . , � � 1 

where N is the number of points in the time domain signal, M is total number of signal 
components, A, α, β, and � are constants for amplitude, normalized decay, normalized circular 
frequency and phase, respectively, and ε is the Gaussian noise with standard deviation (SD) �0. 
α and β are related to the linewidth W, resonance frequency f and spectral width sw by the 
following equations (the subscript m is omitted for simplicity): 

� � ��/�� 

  � � 2��/��      [1b] 
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The CRLB for circular frequency is:16 

������� � ���√��
�        [2a] 

or 

������� � ��� · ��√��
��    ��!!"! #� $%�    [2b] 

which is the preferred form for frequency in Hz and is derived from Eqs. 1b and 2a. The CRLB 
of frequency is the achievable minimal variance of a measurement, which is proportional to the 
1.5th power of the normalized decay rate and inversely proportional to the amplitude of the 
signal. We defined the CRLB in Eq. 2 as the equivalent noise σe in terms of frequency 
measurement (Figure 1): 

    �� � �������      [3] 

The above equation indicates that the equivalent noises of resonances in the same MRS spectrum 
may be different if their decay rates and amplitudes are different, although the spectral noise 
level σ0 is the same for all. The concept and meaning of the equivalent noise for frequency 
measurement are better understood from the following example.  

2.1.2 Improving frequency measurement by combining/averaging spectra 
Signal accumulation or weighted signal averaging is a common practice in NMR for enhancing 
signal to noise ratio (Figure 1). When measuring the frequencies of the same peak in two spectra, 
the spectrum with higher SNR will have smaller error or give higher precision of measurement. 
Combining the two spectra into one and measuring its frequency, we predict, but need to verify, 
will increase the precision of the measurement if the SNR of the combined peak is greater.  

We extend this logic to the averaging of multiple peaks in a single spectrum, by introducing the 
concept of relative frequencies with respect to true frequencies and employing the concept of 
equivalent noise (Figure 2). Here the frequencies of different peaks (both their true and measured 
frequencies{fi0} and {fi}

17) are different and the peaks cannot be added. Instead, the relative 
frequencies {fi - fi0}, which are the difference between the measured and the corresponding true 
frequencies of the individual peaks, are at the same position on the relative frequency axes, 
subject only to measurement errors. These peaks are therefore additive, just like the peaks in a 
spectrum in the above example (Figure 1). The errors of the relative frequency, measured from 
the combined peaks in the relative axes, can be smaller than those measured from individual 
peaks.  

The conversion of the frequencies into relative frequencies has real, physical meaning in 1H 
MRST. The temperatures measured from different references are theoretically the same and are 
derived from the relative frequency differences of the reference with respect to water, subject to 
differences stemming from random noise and calibration errors. Therefore, the optimal 
combination of temperatures measured from references for improving precision is equivalent to 
optimal combination of peaks on their axes of relative frequencies. The principles of the 
combinations of the same peak in different acquisitions (Figure 1) and different peaks in the 
same acquisition (Figure 2) are the same, but the later requires that the noise levels of the 
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individual reference peaks be converted to their equivalent noises as outlined above. The core 
focus of the current work is optimal averaging of frequency and eventually temperature 
measurement. The linear relationship between frequency and temperature, as well as between 
errors of frequency and temperature measurements, is given in Appendix A. Therefore, the 
terms of frequency averaging and temperature averaging are interchangeable. Furthermore, the 
combination of temperatures is, in essence, averaging of temperature in its technical realization, 
and therefore, we will mainly use “average of temperatures” in this paper. 
2.1.3 Weighted averaging of peaks 

 

Figure 1. An illustration of signal averaging to enhance the SNR. Shown on the left are two acquisitions from 

the same sample, with different amplitudes and noise levels. After weighted averaging, the SNR of the 

combined signal increased (right-hand panel). 

f

Acq2

f

Comb.Acq1

f

 

Figure 2. An illustration of difference frequency and equivalent noise. (a) A simulated MRS spectrum with two component peaks, 

each of which has its own peak height, linewidth, and resonance frequency (f1 or f2), and with Gaussian noise. (b) To facilitate 

the combination of the peaks at different frequencies, the two peaks are depicted on difference-frequency axis (df) with respect 

to their resonance frequencies of f1 and f2, respectively. (c) To account for the effect of noise on the frequency measurement, 

the noise levels are rescaled to the equivalent noise according to their CRLBs for frequency in Hz (Eq. 2b). Now the equivalent 

noise represents the achievable precision of the frequency measurement of the individual peak. Note that the df can be 

converted to temperature, with its origin assigned to a T0, eg, 37
o
C (see the text for details). 
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The weighted average of the frequencies is expressed as 

