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Abstract:  
 
Background: Diabetic nephropathy (DN) is a serious microvascular complication that affects 
40% of diabetes patients. In the last decade, artificial intelligence (AI) has been widely used in 
both structured and unstructured clinical data to improve the treatment of patients/potential 
patients with DN. 
  
Methods: This systematic review aims to cover all applications of AI in the clinical use of DN or 
related topics. Studies were searched in four open-access databases (Pubmed, IEEE Xplore, 
DBLP Computer Science Bibliography, and ACM digital library). Finally, the author manually 
searched the reference list of included studies in the study for additional relevant articles. 
 
Results: Finally, a total of 24 original peers reviewed articles were included in this study. 
Through a manual data extraction, the summary of key information such as applied AI 
algorithm, main outcomes, performance evaluation etc. was taken. Then the included studies 
underwent a quality assessment criterion, assessing the reproducibility, generalizability etc. 
Most of the included studies revealed that the AI frameworks outperformed conventional 
statistical methods. A summary of the limitations, such as lack of data availability or external 
validation of the framework, in the included studies, was also included.  
 
Conclusion: The rapid advancement of the AI framework and the exponential data generation 
in healthcare can be utilized and applied in clinical practices. The aid of AI can be instrumental 
in the treatment of DN.  
 
Keywords: Diabetic kidney disease, diabetes, artificial intelligence, nephropathy, systematic 
review, machine learning, deep learning 
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1. Introduction  
 
Diabetes Mellitus (DM), a devastating incurable health complication, is caused due to the 
incapability of beta cells (β cells) in the pancreas to produce adequate effective insulin for the 
body to utilize - leading to chronic high levels of blood glucose (1). Globally diabetes is 
considered a major public threat. According to the International Diabetes Federation (IDF), 
every eleventh person on the planet (463 million, 95% confidence interval: 361-601 million) has 
diabetes, and half of these patients are undiagnosed due to the disease's complex 
pathogenesis. Furthermore, diabetes accounts for ten per cent of global health expenditure 
(USD 760 billion) (2). Several factors have been linked to the onset of DM in patients. Inactive 
lifestyles, obesity, a lack of awareness, and other factors have all been linked to the recent 
global increase in diabetes (3). 

DM, on the other hand, results in a variety of macro and microvascular complications as a result 
of hyperglycemia or hypoglycemia due to the lack of blood glucose (BG) control. Diabetic 
Nephropathy (DN)/ diabetic kidney disease (DKD) is one of the microvascular complications, 
which is the most common cause of end-stage renal disease in the world (4-7). DN is caused due 
to increased urine albumin excretion and/or impairment. It is characterized by gradual loss of 
kidney function from hyperfiltration at the early stage (8). The principal risk factors involving DKD 
are hyperglycemia, hypertension and genetic predisposition. To diagnose DN early on, it is 
recommended to screen microalbuminuria five years after diagnosis for type 1 diabetes (T1D) 
and yearly screening for type 2 diabetes (T2D) (9). However, the amount of DM patients being 
affected by kidney disease is rising rapidly. Prevalence of microalbuminuria is seen in about one-
third of DM patients after fifteen years of disease duration, and almost half of them develop DN. 
Often DN occurs in patients of a certain age group or demographics. It is found that DKD is mostly 
common among elderly patients, very unlikely to develop among patients with less than one 
decade of diabetes duration (10). Meanwhile, the risk of developing DKD is higher among patients 
from developing countries compared to developed countries (26). The cost of bearing dialysis and 
other casualties is very high. As DN is more prevalent in developing countries, it almost becomes 
impossible for the patient’s family to bear the expenses. Meanwhile, the mortality rate of DN 
patients is very high, and early diagnosis or adequate treatment is necessary. Around 10% of the 
death in T2D is due to kidney failure (11). 

Despite growing concerns and preventative measures of DKD, the rate of chronic kidney disease 
(CKD) among DM patients remains unchanged as of 20 years ago. Even though DN might be 
controlled by the maintenance of blood glucose, blood pressure, blood cholesterol and 
widespread use of renin-angiotensin-aldosterone system inhibitors (9), it only works at the early 
stages. On the other hand, the progression of DKD of individual patients shows a large variation 
due to the complex heterogeneous nature of the disease (41). At later stages of DN, when CKD 
is well developed, it is harder to control (12). It is found that early diagnosis of microalbuminuria 
among DM patients and monitoring will postpone or prevent overt nephropathy (13,14). As a result 
of risk verification or early diagnosis of DN a large sum of the socioeconomic burden suppressed 
on the patients and their families can be avoided - where the further progression of DN could be 
stopped (12).  

