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Abstract 

 

Introduction: Acute physiological deterioration is a major contributor to in-hospital morbidity 

and mortality. Early detection and intervention of deteriorating patients is key to improving 

patient outcomes. Prior research has demonstrated the effectiveness of Early Warning Systems 

and other algorithmic approaches in automatically identifying these patients from passively 

monitoring vital signs. 

 

Methods: In this work, we conduct a prospective pilot study of clinical deployment of the Mayo 

Clinic Bedside Patient Rescue (BPR) system using an escalating alerting logic enabled by 

machine learning. Among four units where the BPR system was deployed, time to response and 

time to intervention for deteriorating patients were significantly reduced relative to matched 

control units. 

 

Results: In pilot units, time to response decreased by 35.4% (from 63.2 minutes to 40.8 minutes) 

and time to intervention decreased by 48.5% (from 106.3 minutes to 55.9 minutes). No 

significant differences were observed in counterbalance metrics of mortality, ICU transfer rate, 

and Rapid Response Team activation rate. Furthermore, the automated alerting system was well-

received by clinicians participating in the pilot study, as assessed by survey. 

 

Discussion: These results demonstrate a successful clinical deployment of a practice-changing 

machine learning alert system with demonstrable impact on improving patient care.  
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Introduction 

 

Physiological deterioration, defined here as any significant worsening in the condition of a 

hospitalized patient that can result in patient morbidity or mortality, is a major cause of death in 

the hospital setting. Deterioration may be triggered by events such as sepsis or acute respiratory 

failure, or may emerge as a result or complication of care provided. Many instances of 

physiological deterioration of hospitalized patients result in death, cardiac arrest, or an increase 

in the intensity of care that is needed to support the patient’s physiology, resulting in an 

unplanned admission to the intensive care unit (ICU). The overall incidence of these events is 

estimated to be around 2% per patient-day1, and about 17 patients per 100 beds per year for in-

hospital cardiac arrest2, of which only about 18% survive to discharge2,3. 

 

Early intervention for physiological deterioration is a key determinant of patient outcomes. For 

example, delayed transfer of critically ill patients to the intensive care unit has been shown to be 

associated with increased mortality4,5. It is also known that, in the case of septic shock (one of 

the main causes of in-hospital deterioration), mortality increases approximately 8% for every 

hour that antibiotic treatment is delayed6. Additionally, the mortality rate for patients who 

develop sepsis in the hospital is significantly higher compared to patients that present with sepsis 

at the time of hospital admission, and most deaths related to sepsis come from patients presenting 

with a less severe form of sepsis7 whose condition later deteriorates. This suggests that timely 

detection of deterioration in hospitalized patients is a key contributor to preventable mortality. 

 

One way to reduce intervention times, and thus improve patient outcomes, is to identify 

deteriorating patients as early as possible. Up to 85% of severe adverse events (such as cardiac 

arrest, death, or emergency intensive care admission) that happen in the hospital are preceded by 

abnormal vital signs8-11, suggesting that they may be identifiable by an algorithmic approach. 

This intuition has motivated development of several identification algorithms for the detection of 

acute deterioration, known as early warning scores or early warning systems (EWS)12,13, 

previously known as track-and-trigger scores or track-and-trigger systems14,15. In prior work, we 

employed machine learning (ML) to develop an EWS to predict inpatient deterioration (MC-

EWS)16. 

 

However, having a predictive model is of little use unless the prediction can be performed in 

real-time and it results in an early alert in real clinical situations in which a patient is 

deteriorating. Additionally, it is important to test whether an early alert results in an early 

intervention, and how much time can be saved. Here, we conduct a pilot study of implementation 

of this system in the clinic using a cascading alert protocol and phased implementation approach 

and evaluate its effect on time to intervention and time to therapy for physiological deterioration. 

 
Related work 

 

Complex predictive models that require the use of EHR data have been developed for the 

prediction of acute inpatient deterioration or death17-19, including at least two that were tested in a 

randomized controlled trial where alerts were sent to a Rapid Response Team20 or were 

channeled through a centralized review team21. Other studies have implemented automated 

versions of simpler paper-based early warning scores22 such as the National Early Warning 

Score23, or automated vital signs triggers24. Results from these efforts have been mixed. 
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Typically, studies that have seen positive results have directed alerts at a centralized location or 

required a dedicated team to triage the alerts, which may not be feasible in all hospitals. 