&� � ∑ '�&�	�
�       [4a] 

where Fi is frequency, M is the number of reference peaks, and ki is the normalized weighting 
factor: 

 ∑ '� � 1	�        [4b]  

or  

'� ( '�/ ∑ '�	�      [4c] 

The recursive definition in Eq. 4c applies when ki is not normalized. Two kinds of weighting 
factors before normalization were previously proposed,15 

'�  �  ��  and '�  �  ���     [5]  

With the concept of equivalent noise, we hypothesize that an optimized weighting factor is the 
one that maximizes the equivalent SNR, or SNRe, of the combined peak in terms of frequency 
measurement. 

Suppose we have an MRS signal consisting of M independent, exponentially decaying sinusoids 
as defined in Eq. 1. For simplicity, we use a 2 x M matrix to describe the amplitudes A and 
equivalent noises σe of the M component signals: (A1 A2 … AM; σe1 σe2 … σeM). We convert the 
frequencies of the peaks into relative frequency axes to facilitate peak combination. Seeking an 
optimized weighting factor is the key to optimizing the SNRe of the combined peak. The SNR of 
the weighted average of the peaks is expressed as follows: 

��
� �  ∑ �����

���

�∑ ������	�
���

      [6] 

We showed theoretically that the optimal combination is realized when the weighting factor is 
given by (Appendix B): 

ki = Ai /σei
2      [7] 

In addition to the theoretically derived weighting factor, we also propose an empirically derived 
weighting factor, which is the SNRe itself: 

ki = Ai /σei      [8] 

We compared and evaluated the four weighting factors (Eqs. 5 & 7, 8) using phantom and in 
vivo data. We used σ to represent σe in the rest of the paper for simplicity. Although we used 
frequencies to derive the theoretically optimal combination, Eqs. 6 - 8 hold when the F in Eq. 4 
is replaced by the temperature T (Appendix A). 
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2.2 1H MRS data acquisition and processing 
2.2.1 Phantom data 
Data acquisition We acquired single voxel phantom 1H MRS data on a 3T scanner (SIGNATM 
Premier, GE Healthcare) using a 21-channel surface coil and PROBE-P, a commercial PRESS 
sequence.18 We used the spherical “Braino” phantom (GE Healthcare), which contains major 
brain metabolites with concentrations close to normal physiological values (N-acetylaspartate: 
12.5mM; creatine: 10 mM; choline: 3mM; glutamate: 12.5 mM; myo-inositol: 7.5mM; lactate: 5 
mM). The data acquisition parameters were as follows: TR/TE = 2000/120 ms, spectral width = 
5000 Hz, FID points = 4096, number of excitations for the unsuppressed water = 16, number of 
saved water FIDs = 2; number of excitations for water suppressed data = 240, numbers of saved, 
water-suppressed FIDs (each with an 8-step phase cycling) = 30, voxel size = 4x4x4 cm3. Four 
MRS sessions were performed, each of which lasted 8 min.  

Data preprocessing We combined the data from coil elements using unsuppressed water signal 
as a reference19,20. We removed the residual water signal using an SVD-based method21-23 and 
performed spectral alignment among the 30 water suppressed FIDs by aligning the 2nd to the 30th 
FIDs to the 1st one, using a fitting procedure like that of Near et al, using the Lorentzian 
lineshape function.24  

Evaluation of the temperature averaging – by repeated measurements We used two methods to 
evaluate the performance of temperature averaging. The first method used the repeated 
measurements, i.e., the 30 FIDs in each phantom MRS session. We fitted individual FIDs using a 
Lorentzian line shape model for the amplitudes {Ai,j}, frequencies {fi,j}, decay rates {���}, and 
phases {)��}, where i represents NAA, Cr, and Ch, respectively, and j = 1 to 30 represents 
individual FIDs. We also calculated the original noise levels from the FIDs and converted them 
to the equivalent noise levels ��� , using the measured amplitudes, decay rates ��� , according to 
Eq. 3. We converted the unit of frequencies to ppm and derived the temperatures from individual 
references using the calibration factors given by Zhu et al25. Initial results using these 
calibrations showed that the temperatures derived from Ch were remarkably different from those 
derived from NAA and Cr, and this systematic error further induced large errors mixed with 
random errors in the average temperatures. We therefore modified the interceptions in calibration 
equations so that the temperatures measured from the three references were closest for the three 
sets of phantom data used. The original interceptions were 313.7584, 204.6695, and 192.5210. 
The temperature equations with modified interceptions are as follows: 