With the help of machine learning (ML), a branch of artificial intelligence (AI) diagnosis, prognosis 
and clinical management of DKD patients without direct human intervention is possible. These 
algorithms are capable of extracting clinically relevant information from medical data with great 
accuracy (8). Without being explicitly programmed, machine learning algorithms can produce non-
linear correlations and patterns from raw data (15). Deep learning (DL), a branch of machine 
learning that is aided by increased computational capabilities, entails training a large number of 
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neural networks with many layers on large data sets. As a result, deep learning algorithms are 
useful for image classification in medical datasets (11). This systematic review covers the 
application of AI in DKD, which includes the early detection of DN to the management of DN 
through the application of AI.  

Several systematic reviews have examined the use of AI in diabetes. Zhu et al. investigated the 
use of DL in DM, searching multiple databases and obtaining 40 studies (16). A total of 107 peer-
reviewed research articles were included in a study by Jyotismita Chaki et al. on the use of AI in 
the detection and self-management of diabetic patients (17). Ioannis Kavakoitis et al. discussed 
the use of machine learning and data mining in diabetes care (18). These studies, on the other 
hand, cover the broader application of AI in DM patients. They are not focused on any specific 
complications. Meanwhile, Katrine et al. conducted a systematic review on the use of DL 
algorithms in the screening for diabetic retinopathy (DR), evaluating the diagnostic performance 
of DL algorithms. Diabetic retinopathy is the most common diabetic microvascular complication. 
The study included a total of 20 articles (19). Miguel Tejedor et al. discussed the use of 
reinforcement learning, a type of machine learning in which the agent learns in an interactive 
environment through trial and error and feedback, in diabetic glucose control (20). A systematic 
review with meta-analysis was performed by Md Mohaimenul et al. about the detection of DR 
from retinal fundus photographs, where a total of 20 studies were included (21). However, there 
has yet to be a systematic review of AI's application in DN. This research aims to fill that void. 
This systematic review includes studies that use AI algorithms to address the early detection of 
DN, the prognosis of DN, DN management, and other related topics. 

2. Overview of Big Data analytics and AI:  

Researchers have been craving, since the mid-twentieth century, for a support system that can 
make clinical decisions while processing growing quantities of clinical data (22). As the medical 
records are often high dimensional, heterogeneous and sparse they are often not utilized properly 
in clinical practices (9). Applied biology is advancing to the era of ‘big data’ due to the remarkable 
advances in biotechnology. The principal reason behind the establishment of big data in medicine 
is high throughput sequencing due to the advancement of biotechnology (23,24).  Myriads of 
large-scale and real-world data are generated from the likes of hospital records, patients’ medical 
records, biomedical research etc. However, to utilize the data generated requires proper 
management and analysis (25). The proper application of big data in healthcare is executed by 
extracting patterns and trends thus creating models from the data. Consequently, big data 
analytics will yield more throughput insightful diagnoses, prognosis and most clinically effective 
treatments in a cheaper method, and it will improve healthcare marginally (26). An abundance of 
clinical data and information regarding diabetes patients is already available and it is increasing 
at an exponential rate (27).  

Artificial Intelligence (AI) is a branch of computer science that aims to mimic the cognitive function 
of human beings. There are two main branches of AI: virtual and physical. The physical branch 
covers the aspects of robotics, which can assist in surgery in clinical practice. On the other hand, 
the virtual branch of AI includes the likes of ML. This informatics branch of AI is capable of 
assisting physicians in clinical diagnosis, treatment decisions etc. (28).  As a result of the ‘big 
data’ era’s emergence, AI brings forth permanent change in the healthcare system. In addition, 
AI applies to both structured and unstructured data. ML and Natural Language Processing (NLP) 
is applied in structured and unstructured data respectively (29). The raw data available from EHR 
usually consisted of structured data. Thus, ML algorithms are mostly used as predictive 
performance models in different studies. ML is classified into three different categories: 
supervised learning, unsupervised learning and reinforcement learning. In both supervised and 
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unsupervised learning, the system infers a function from labelled and unlabeled data respectively. 
ML workflow often involves data harmonization, preparation learning, model fitting and evaluation 
(30). Figure 1 demonstrates the learning process of both supervised and unsupervised learning 
(31). The theoretical construct of ML models gives them an edge over conventional statistical 
models. As they are efficient at analyzing large complex datasets, while identifying hidden 
associations ML is proved to be superior. Thus, over the recent decade, ML has evolved 
dramatically, and it is commonly used in clinical practices (16).  