 

Our approach 

 

We developed an automated alert system based on the principle of “time-limited escalation of 

expertise to the bedside” that does not require review by a dedicated team, and then tested it in a 

controlled, pragmatic trial. 

 

Methods 

 

Setting and standard of care 

 

This study was conducted at the Mayo Clinic, a tertiary academic medical center in the Midwest 

United States. The alerting system was implemented in 4 hospital units (2 general internal 

medicine units and 2 colorectal surgery units), totaling about 100 beds. The study was approved 

by the Institutional Review Board, the Hospital Practice Subcommittee, the Mayo Clinic Clinical 

Practice Committee, and many others.  

 

In the study units, the standard of nursing care during the period of the study was to obtain a set 

of vitals every 8-12 hours.  Vital signs are manually entered by nursing staff into the electronic 

medical record, or automatically collected by sensors and confirmed by a nurse.  Nursing staff 

has the flexibility to increase the frequency of vital sign monitoring at their discretion. Vital 

signs on medical and surgical floors with telemetric capability are collected more frequently with 

electronic capture and recorded into the electronic medical record.  Laboratory studies are 

ordered at the physician discretion at any time of day.  The highest volume of laboratory orders 

occurs early in the morning so that results are available for morning physician team rounds. The 

Rapid Response Team (RRT) responds at the request of nurses or physicians in both the general 

care and telemetry floors of the hospitals. The RRT completed rollout in 2006 so it is a well-

established part of the workflow. The RRT is a multidisciplinary team including: respiratory 

therapist, critical care nurse, and either a critical care fellow or an intensivist. Institutional 

guidelines suggest RRT activation when a patient has a new and/or unexpected change with any 

of several criteria (Error! Reference source not found.).  

 

Machine learning model 

 

The Mayo Clinic Early Warning Score (MC-EWS) has been described in detail previously16. 

Briefly, it comprises a gradient boosting model (GBM) trained to predict occurrence of any of 

three deterioration events: transfer to intensive care unit (ICU), resuscitation call, or RRT team 

activation. The model was trained on two years of historical data, including raw clinical data and 

engineered features (e.g., time series information). Model performance was assessed on a held-

out validation set from the same hospital system, and also externally validated using data from a 

tertiary care hospital in the Southwest United States. For this implementation study, we 

combined the MC-EWS score and the nursing worry factor (WF) score using a linear model to 

create the Bedside Patient Rescue (BPR) score: 
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𝐹𝐵𝑃𝑅(𝜃) = 𝛼𝐹𝑀𝐶−𝐸𝑊𝑆(𝜃) + 𝐹𝑊𝐹(𝜃) 
 

Where  represents the clinical data, 𝐹𝑀𝐶−𝐸𝑊𝑆(𝜃) represents the machine learning MC-EWS 

score, 𝐹𝑊𝐹(𝜃) represents the nursing WF score, and 𝛼 is a parameter used to weight the two 

scores to compute the final BPR score. 

 

Technical Implementation 

 

For implementation of the BPR scoring system in the clinic, we designed an automated 

workflow to calculate the BPR score for each patient at regular 15-minute intervals. The system 

is directly integrated with the electronic health record (EHR) and fetches the relevant clinical 

data from the EHR real-time database whenever a score is calculated. We manually created 

mappings between the features of interest and the items in the EHR data schema to ensure 

consistency and prioritize the most recent data. For example, if heart rate has been measured 

peripherally by a clinician and also electronically from EKG, those will be different entries in the 

database, so logic is implemented to select the most recent data point before feeding it as input to 

the model. Upon score calculation, if the score is above the threshold, the cascading alert logic is 

triggered automatically (Figure 1). 

 

 

 
Figure 1 Schematic of BPR system 
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Escalating Alert Logic 

 

The automated alerting is designed as a human-in-the loop system based on the principle of 

“time-limited escalation of expertise to the bedside.” Upon trigger by a BPR score above the 

specified threshold, a cascading sequence with four distinct phases is initiated (Figure 2). The 

threshold was chosen based on simulated alert frequency on retrospective dataset and tuned 

during the silent deployment phase. This design ensures that clinicians are promptly alerted to 

patients suspected to be at high risk of deterioration, while minimizing the risk of inducing alert 

fatigue. 