���� � 313.9090 � 103.80 · ��� � ���� 
                             ��� � 204.5278 � 101.70 · ��� � ���                (9) 

��� � 195.0871 � 106.08 · ��� � ��� 

where *� is the frequency (in ppm) of the unsuppressed water signal. We measured temperatures 
from individual references Tr,j and calculated the average temperatures Tc j,k, where i = {NAA, 
Cr, Ch}, j = 1, 2, …, 30, and k = {A, A2, A/σe, A/σe

2 }. We calculated the SDs of the Tr,j  and Tc j,k. 
As an example, the latter is given as follows: 
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+,��
 � -∑ ����,
������ 
�	
���

�      (10) 

where N = 30. The optimally averaged temperatures had a mean value closest to the temperature 
derived from the reference with highest equivalent SNR and smallest SDs.   

Evaluation of the temperature averaging – Effects of noise levels and linewidths The second 
approach used Monte Carlo (MC) simulations, to test the effects of linewidths and noise levels, 
respectively, on the precision of the averaged temperatures estimated using different weighting 
factors. To test the effects of linewidths, we multiplied the original 30 signals in each MRS 
session by Lorentzian lineshape functions with linewidths of 4 and 10 Hz, respectively. We also 
added a complex noise signal with Gaussian distribution to individual line-broadened free 
induction decay (FID). The noise levels were derived from the original FIDs. We proceeded with 
the processing of these line-broadened and noise-added signals for the average temperatures, 
Tc,j,k,l, as described above, where l represents the linewidth. We calculated the SDs of the 
averaged temperatures for each {k, l} and compared the effects of linewidths. The effects of 
noise levels were assessed following similar procedures as that for the linewidths. To test the 
effects of noise levels, we added noise signals with 4- and 10-times their original noise, 
respectively, to the 30 original signals, and proceeded to measure and calculate the SDs of the 
individual and averaged temperatures. 

2.2.2 In vivo data 
Data acquisition We acquired single voxel MRS data from five human subjects on the same 3T 
scanner as for the phantom experiments. The protocols for human studies were approved by the 
IRB and informed consent was obtained from each subject before the MR scan. The single voxel 
MRS data were acquired from medial prefrontal cortex using a 21-channel surface coil and the 
PROBE-P sequence18 with the following parameters: voxel size: 3.0 x 2.5 x 2.5 cm3, TR/TE = 
1500/120 ms, spectral width = 2000 Hz, FID datapoints = 1024, number of saved, non-water-
suppressed FIDs = 2, number of saved, water-suppressed FIDs = 30 (total number of 
accumulations =  240); total MRS data acquisition time was approximately 6.5 minutes.  

Data preprocessing of the in vivo data, which included combinations of data from element coils, 
residual water removal and spectral alignment, was carried out using the methods as described 
for the phantom data. The procedures for spectral fitting and for the conversion of frequencies to 
temperature, also known as temperature calibration, were also performed using the methods 
described above. Specifically, the temperature calibration was performed for individual subjects 
so that the temperatures derived from the three references, NAA, Cr, and Ch, were 
approximately the same.  

Evaluation of temperature averaging by Monte Carlo simulations We used in vivo MRS datasets 
from each of the 5 subjects, as the basis signals in the MC simulations. We first determined the 
original noise level for each dataset by calculating the SDs of the data points in the second half 
of the FID, where the metabolite signals decayed out. We created N = 500 sets of complex noise 
signals with Gaussian distribution, and with the same noise levels as in the corresponding 
original, basis signals. We added these individual noises to an original, basis FID to form a set of 
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test signals and submitted them to the MC procedure. We calculated the SDs of the averaged 
temperatures, Tck:  

���
 � -∑ ��� �,
������ 
�	
���

�      [11] 

where j = 1, 2, …, N is the index of the noisy signals, k represents the weighting factor (Eq. 5), 
and .�/ �is the average of the averaged temperatures for weighting factor k. 

3. Results 
Phantom experiments – original data 

Examples of the spectral fitting of the phantom data, including the original, the noise added, and the line 
broadened spectra, are given in Figure 3. The amplitudes, frequencies, and linewidths measured for the 
original 30 FIDs from experiment 1 are shown in Figure 4. There was no frequency drift over the time 
after spectral alignment, indicating no temperature drift. There was no amplitude and linewidth variations 
over time, indicating stable equivalent noise levels for all three references. The reference temperatures, 
i.e, TNAA, TCr, and TCh, were calculated from their respective frequencies measured by spectral fitting, the 

average temperatures of TA and TA2 were calculated using the amplitude-based weightings, and the 
average temperatures of TA/σ and TA/σ2 were calculated using weightings from amplitudes, decays, and the 

noise levels. The SDs of these temperatures in the repeated measurements served as the metrics of the 
precisions of the temperature measurements including temperature averaging. In all four experiments 
(Table 1), the A/σ weighting performed best, and both A/σ and A/σ2 weightings outperformed the other 
two weightings and all three individual temperatures TNAA, TCr and TCh. The A2 weighting outperformed 

the A weighting in three experiments, but it was inferior to the best individual measurement of TNAA. 