On the other hand, DL is a subfield of ML. The field of DL has advanced massively in the ability 
of machines to understand and data including the likes of images, language and speech. In 
contrast to ML, DL is a form of representation learning composed of numerous layers - gaining 
the ability to learn highly complex functions (33).  DL algorithms such as Convolutional Neural 
Network (CNN) is designed to process data that exhibits natural spatial invariances. Therefore, 
DL models have achieved the accuracy of physicians in identifying cardiovascular risk from 
fundus images (34). Compared to the traditional Artificial Neural Networks (ANN), which are 
limited to three layers and trained to obtain supervised representation for specific tasks only (35), 
DL layers of features are not designed by anyone, but they are learned from data using a general-
purpose learning procedure. The inputs of deep neural networks are processed in a non-linear 
manner to activate the nodes in hidden layers to learn the ‘deep structures and representations. 
Next, the final representation is utilized in a supervised layer to fine-tune the network using 
backpropagation algorithms toward representations, which are optimized for an end-to-end task 
(36).   

 
2. Methods: 
  
A qualitative systematic review of the application of AI for the diagnosis, prognosis and 
management of DN was conducted. This systematic review was conducted by following the 
reporting checklist of Preferred Reporting Items for Systematic Reviews and Meta-Analysis 
(PRISMA 2020) (37).  Consequently, comprehensive literature was undertaken with extensive 
efforts to identify the articles. This review was conducted from 2020 to 2021 (considering all 
articles published from 1970 - 2021), and the databases searched include PubMed, DBLP 
Computer Science Bibliography, IEEE Xplore and ACM digital library. The four databases used 
are interfaces that do not require institutional subscriptions unlike other databases such as Ovid, 
Scopus and Web of Science. The purpose of using open-access databases is to enhance the 
reproducibility of the search results (16). The last search performed was on 12th July 2021. 
 
2.1 Search Strategies:  
 
The steps of searches were performed using related keywords combinations based on mesh 
terms. For this systematic review, related keywords of diabetes and nephropathy and AI were 
combined using Boolean operators (AND/OR). The search strategy is given in Table-1.   
 
At the outset, the duplicate articles from different sources were excluded from the initial collection 
of the obtained articles. The records were screened a total of three times by the author, to avoid 
any biases in the systematic review.  Additional potentially eligible articles were searched 
manually by the author by screening the reference list of included articles.  
 
 
Table-1: The databases and the search strategy employed 
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Search Strategies  

Database  PubMed, ACM Digital Library, IEEE Xplore, DBLP Computer Science Bibliography  

#1  diabet* OR DM OR T1D OR T2D OR Hyperglycemia OR “glucose intolerance” 

#2 Nephropathy OR “kidney disease” OR kidney OR Renal  

#3  “Artificial Intelligence” OR “machine learning” OR “deep learning”  

Search  #1 AND #2 AND #3 

 
2.2 Inclusion and Exclusion Criteria: 

  
The most relevant and potential articles from the initial screening were kept for full-text review. To 
be included in the review, the articles had to fulfil certain criteria. The study must be in English 
and peer-reviewed. In addition, application of AI algorithms with performance evaluation is 
necessary. On the other hand, the study must be applicable for Diabetic patients with potential 
kidney disease or persisting kidney disease. Any study excluding the application of AI in diabetes 
and kidney disease were not included. If the AI algorithm only applies to DM but is not related to 
nephropathy is excluded - vice versa is also applicable. In addition, other types of study such as 
letters to editors, posters and short communications were excluded. As well, the included articles 
had described thoroughly the algorithms used and the data processing of datasets. Traditional 
methods used only in DN are excluded. The author, himself, had thoroughly examined the 
selected articles by screening the article titles and abstracts to identify the eligible articles. If the 
article is not relevant to the topic at all then it is excluded at the initial phase which is conducted 
by screening the title and abstract. 
 