 

 

 
Figure 2. Escalating alert logic of the BPR scoring system 

 

The first alert is triggered when the BPR score is above the threshold. At that point, a notice is 

sent to the pagers of the nurse assigned to the patient, as well as the charge nurse for the unit. 

The nursing team is prompted to check on the patient, update vital signs into the EMR, and enter 

an updated worry factor score within 30 minutes of the alert. Immediately upon entry of the 

updated clinical data, the BPR score is automatically recalculated. If the recalculated BPR score 

is still above the threshold, then the alert is automatically escalated. 

 

In the second phase of the escalation protocol, an alert is sent to the service pager for the unit, 

which is typically monitored by a resident physician, physician assistant, or nurse practitioner. At 

that point, the service pager holder must evaluate the patient within 2 hours. That person is 

responsible for initiating an intervention if necessary. After intervention, or at the end of the 2-

hour window, vital signs are again updated and a new WF score is assessed by the bedside nurse. 

The BPR score is then recalculated and automatically evaluated for further escalation.  
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The third escalation also goes to the service pager for the unit. The care team is prompted to re-

evaluate the patient, considering broader differential diagnoses and checking the intensity of any 

prior intervention from the previous phase. Again, vital signs and WF are updated and the BPR 

score is recalculated automatically at the end of the time window, which in this phase is 

restricted to one hour. If the score is still above the threshold, the alert is escalated once more. 

 

The fourth and highest escalation level triggers an automatic alert to the attending physician for 

the patient. At this point, the entire care team works together to evaluate the patient and 

determine a plan of care. This fourth phase is the final step in the cascading protocol; at this 

point, the entire care team is involved and aware of the situation, so no further alerting is 

necessary. All further alerts for the patient were therefore disabled for 21 hours after escalation 

to the fourth phase, thus restricting the entire escalation protocol to only happen once in a 24hr 

window.  

 

The cascading alert protocol defines the baseline for escalation, but at any step in the process 

members of the care team are able to manually escalate based on their judgement. For example, 

after the first alert, if the bedside nurse believes that the patient is at significant risk and it is 

appropriate to call a Rapid Response Team, it is encouraged that he/she do so.  

 

Additional filters were applied in the implementation of the alert flow logic to account for 

particular situations. For example, patients in hospice care or “comfort care only” designation 

were excluded from all alerts, as were patients in the operating room. At every escalation in the 

alerting cascade, all members of the care team who had been previously alerted were alerted 

again, to keep them in the loop. The escalating alert logic described in the previous paragraphs 

was developed in consultation with patient care team members, including which care team 

members are alerted at each level and the duration of time between alerts. 

 

Phased implementation approach 

 

 
Figure 3 Phased implementation of the BPR pilot 

 

In this study, the BPR scoring and alert escalation system was implemented in 4 hospital units, 

totaling about 100 beds, with each unit in the intervention matched with a control unit similar in 

clinical practice and patient population. In all eight units (intervention and control), the nursing 

worry factor was routinely entered once per patient per nursing shift. The system was initially 

run silently for 4 months in all eight units before the pilot was started, to gather baseline data. 
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During this silent phase, BPR scores were calculated but alerts were routed to a database instead 

of being sent to pagers on the care team. The study team analyzed the alerting data from the 

silent deployment and calibrated the alerting threshold for BPR score to ensure that the average 

frequency of alerts would not exceed a pre-specified threshold of 1 alert per day per 10 patients, 

to reduce risk of alert fatigue. After the silent deployment phase, the system went live in the four 

intervention units on a staggered schedule (Figure 3). The date when the system was activated 

defined the beginning of the post-treatment phase in each unit and its control. 

 

Coordination with staff before implementation 

 

Coordination with clinical staff was prioritized at all phases of this study, starting from the 

design phase, when user testing of the alert logic and the wording of the alerts was performed in 

Mayo Clinic’s simulation center using simulated patients and a volunteer team of nurses, resident 

physicians and attending physicians from both a medical and a surgical unit.  