Phantom experiments – with added noise  

The results of the phantom experiments with added noise seemed trivial in that the observations about the 
ranking of the precisions of the temperature measurement with original data remained largely unchanged. 

 

Figure 3. Examples of phantom spectral fitting for the original (left), x10 noise added (center), and 10 Hz line-broadened 

spectra (right). The spectra were fitted in the time domain using a Lorentzian line shape for NAA, Cr, and Ch. The blue and 

black lines are the signal to be fitted and the residue of the fitting, respectively. The other three colored lines are fitting 

spectra of NAA, Cr, and Ch. 

NAA

CrCh

Original x10 noise added 10Hz LB
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Overall, the A/σ weighting was still the best, but the SD of Tc with A/σ2 weighting was slightly lower than 
that of A/σ weighting for Exp. 3 with 10 times added noise (Table 2). Specifically, the SD levels of 
weightings A and A2 were higher than those of A/σ and A/σ2. 

Phantom experiments – with line broadening  

Line broadening had a remarkable influence on the precision of the averaged temperatures (Table 3). In 
all cases except Exp. 1 with 4 Hz line broadening, A/σ2 outperformed A/σ and became the best weighting 
factor. But the A/σ weighting was still better than the other two weightings (A and A2). The A2 weighting 
remained superior to the A weighting and surpassed the best individual temperature measurement TNAA. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Examples of amplitudes (left), frequencies (center), and linewidths (right) of the three references measured 

from the 30 FIDs in an MRS session of a phantom experiment. The time interval between adjacent FIDs is 12 sec and 

the total time of lapse for the whole session is 6 min. Note that no frequency drift is seen over this period.  
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Table 1. Standard deviations (SDs x 10
-3 o

C) of measurements of temperatures of individual references and their 

combinations with different weighting factors. Data were calculated from 30 FIDs in each experiment. R2B is “Ratio to the 

Best”, representing the SD of a temperature to that of the best temperature measurement. The Rank is based on SDs.     

Exp. Items TNAA TCr TCh TC,A TC,A
2 

TC,A/σ TC,A/σ2 

1 
SD 0.793 4.119 6.506 2.178 1.742 0.581 0.635 

R2B 1.3649    7.0895    11.1979   3.7487    2.9983    1 1.0929 

2 
SD 2.138 4.888 9.154 1.973 2.485 1.803 1.99 

R2B 1.1858    2.7110    5.0771    1.0943    1.3783 1 1.1037 

3 
SD 1.328 5.046 6.588 2.189 1.809 1.027 1.150 

R2B 1.2931    4.9133    6.4148    2.1315    1.7614 1 1.1198 

4 
SD 1.4284    5.6820    7.7321    2.7732    2.2757    1.1484 1.1974 

R2B 1.2438    4.9479    6.7332    2.4149    1.9817 1 1.0427 
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In vivo experiments 

The spectral fitting of the in vivo data focused on the major signals of NAA, Cr and Ch. Therefore, the J-
coupled spectral peaks remained in the residue, but they did not affect the quality of the spectral fitting 
(Figure 5). For the data from the five subjects, the A/σ weighting outperformed other weighting factors in 
terms of the lowest SDs. The A/σ2, A, and A2 weightings had three, two, and one 2nd-place rankings, 
respectively, but A had three fourth-place rankings (Table 4). The SDs of all averaged temperatures were 
smaller than that of the best individual reference, which was NAA in this case, showing that all weighted 
averaging of temperatures improved the accuracy of temperature measurement. Overall, the proposed A/σ 
and A/σ2 weightings was superior to the other previously proposed weightings. The improvement of 
reproducibility (precision) of the optimized A/σe-weighting over the A2-weighting was 3.85% ± 0.96%. 
The improvement of A/σe-weighting over the best single reference (NAA) was 73.1% ± 21.6%.  
 

 

 

 

 

 

Table 2. Standard deviations (SDs x 10
-3 o

C) of temperatures of the individual references and their weighted combinations with 

differing weighting factors. Data were from 4 experiments, each with 30 FIDs. Noises with 4x and 10x noise levels of the original FIDs 

were added, respectively. R2B is “Ratio to the Best”, representing the SD of a temperature to that of the best temperature 

measurement. 