2.3 Data extraction: 
  
From the final collection of the studies, key information was extracted to assess the application 
of AI algorithms. The data extraction was divided into 10 different categories. The categories 
and their information are given below: 
1) Study information: the first author’s name, year, country.   
2)  Cases: summary of the specific application in different cases i.e., detection of DN, 
management of DN etc. If applicable the type of diabetes of the cohort was mentioned as in T1D 
or T2D.  
3) Data sources: The name and description of the dataset’s source is obtained and mentioned. It 
can be an EHR dataset from a regional hospital to national surveys.  
4) Research type: The type of study conducted, whether it was an observational study or 
experimental study, is mentioned in this category.  
5) Baseline characteristics: The clinical variables used to form the ML models were mentioned 
here. For DL algorithms the type of image taken along with basic characteristics is mentioned.  
6) Cohort size/sample size: The population included in the cohort studies is mentioned. On the 
other hand, the sample size for other studies is mentioned here.  
7) AI algorithm: In this category, all of the ML or DL algorithms used are mentioned.  
8) Development process: The size of the training and testing dataset is mentioned here.  
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9) Performance assessment: The evaluation metrics of AI algorithms are included here. Some of 
the performance assessment techniques include accuracy test, sensitivity, specificity, Cohen’s k, 
the area under the curve (AUC) etc.  
10) Limitation: The limitations of the included studies, mostly mentioned by the authors 
themselves, are included in this category.  
 
2.4. Quality Assessment:  
 
Studies were assessed from the following categories: limits in current non-machine learning tools, 
feature engineer methods employed in the AI algorithm before training the dataset, the 
hyperparameters used in the study, valid methods to overcome overfitting and the external 
validation of the data. The quality assessment table of the studies consisted of binary answers of 
yes or no.  
 

 
 
 
 
 
3. Results:  
 
After obtaining the results from the four databases, the duplicate articles were excluded. Then a 
manual inspection by the author was conducted to evaluate the remaining articles based on 
inclusion criteria. From the four databases a total of 694 (IEEE = 91, PubMed = 202, ACM Digital 
Library = 393, DBLP = 8) studies were obtained, and 11 of them were marked as ineligible by 
endnote. In addition, a total of 24 duplicate studies were found. The remaining 659 studies were 
manually screened by the author, and they were evaluated based on the inclusion and exclusion 
criteria. Consequently, a total of 146 studies were retrieved for eligibility assessment via full-text 
inspection - all of these studies either included diabetes patients and/or kidney patients and/or AI 
algorithms.  In the end, a total of 23 articles met the inclusion criteria. The references cited in 
those 23 studies were screened by the author himself. Among the 831 references listed only one 
of the studies met the complete inclusion criteria. The details of the selected articles are presented 
in Table-3.  

 

 

 

 

 

 

Table-2:  PRISMA flow diagram for updated systematic reviews. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.10.21264813doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.10.21264813
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Identification of new studies via databases and registers Identification of new studies via other methods 
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In
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lu
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Studies included in 
previous version of 
review (n = 0) 
 
Reports of studies 
included in previous 
version of review (n = 0) 

Previous studies 

Total studies included in review 
(n = 23) 
Reports of total included studies 
(n = 1) 

New studies included in review 
(n = 23) 
Reports of new included studies 
(n = 1) 

Reports excluded: 
Reason 1 (n = assessed DN 
with conventional statistical 
method) 
Reason 2 (n = applied AI 
frameworks in DM but not in 
nephropathy) 
Reason 3 (n = applied AI 
frameworks in kidney disease 
but is not related to DM) 
) 

Reports assessed for eligibility 
(n = 49) 

Reports 
not 
retrieved 

(n = 685) 

Reports not retrieved 
(n = 97) 

Reports sought for retrieval 
(n = 146) 

Reports sought for retrieval 
(n = 146) 

Records excluded** 
(n = 513) 

Records screened 
(n = 659) 

Records identified from*: 
Databases (n = 694) 
 

Records removed before 
screening: 

Duplicate records removed (n 
= 24) 
Records marked as ineligible 
by automation tools (n = 11) 
Records removed for other 
reasons (n = 0) 

Records identified from: 
Citation searching (n = 831) 
etc. 

Reports assessed for eligibility 
(n = 27) 

Reports excluded:119 
Reason 1 (n = 
assessed DN with 
conventional 
statistical method) 
Reason 2 (n = 
applied AI 
frameworks in DM 
but not in 
nephropathy) 
Reason 3 (n = 
applied AI 
frameworks in kidney 
disease but is not 
related to 

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total 
number across all databases/registers). 
**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation 
tools. 
 