To prepare the participating units for the significant change in workflow that implementation of 

the BPR system would entail, the study team facilitated a series of workshops for the clinical 

staff and distributed informational materials. The ADKAR change management framework25 

was used to ensure that all members of the care team were willing and able to be active 

participants in the trial. Clinician buy-in is important for any modification to clinical workflows, 

but especially so in the context of the BPR score due to the integration of nursing worry factor 

scores.  

 

Outcome metrics 

 

The primary outcomes of interest were time to intervention and time to response. Time to 

intervention was defined as the interval between onset of patient deterioration and any order 

placed for that patient (laboratory tests, medication, radiology exams, etc.). Time to response was 

defined as the interval between onset of patient deterioration and administration of medication, 

fluids, or supplemental oxygen. These metrics were measured in the pre-pilot period and post-

intervention period, and units in the intervention group and their corresponding control units 

were compared using a difference-in-differences analysis26. 

 

In addition to the primary metrics, we also tracked several counterbalance metrics to assess for 

adverse effects arising from implementation of the BPR system: number of RRT calls per 100 

patient-days, ICU transfers per 100 patient-days, and mortality per 100 patient-days. We 

compared these in both pilot and control units during pre- and post-intervention periods. All 

differences were tested using the “N-1” Chi-squared test. 

 

Finally, upon completion of the pilot study, we administered an online survey to all participating 

clinical staff to gauge providers’ experiences and impressions of the changes to the workflow. 
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Results 

 

Our cohort comprised a total of 11,665 hospitalizations, accounting for 54,825 cumulative days 

of hospitalization (Table 1).  

 

 

  Pre-Intervention Post-Intervention   

  Control Pilot Control Pilot Total 

N 2440 3603 2705 2917 11665 

            

Age at Admission           

Mean (SD) 61.6 (20.07) 60.4 (18.28) 62.1 (18.60) 59.8 (18.16) 60.9 (18.73) 

            

Patient Gender, n (%)           

Female 
1230 

(50.41%) 
1820 

(50.51%) 
1421 

(52.53%) 
1491 

(51.11%) 
5962 

(51.1%) 

Male 
1210 

(49.59%) 
1783 

(49.49%) 
1284 

(47.47%) 
1426 

(48.89%) 
5703 

(48.9%) 

            

Race, n (%)           
American Indian/Alaskan 

Native 9 (0.4%) 24 (0.7%) 21 (0.8%) 22 (0.8%) 76 (0.7%) 

Black 63 (2.6%) 116 (3.2%) 66 (2.4%) 73 (2.5%) 318 (2.7%) 

White 
2208 

(90.5%) 
3255 

(90.3%) 
2447 

(90.5%) 
2642 

(90.6%) 
10552 

(90.5%) 

Hawaiian/Pacific Islander 4 (0.2%) 1 (0.0%) 0 (0.0%) 4 (0.14%) 9 (0.1%) 

Other 79 (3.2%) 138 (3.8%) 91 (3.4%) 96 (3.3%) 404 (3.5%) 

Asian 53 (2.2%) 48 (1.3%) 48 (1.8%) 36 (1.2%) 185 (1.6%) 
Choose Not to 

Disclose/Unknown 24 (1.0%) 21 (0.6%) 32 (1.2%) 44 (1.5%) 121 (1.0%) 

            

Length of Stay           

Mean (SD) 4.7 (7.15) 4.4 (5.88) 4.6 (7.47) 5.1 (8.37) 4.7 (7.21) 
Table 1. Cohort demographics 
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Primary outcomes 

 

 
Figure 4. Primary outcome metrics 

 

Median time to response decreased by 35.4% (22.38 minutes) among the four intervention units, 

a significant (p<0.001) reduction compared to the control units, where time to response increased 

modestly by 6.5% (5.52 minutes). Similarly, median time to intervention decreased by 47.4% 

(50.46 minutes) among the four intervention units, representing a significant (p<0.001) reduction 

compared to the control units, where time to intervention increased by 12.4% (13.62 minutes) 

(Figure 4). Notably, the effect of intervention is driven by the surgical units, as no significant 

difference was observed in the medical units between intervention and control groups (Error! 

Reference source not found.). 