Noise (x) Exp. Items TNAA TCr TCh TC,A TC,A
2 

TC,A/σ TC,A/σ2 

4 

1 
SD 7.36 19.46 32.84 11.09 9.54 6.81 7.04 

R2B 1.08 2.86 4.82 1.62 1.40 1 1.03 

2 
SD 6.00 11.17 20.41 7.20 6.30 5.30 5.72 

R2B 1.13 2.11 3.85 1.36 1.19 1 1.08 

3 
SD 9.22 25.48 41.90 12.83 10.92 8.10 8.60 

R2B 1.14 3.15 5.17 1.58 1.35 1 1.06 

4 
SD 8.12 23.68 36.57 12.24 10.57 7.72 7.72 

R2B 1.05 2.07 4.73 1.59 1.37 1 1.00 

10 

1 SD 22.69 56.36 86.61 31.04 27.36 20.91 21.79 

 R2B 1.09 2.70 4.14 1.48 1.31 1 1.04 

2 SD 20.11 55.38 88.44 29.55 25.63 18.40 19.10 

 R2B 1.09 3.01 4.81 1.61 1.39 1 1.04 

3 
SD 21.13 57.99 107.95 36.36 30.84 19.81 19.51 

R2B 1.08 2.97 5.53 1.86 1.58 1.02 1 

4 
SD 22.35 60.44 93.85 30.36 26.40 20.51 21.16 

R2B 1.09 2.95 4.58 1.48 1.29 1 1.03 
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Figure 5. An example of spectral fitting of in vivo data. Fitting was performed in the time domain. The blue line is the 

signal to be fitted, and the color lines are the fitting signal components. Prior to FT, the FID was apodized and zero-

filled to suppress noise in the signal. Please note that Gaussian noise with the same level of noise in the original 

signal was added to the spectrum to facilitate the Monte Carlo study. 
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Table 3. Standard deviations (SDs x 10
-3 o

C) of temperatures of the individual references and their weighted combinations with 

differing weighting factors. Data were from 4 experiments, each with 30 FIDs. The original FIDs were line broadened by 4 Hz and 10 

Hz, respectively, for this test. To keep the reasonable noise levels for the data, Gaussian noises with standard deviations equal to the 

noise levels of the corresponding original FIDs were added to the FIDs after line broadening. R2B is “Ratio to the Best”, representing 

the SD of a temperature to that of the best temperature measurement. 

LB (Hz) Exp. Items TNAA TCr TCh TC,A TC,A
2 

TC,A/σ TC,A/σ2 

4 

1 
SD  8.41 14.55 20.69 8.26 7.69 7.15 7.24 

R2B 1.18 2.03 2.89 1.16 1.08 1 1.01 

2 
SD 8.29 16.30 26.10 8.70 7.58 6.74 6.68 

R2B 1.24 2.44 3.91 1.30 1.13 1.01 1 

3 
SD 17.80 32.63 39.66 16.60 15.46 14.62 14.42 

R2B 1.23 2.26 2.75 1.15 1.07 1.01 1 

4 
SD 18.01 33.49 44.35 16.92 15.43 14.33 14.06 

R2B 1.28 2.38 3.15 1.20 1.10 1.02 1 

10 

1 
SD 41.81 67.48 94.09 35.39 33.09 31.78 31.72 

R2B 1.31 2.12 2.97 1.12 1.04 1.00 1 

2 
SD 46.91 94.47 124.75 47.50 44.35 42.28 40.18 

R2B 1.17 2.35 3.10 1.18 1.10 1.05 1 

3 
SD 55.67 96.01 134.86 52.90 48.95 47.30 45.46 

R2B 1.22 2.11 2.97 1.16 1.08 1.04 1 

4 
SD 59.20 88.44 131.71 52.56 48.87 47.12 45.88 

R2B 1.29 1.93 2.87 1.15 1.07 1.03 1 
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Discussion 
We have proposed concepts of equivalent noise and equivalent signal to noise ratio in terms of the 
measurement of frequency according to the CRLBs and a concept of relative frequency. Based on these 
concepts, we derived a theoretical weighting factor, A/σ2, where σ is the equivalent noise, for the 
combination of relative frequencies of multiple references that may improve precision of temperature 
measurement. We also proposed an empirical weighting factor A/σ, which is the equivalent SNR. We 
carried out phantom and in vivo experiments to evaluate the performances of the two weighting factors 
and compared them with two previously proposed weighting factors.15 The results of phantom and in vivo 
experiments showed superiority of our two proposed weighting factors over the previously proposed ones 
in terms of the precision of temperature measurement.  