From:  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated 
guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: http://www.prisma-
statement.org/ 
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First 

Author, 

Year of 

Publication, 

Country  

Case  Data 
Sources 

Research 
type  

Clinical 
variables/ 
baseline 
characteristics/ 
image type    

Cohort 

size/sample 

size  

AI 
algorithm  

Development 
process  

Performance 
Assessment  

Limitations  

Lili Chan et al. 

(39).  

2020  

USA  

 

Predicting the 

progression of 

DKD  

 BioMe 

Biobank and 

PMBB 

dataset (using 

novel 

biomarkers 

and EHR 

data)  

Retrospective 

cohort study  

Age, sex, race, 

BMI, BP, 

hypertension 

eGFR, CAD, HF, 

uACR, HbA1c, 

follow up 

(months), Plasma 

biomarkers, 

medication, 

smoking status  

1146 patients with 

DKD 

KidenyIntelX 

RF model  

The derivation set 

= 60%  

The validation set 

= 40%  

From the 

derivation set, 

training set = 

70%, the testing 

set = 30%.  

AUC = 0.77 The uACR of 38% 

of the cohort was 

unavailable. 

Possibility of bias 

in ML model due 

to no protocolized 

follow-up, 

resulting in lack of 

kidney biopsies 

and missing data. 

The models were 

not tested in a 

multiethnic cohort.  

 

LR AUC = 0.75 

Hee-Sung Ahn 

et al. (40)  

2020  

Korea  

Prognosis to DKD 

for T2D patients  

 An EHR 

dataset from 

the Human 

Swissport 

proteome 

database 

using the 

SequestHT 

search engine  

Retrospective 

cohort study  

Age at diagnosis of 

DKD, sex, BMI, 

BP, LDL, HDL, 

triglycerides, 

eGFR (one year), 

HbA1c, ACR, 

NAPCR, PCR, 

RAS inhibitor, 

Anti-hypertensive 

agent, Lipid-

lowering agent, 

duration of follow-

up, the status of 

DR 

Urine samples 

from 54 patients 

with or without 

renal dysfunction, 

where 1296 protein 

samples were 

identified  

RF  Not mentioned AUC – 1  Homogenous 

population small 

sample size. 

Further validation 

in multiethnic 

cohorts is needed. 

DKD was 

clinically 

diagnosed in the 

absence of renal 

biopsies. The 

organ deriving 

urinary protein 

signature is 

unclear.  
SVM with 

linear kernel  

AUC – 0.935  
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Sunil Belur 

Nagaraja et al. 

(41).  

2020 

Netherlands  

Early detection of 

ESRD of DN 

patients.   

 Data were 

collected 

from three 

different 

clinical trials 

of T2D 

patients with 

nephropathy 

(RENAAL,   

IDNT,  

ALTITUDE).  

 

.  

Clinical trial  Age, sex, BMI, 

smoking status, 

BP, serum 

creatinine, serum 

potassium, 

haemoglobin, 

HbA1c, serum 

albumin, serum 

calcium, 

phosphorus, serum 

uric acid, HDL, 

LD, UACR, 

patient records 

11789 patients 

from the 

multiethnic cohort. 

(RENAAL = 1513, 

IDNT = 1715, 

ALTITUDE= 

8561)  

Feed forward 

neural 

network  

K-nearest 

algorithm to 

impute missing 

variables. 

Fivefold cross-

validation where 

training set = 80% 

and validation set 

= 20%  

RENAAL 

AUC = 0.82 

IDNT AUC = 

0.81 

ALTITUDE 

AUC = 0.84  

The variability in 

medication 

adherence of 

patients is avoided. 

Performance can 

be enhanced by 

adding additional 

molecular and 

cellular biomarkers 

while increasing 

the sample size of 

the training set.  

AUC (0.78, 0.78, 

0.81) 

SVM with 

Gaussian 

Kernel  

AUC (0.78, 

0.78, 0.81)  

RF  RENAAL 

AUC = 0.8 

IDNT AUC = 

0.79 

ALTITUDE 

AUC = 0.82  

 

LR RENAAL 

AUC = 0.78 

IDNT AUC = 

0.78 

ALTITUDE 

AUC = 0.81 

  

Shinji 

Kitamura et al. 