 

Counterbalance metrics 

 

 
Figure 5 Counterbalance metrics 

 

We observed no significant change in any of the counterbalance metrics tracked in this study 

(Figure 5). In contrast with the primary outcome metrics, the counterbalance metrics showed no 
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difference between medical and surgical units (Error! Reference source not found.). Due to 

low baseline rates of these metrics (baseline mortality is around 1%, baseline ICU transfer rate 

around 3%, and baseline rate of calls to the Rapid Response Team around 4%), we may have 

lacked power to detect subtle changes. However, we can say that implementation of the BPR 

system was not associated with any large-magnitude changes.  

 

Clinician acceptance 

 

We received 63 responses out of a total of approximately 120 online surveys sent to the clinical 

staff in participating units. 59% of respondents agreed or strongly agreed that “Overall, I think 

the BPR project improves patient safety and I would like to see it continue.” Additionally, 81% 

agreed or strongly agreed to the statement “Alerts would be useful for team members who are 

less experienced.” (Error! Reference source not found.). These results suggest that despite the 

increase in workload, clinicians were enthusiastic about the integration of ML-powered alerting 

systems to improve patient outcomes. These also highlight the value of careful integration with 

existing workflows, and collaboration with staff at all phases of the implementation process.    

 

Discussion 

 

In this study, we piloted clinical implementation of the Mayo Clinic Bedside Patient Rescue 

(BPR) score, a machine learning-powered automated alerting system for the detection of acute 

physiological deterioration. In all four units where the system was piloted, we observed a 

significant decrease in the primary metrics of time to response and time to intervention relative 

to matched control units. We observed no adverse effects, as measured by three counterbalance 

metrics. To our knowledge, this represents the first implementation study of its kind to 

demonstrate practice-changing integration of machine learning into the clinical setting with 

measurable improvements in patient care. 

 

This study also provides a blueprint for further design and implementation of “human-in-the-

loop” ML systems in the medical setting. At every stage in the process, we sought to integrate 

the system thoughtfully into existing clinical workflows, rather than supplant them. Integration 

of the nursing worry factor score into the final ensemble model was one means by which the 

system incorporated human inputs; equally important was the close collaboration with clinical 

staff at all phases of the study, from designing the cascading alerting logic to rolling it out in the 

clinic. The resulting implementation of the BPR system changed practice and improved patient 

care without disrupting clinical workflows or inducing alert fatigue. In fact, despite the increased 

workload from responding to alerts and entering the worry factor, the system received favorable 

impressions from participating clinical staff.  

 

Although we saw a significant reduction in our primary outcome metrics in all four 

implementation units, the medical control units also saw a significant reduction. This could be 

due to cross-contamination and an increased focus on deterioration by clinicians, as some staff 

are shared between the medical control and intervention units, which is less the case in the 

surgical units. Further studies will be needed to further ascertain this effect. 
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These results may not generalize to all other settings with different practices. Nursing expertise 

is a direct input into the model (worry factor score), so results may vary in settings where the 

practices for nurse education differ. Furthermore, the BPR alerting system depends on buy-in 

from clinicians. After all, an alert is ultimately useless if it does not result in a change in actions 

by clinicians. Adoption may be different in settings with different cultures. Although we tested in 

4 separate units, they are all in the Mayo Clinic system so these experiences may not generalize 

to cultures in other systems. We identified the education and implementation process as being 

critical to achieving good uptake by clinicians. We hope that studies such as this one which show 

the improvements to patient outcomes will help drive adoption. 

 

Future work should address whether the demonstrated reduction in response time results in a 

reduction in mortality. Our 6-month pilot was not powered to detect smaller changes in mortality 

rate given the very low incidence of acute deterioration, and the even lower mortality rate in our 

hospital units. A longer pilot, or a pilot in an institution with a higher baseline mortality could 

accomplish that. Further studies should also explore model interpretability for clinicians, for 

example alerting the clinical staff to specific vital signs contributing a high BPR score. Greater 

transparency of alerts may increase trust of clinicians. Finally, we believe that alerting systems 

should engage user interface/user experience professionals to design the interfaces by which 

clinicians interact with the alerting system, with a specific focus on minimizing alert fatigue and 

friction with integration into workflows.  
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