The concept of the equivalent noise, which involves not only the conventional spectral noise, but also the 
amplitude and decay rate (i.e., linewidth in the frequency domain), plays a fundamental role in the 
development of the two proposed weighting factors. First, it makes the two weighing factors peak 
specific. The conventional spectral noise is global, meaning that it is the same for all components (peaks) 
in an MRS spectrum. Therefore, replacing the equivalent noise with the conventional, global spectral 
noise in the currently proposed weighting factors is meaningless, as it will be cancelled out in the 
normalization. This is the reason that only A and A2 weightings were previously suggested without 

Table 4. Comparison of the accuracies of temperatures derived from individual references (NAA, Cr, and Ch) and different 

temperature combination algorithms (with weighting factors of A, A
2
, A/σ, and A/σ

2
). The original single voxel 

1
H MRS 

were from five human subjects. Each MRS data set was combined with 1000 individual noise signals whose distribution is 

Gaussian and standard deviations are the same as those of the original signals. The above-mentioned individual 

temperatures from three references and averaged temperatures from four weighting factors were calculated and their 

standard deviations (SD x10
-2 o

C) were presented here as a matric of the accuracy of the temperature measurement. R2B is 

“Ratio to the Best”, representing the SD of a temperature to that of the best temperature measurement. The Rank is 

based on SDs.     

Subj. Items TNAA TCr TCh TC,A TC,A
2 

TC,A/σ TC,A/σ2 

1 

SD 8.2699 12.1774 8.7685 4.5802 4.5754 4.3746 4.5044 

R2B 1.8905 2.7837 2.0044 1.0470 1.0459 1 1.0297 

Rank 5 7 6 4 3 1 2 

2 

SD  8.2463 12.2642 9.2228 4.4705 4.4629 4.2816 4.4625 

R2B 1.9260 2.8644 2.1540 1.0441 1.0424 1 1.0423 

Rank 5 7 6 4 2 1 2 

3 

SD  5.4464 8.6015 6.6135 3.3377 3.3332 3.2381 3.2729 

R2B 1.6820 2.6564 2.0424 1.0308 1.0294 1 1.0108 

Rank 5 7 6 4 3 1 2 

4 

SD  10.1903 15.5803 13.2925 5.8028 5.9128 5.7561 6.0852 

R2B 1.7703 2.7067 2.3093 1.0081 1.0272 1 1.0572 

Rank 5 7 6 2 3 1 4 

5 

SD  5.3373    8.8891     6.3851     3.9434    4.0351    3.8502    4.0350 

R2B 1.3862    2.3087     1.6584     1.0242    1.0480    1  1.0480 

Rank 5 7 6 2 3 1 3 
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involving the noise level.15 Second, the equivalent noise is directly related to the measurement precision 
of frequency – a larger equivalent noise means lower precision of frequency measurement. Therefore, it is 
intuitive to place the equivalent noise or its square into the denominator of a weighting factor: thus, a 
peak with larger equivalent noise should have smaller weighting in the combination, and vice versa. 

The concept of relative frequency also played an important role in the development of the two proposed 
weighting factors. This concept makes different peaks in a spectrum equivalent or at the same location in 
the relative frequency axis, thus making possible the combination of peaks with different frequencies in a 
spectrum. The physical basis of the relative frequency in this paper is that the frequencies of different 
reference peaks correspond to the same temperature in 1H MRS-based thermometry. In this sense, these 
frequencies are equivalent, and this is reflected in the relative frequency axis.   

A/σ2 weighting outperformed other weightings only in the phantom experiments with line broadening, and 
the results of both other phantom experiments (original data and noise-added data) and in vivo 
experiments showed that the empirical A/σ, instead of the theoretically optimal A/σ2, is the optimal 
weighting factor. We note that the derivation of the optimal weighting A/σ2 (Appendix B) is based 
on the optimal conditions that both the amplitudes and the decay rates did not have errors. In this 
case, the weighting factors can be correctly calculated. In real world data, amplitudes and decay 
rates have measurement errors (Eqs. 3 and 6). These errors may accumulate and propagate to 
affect the equivalent noise used in the proposed weighting factor, causing the weighting factor to 
deviate from its correct value. The error of the individual temperature is directly associated with 
error of the equivalent noise (Eq. 3), whose error will also in turn spoil the performance of the 
proposed weighting factors. A/σ2 weighting performed best when the given, noiseless amplitudes 
and decay rates (linewidths) were used in calculating the weighting factors. It may be inferior to 
A/σ weighting because of its larger errors in σ2 than in σ (~ α1.5/A). This also explains why A 
weighting is better than A2 weighting in some cases, because the 0' error in A2 is double of that 
in A.  