(42)  

2020  

Japan  

Diagnosis of DN 

from 

immunofluorescent 

images  

 An EHR 

dataset 

consisting of 

kidney 

samples of 

renal biopsies 

from the 

patients 

administered 

in a regional 

Hospital 

(Okayama 

Retrospective 

cohort study 

Images of renal 

immunofluorescent 

of patients’ renal 

biopsy. Each 

patient’s sample 

contained IgG, 

IgA, IgM, C3, C1q 

and fibrinogen 

immunofluorescent 

type.  

885 renal 

immunofluorescent 

images (image 

resolution = 256 * 

256)  

39 programs 

out of 419 AI 

programs 

trained on 

training set  

Training images 

and testing images 

ration = 8:2 

Accuracy rate 

= 83.28 ± 

11.64% 

Precision rate 

= 80.56 ± 

21.83% 

Recall rate = 

79.87 ± 

15.65% 

AUC = 0.93  

R2 = 0.4586 

P < 0.0001  

The model was 

only applied to 

immunofluorescent 

images from a 

small dataset. The 

algorithm was not 

validated 

externally. The 

sample only 

consisted of 

images from a 

single hospital.  
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University 

Hospital).  

6 programs 

among the 39 

programs  

Accuracy, 

precision, 

recall = 100%  

AUC = 1  

R2 = 1 

P < 0.001 

Jinxia Chen et 

al. (43) 

2015 

China  

Prediction of 

glomerular 

filtration rate of 

T2D patients  

 An EHR 

dataset from 

a regional 

Hospital 

(Third 

Affiliated 

Hospital of 

Sun Yatsen 

University, 

China)  

Cross-

sectional 

study  

Age, sex, diabetes 

duration, weight, 

height, BSA, BMI, 

serum creatinine 

median, sGFR, 

UACR, HbA1c,  

519 T2D patients.  ANN1 Developmental 

dataset, n = 276 

Internal validation 

dataset, n = 138 

External 

validation dataset 

= 105  

Accuracy (%) 

= 87.6 

The dataset 

employed consists 

of a very small 

number of samples 

and it was 

restricted to a 

single centre. The 

model should be 

validated by 

employing it on a 

multiethnic cohort.  

ANN2 Accuracy (%) 

= 83.8  

ANN3 Accuracy (%) 

= 88.6  

ANN4 Accuracy (%) 

= 84.8  

ANN5 Accuracy (%) 

= 85.7  

ANN6 Accuracy (%) 

= 88.6  

ANN7 Accuracy (%) 

= 87.6  

ANN8 Accuracy (%) 

= 87.6  

Xiaoyuan Bao 

et al. (44)  

China  

2019  

Predicting DN 

among DM 

patients through a 

clinical text 

document  

 An EHR 

dataset 

extracted 

from a grade 

3A tertiary 

hospital 

Retrospective 

longitudinal 

study  

The patients’ 

chronic disease 

course, family 

history of chronic 

disease, personal 

smoking, drinking 

history etc. from 

the EHR records. 

3422 admission 

notes from EHR.  

LR 8 target vectors 

were extracted 

from the dataset 

(patients’ 

diabetes, 

hypertension and 

heart disease 

course with 

personal 

drinking/smoking; 

patients’ parents’ 

diabetes, 

hypertension and 

heart disease 

course with 

F1 = (0.94, 

0.93, 0.91, 

0.85, 0.84, 

0.72, 0.35, 

0.91, 0.87)  

The dataset 

contained far too 

few samples. The 

information 

extracted was not a 

big part of the 

clinical data. The 

corpus is not 

externally 

validated.  

  

SVM  F1 = (0.91, 
0.9, 0.9, 0.83, 
0.83, 0.73, 
0.93, 0.92) 

RF  F1 = (0.89, 
0.94, 0.89, 
0.85, 0.86, 
0.7, 0.92, 0.9 
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DT personal 

drinking/smoking) 
F1 = (0.95, 
0.97, 0.92, 
0.84, 0.86, 
0.72, 0.91, 
0.88) 

MLP  F1 = (0.95, 
0.97, 0.92, 
0.8, 9.8, 0.62, 
0.92, 0.92)  

NB  F1 = (0.81, 

0.8, 0.64, 0.65, 

0.6, 0.52, 0.92, 

0.92)   

Adaboost  F1 = (0.96, 

0.97, 0.93, 

0.83, 0.85, 

0.69, 0.91, 

0.89) 

KNN F1 = (0.8, 

0.77, 0.59, 

0.51, 0.71, 

0.35, 0.91, 

0.92)  

Hayashi et al. 