The optimal averaging of temperatures is similar to the combination of MRS data acquired using 
multichannel coil arrays, where equal weighting26, amplitude weighting (A),27, 28 signal to noise 
(A/N) weighting,20 and signal to squared noise (A/N2) weighting26 have been proposed. While the 
A/N2 weighting was theoretically derived as the optimal weighting factor, a study21 showed that 
its performance may be inferior to the S/N weighting in some cases. In fact, the situation here is 
more complex than the combination of the multichannel coil MRS data. In the latter, only 
amplitudes of water signal and spectral noise levels are needed, and both can be measured more 
accurately and precisely than the amplitudes of the reference peaks and equivalent noise levels. 
In the present case, not only the spectral noises and amplitudes of the reference peaks but also 
the decay rates (linewidths) are needed in the weighting factor, which increases the complexity 
and noise accumulation. Because the A/σ2 involves the square of the equivalent noise σ, its errors 
caused by the errors in amplitudes, decay rates, and spectral noises would be larger than errors in 
A/σ. Therefore, the A/σ2 weighting is prone to be inferior to the A/σ weighting, more so than is 
the case for multichannel coil data combination. 

A simple or suboptimally weighted averaging of frequencies/temperatures may not ensure 
improved precision, i.e., the precision of the average temperatures may not surpass the precision 
of the temperature measured from the best individual reference. In the experiments using original 
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phantom data, the SDs of both A and A2 weightings were inferior to that of NAA reference 
(Tables 1 & 2). This can be seen in a previous study,15 where the SDs of all averaged 
temperatures using A2 weighting were larger than that of TCh, which was derived from the 
dominant peak of Ch, albeit they were smaller than those of single referenced TNAA and TCr. 
Recently, Maudsley et al also found no improvement using A2 weighting compared with the best 
individual reference.1  

The reproducibility (precision) of the temperature measurements in this paper was very high, due 
to the high quality of the data. In the phantom data, the average amplitude-to-noise ratios (or 
SNR) were > 5 times, and the decay rates (linewidths) were < 1/10 of those encountered in 
routine in vivo studies (Supplementary Materials, sTable 1). Based on the spectral fitting 
results of the amplitudes, decay rates, and noise levels, the CRLBs of frequencies and 
corresponding temperatures were in the order of 10-3 oC, which agreed with the measured SDs in 
the repeated measurements (Table 1 & sTable 1). When using realistic amplitude-to-noise ratios 
and decay rates, the CRLBs will be > 0.2 oC, which are close to those SD values reported in the 
literature (sTable 2).9, 15 For in vivo data, the average amplitude-to-noise ratios were > 5 times of 
those in routine human studies (Figure 5 & sTable 3). Therefore, the CRLBs calculated from 
fitting parameters agreed well with the SDs measured in the MC studies (Table 4 & sTable 3), 
but they were only about 1/5 of the errors in routine MRST studies.9, 15 The high reproducibility 
of the 1H MRST owes much to the hardware development such as the high sensitivity multi-
channel coil. Independent to the hardware development, the over 73% relative improvement of 
the reproducibility of the optimized weighting with respect to the best single reference is 
remarkable. 

Some technical notes are necessary. (1) We focused on improving the reproducibility or reducing 
random errors of the 1H MRS-based thermometry by optimally combining temperatures 
measured from three references. In 1H MRS-based thermometry, systematic errors or consistent 
biases may result from several methodological aspects of the measurement such as gradient 
heating,29, 30 separate measurement of water and reference signals,30 errors in the calibration 
parameters,25, 31 etc. For example, the range of frequency shift of the water suppressed spectrum 
may be from 0 to 9 Hz in 13 minutes with respect to the separately measured non-water 
suppressed spectrum, corresponding temperature errors from 0 to -3.0 oC.30 The present work 
was not dedicated to improving the accuracy or reducing the systematic errors. Therefore, we did 
not provide the temperature values for phantom and in vivo experiments. However, we have 
mitigated systematic errors in our phantom data processing by aligning the water-suppressed 
FIDs and avoided the mingling of systematic errors and random errors. The Monte Carlo 
approach to using in vivo data also avoided effects of systematic errors, where an MRS data was 
added with noise sets repeatedly in a Monte Carlo study. (2) The expression of the equivalent 
noise (Eq. 3), i.e., the CRLB for frequency, is derived and valid for singlets with Lorentzian 
lineshape and without overlapping with other peaks. The peaks of NAA, Cr, and Cho satisfy 
these conditions when the spectrum is of good quality. When the lineshape deviates from 
Lorentzian or peaks of Cr and Ch overlap, the equivalent noise in Eq. 3 will only be 
approximately correct.9, 15, 32 In the latter case, the actual equivalent noises of Cr and Ch will be 
larger than that given by Eq. 3. This explains the results in Table 4, where the SDs of Cr and Ch 
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are much larger than those of NAA. (3) We and many others8, 15, 33, 34 used Lorentzian lineshape 
to fit the spectrum. Lorentzian is the intrinsic lineshape and a commonly used model to 
approximate real world MR spectrum lineshapes with symmetric or asymmetric distortions. 
Major sources of asymmetric lineshape distortion are high order B0 field inhomogeneity and 
eddy current effect. Fitting asymmetric peaks with symmetric analytic lineshape models may in 
general induce systematic errors in frequency measurement. However, the systematic errors in 
water frequency and reference frequencies can be largely cancelled in temperature measurement 
when frequency difference is used in the calibration. High order temperature distribution within 
the MRS voxel will also cause lineshape distortion in the water peak, and this may induce 
systematic error in temperature measurement. However, the systematic errors were cancelled in 
our repeated phantom FIDs and in our in vivo data in the Monte Carlo studies. In either case, the 
systematic errors remained the same and did not enter the calculation of SD, which is a metric of 
the random error.   

Conclusion 
We proposed concepts of equivalent noise, equivalent SNR, and relative frequency in terms of 
frequency measurement and the combination of peaks of different frequencies. Based on these 
concepts, we derived a theoretically optimized weighting factor and proposed an empirical 
weighting factor for the averaging of temperatures measured from three references. Experiments 
using phantom and in vivo data showed that these two weightings outperformed previously 
proposed weightings in improving the reproducibility of temperature measurement using the 1H 
MRS-based thermometry. 
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Appendix A: Temperature error due to frequency error of the reference 

 

The temperature measured from the frequencies of water and the reference is given as follows:  

�� � ���� � ��� � ����    [A1] 

where �� is the temperature measured from a reference, eg, the singlet of NAA at 2.01 ppm, � is 
the frequency-to-temperature coefficient, �� and �� are the frequencies of the reference and 
water, respectively, and ���� is the intercept. Both � and ���� are constants determined by the 
calibration experiment. 

The error of �� is:  

Δ�� � ��Δ�� � Δ���     [A2] 

According to the CRLB (Eq. 2), the measurement error of water frequency Δ��is more than 3 
order of magnitude smaller than of the reference Δ�� and, therefore, can be ignored. This results 
in: 

Δ�� � �Δ�� 
� �
���,�        [A3] 

where Δ�� is substituted by the Cramer-Rao low bound for frequency measurement, 
���,�. 
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Appendix B: Show that {ki = Ai /σi
2} are the optimized weighting factors for the weighted 

averaging of multiple frequency measurements. 

We start from an intuitive example of two peaks with (A; σ) = (40; 10) and (10; 1), respectively. 
First, we let {ki = Ai}, which means the weighting factors are proportional to their corresponding 
amplitudes. The combined peak is (34; 8.0), whose SNR is R = 4.25 – larger than the first but 
small than the second peak. The reason for the failure of this weighting is that it does not take the 
noise into account.  

Now we let {ki = Ai /σi}, meaning that the weighting factors are proportional to their {R}. Using 
the above example, we obtained the combined peak of (18.57; 2.95), whose R is 6.31 but is still 
smaller than the second one. The reason for the failure is that the SNR is not normalized but 
proportional to the noise. To overcome the problem, we use noise level to normalize SNR and let 
{ki = Ai /σi

2}. The combined peak is given by (11.15; 1.04), whose R is 10.77. To derive an 
optimized weighting, we assume ki = Ai /σi

x and determine an optimal x. 

Substituting ki = Ai /σi
x into Eq. 4, we have: 

	�

� �  ∑ 	

�

�

�

���

���

�∑ 	
�

�

�

�����

���

      [B1] 

where Ai and σi are amplitude and noise level of the i-th peak, respectively.  

Taking the derivative of the above equation with respect to x, we obtain: 


� �	�
� �  �

�∑ 	
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�

∑ 	
�

�

�

�����

���

� ∑ �������ln������ �.   [B2] 

Solving 


� �	�
� � 0        [B3] 

gives x = 2 and the optimized frequency measurement is 

	�

� �  ∑ 	

�

�

�

���

���

�∑ 	
�

�

�

���

���

.      [B4] 

For the special case where all measurements have the same Ai/σi, the above equation reduces to 
its well-known form for signal accumulation: 

	�

� �  	�
� √�.       [B5] 
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