(45)  

2019 

Japan 

Early detection of 

DKD 

 National 

Health and 

Nutrition 

Survey 

(NHANES) 

(1994-2004) 

dataset  

Prospective 

cross-

sectional 

study  

Age, sex, race, BP, 

waist 

circumference, 

BMI, total 

cholesterol, uACR, 

tobacco use, 

alcohol use, 

Exercise to lose 

weight, 

triglycerides, LDL, 

direct HDL, 

fasting plasma 

glucose, insulin, 

total bilirubin  

942 DM patients  

524 pre-DM 

patients 

Continuous 

Re-RX 

(integrated 

with neural 

network 

classifier and 

C.45DT)  

The quantity of 

training and 

testing set is not 

mentioned.  

Accuracy = 

77.56 ± 2.19 

AUC-ROC = 

75%  

The dataset 

consists only of 

self-reported data, 

and it was 

relatively small. 

Only T2D patients 

were in the study.  
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Baek Hwan 
Cho et al. (46) 
2007 
Korea  

Predicting the 

onset of DN 

months before 

diagnosis.  

 An EHR 

dataset from 

a regional 

clinic 

(Samsung 

Medical 

Center) of 

DM 

outpatient for 

10 years.   

Cross-

sectional 

study  

Age, diabetes 

duration, white 

blood cell count, 

haemoglobin, 

platelet count, 

BMI, BP, HDL, 

LDL, HbA1c, sex, 

microalbumin, 

serum triglycerides 

level, serum 

cholesterol level, 

serum aspartate 

aminotransferase 

level, serum 

alkaline phosphate 

level, blood urea 

nitrogen, 

creatinine, uric 

acid, Na+, K+  

Medical data of 

292 patients with 

DM initially from 

4321 samples.   

Ridge LR The quantity of 

training and 

testing set is not 

mentioned.  

  

AUC = 0,57 

Accuracy = 

0.77 

HMSS = 0.56 

BER = 0.38 

Sensitivity = 

0.42 

Specificity = 

0.82  

C+ = n/a 

The medication 

information of the 

patients in the 

dataset is missing, 

the dataset is 

relatively small. 

The model scores 

are inadequate to 

supplement 

decision making 

by physicians.  SVM with 

linear kernel  

AUC = 0.68 

Accuracy = 

0.89 

HMSS = 0 

BER = 0.5 

Sensitivity = 0  

Specificity = 1  

C+ 1  

SVM with 

RBF kernel  

AUC = 0.64 

Accuracy = 

0.88 

HMSS = 0 

BER = 0.5 

Sensitivity = 0 

Specificity = 1  

Brandon 

Ginley et al. (47)  

2019  

USA  

Digital pipeline to 

classify renal 

biopsies from 

patients with DN  

 The whole-

slide image 

data were 

obtained 

from Kidney 

and 

Translational 

Research 

Core (KTRC) 

and 

Vanderbilt 

University 

Medical 

Center 

(VUMC) 

Cross-

sectional 

pilot study  

Images of renal 

tissue samples.  

Renal tissue 

sections image of n 

= 54 human beings  

Renal tissue 

sections image of n 

= 25 mice  

RNN  Out of 54 

samples, 6 

samples were 

control tissues. A 

single batch of 

training data 

consisted of 256 

feature sequences/   

Cohen’s 

k between 

RNN and 

ground truth 

renal 

pathologist 

0.55 (0.50 to 

0.6) 

Glomerular 

boundaries 

detection 

accuracy = 

0.93 ± 0.04;  

Glomerular 

nuclei 

The precision 

could be improved 

by continuous risk 

prediction models. 

The training set for 

the model is 

relatively small.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.10.21264813doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.10.21264813
http://creativecommons.org/licenses/by-nc-nd/4.0/


detection 

sensitivity and 

specificity 

(0.94, 0.93);  

Glomerular 

structural 

component 

detection 

sensitivity and 

specificity 

(0.95, 0.99)  

Jialing Huang 

et al. (48) 

2020   

Germany 

Early detection of 

CKD among pre-

diabetes and T2D 

patients.  

 A survey 

conducted in 

South 

Germany 

(KORA)  

Longitudinal 

cohort study  

Age, sex, BMI, 

HbA1c, Fasting 

glucose, 2-h 

glucose, BP, 

triglyceride, HDL, 

LDL, total 

cholesterol, 

Baseline eGFR, 

Follow-up eGFR, 

Smoking status, 

Medication usage 

2142 individuals 

were 385 

hyperglycemic 

patients and 1453 

participants with 

normal glucose 

tolerance  

SVM  Data of DM 

patients were 

partitioned into 

10-non 

overlapping 

subsets, where 9 

of them are 

training data and 

the remaining one 

is the testing data  

Reference 

Predictors 

AUC = 0.8 

(95% CI)  

The external 

validation of the 

study is missing. 

There is a missing 

replication of 10 

patients in the 

study.  

Developed set 

AUC = 0.825 

(95% CI) 

 

RF Reference 

Predictors 

AUC = 0.789  

(95% CI) 

Developed set 

AUC = 0.818 

(95% CI) 

 

Adaboost  Reference 

Predictors 

AUC = 0.798 

(95% CI) 

Developed set 

AUC = 0.814  

(95% CI) 

 

Yong-Mi Kim 

et al. (49) 

USA  

2017  

Comparing and 

detecting markers 

to predict ESRD 

among African 

 An EMR 

dataset from 

the Cerner 

database.  

Comparative 

research  

All the 

complications 

found in DM 

patients (eg. Low 

4623 DM 

outpatients. 

Here, 3550 

Caucasian patients 

Apriori  The exact quantity 

of training and 

testing set is not 

mentioned 

Support > 

0.00001 

Confidence = 

1.00 

Lift > 35  

The study was 

focused on the 

Caucasian group 

with eGFR ≥60 

mL/min.  
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Americans and 

Caucasians.  

hematocrit, low 

lymphocytes etc.)  

and 1073 African 

American patients.   

744 rules 

found for 

African 

American 

patients  

The data was not 

externally 

validated.  

Ji Eun Kim et 

al. (50) 

Korea  

2020  

Detection of 

posttransplant DM 

in kidney 

transplant 

recipients based on 

quantification of 

visceral fat (VF) 

volumes  

 An EHR 

dataset 

(2003-2017) 

derived from 

a national 

hospital 

(Seoul 

National 

University 

Hospital)  

Retrospective 

study  

Age, sex, BMI, per 

cent of the 

deceased donor, 

type of pre-

transplant dialysis, 

Cause of kidney 

failure, induction 

agent, a 

calcineurin 

inhibitor, total 

cholesterol, LDL, 

HDL, uric acid  

718 nondiabetic 

kidney transplant 

recipients (39268 

labelled whole-

body CT images)  

DNN  The exact quantity 

of training and 

testing set is not 

mentioned 

Average 

segmentation 

accuracy of VF 

= 92.4–98.9% 

Average 

segmentation 

accuracy of 

subcutaneous 

fat = 94.1– 

99.7% 

One of the main 

factors of 

measuring fat 

volume, waist 

circumference, was 

not taken into 

account as a 

clinical variable. 

The model was not 

tested on a 

multiethnic 

population, and 

further external 

validation is 

needed before 

applying it in 

clinical factors.  

Xing Song et 

al. (51)  

USA  

2020  

Predicting CKD in 

DM patients 

 An EHR 

dataset from 

the data 

repository of 

University of 

Kansas 

Medical 

Center’s 

(regional 

clinic) 

Healthcare 

Enterprise 

Repository 

for 

Ontological 

Narration 

(HERON).  

Retrospective 

cohort study  

Demographics, 

diagnoses, history, 

laboratory tests, 

medications, 

procedures, alerts, 

allergy, visit 

details, orders, 

Vizient 

14039 DM patients  Temporal-

Enhanced 

GBM  

Training set = 

80%  

Validation set = 

20%  

AUROC of 

predicting 

CKD risk with 

the automatic 

accumulation 

of new data in 

2, 3, 4 years 

since the onset 

of diabetes 

(AUC = 0.83, 

0.78, 0.82)   

The model is not 

externally 

validated, and it is 

not robust against 

population drift.  
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Xing Song et 

al. (52)  

USA 

2018 

Detecting robust 

set of discriminant 

factors for DKD 

 An EHR 

dataset 

(2007-2017) 

from the data 

repository of 

University of 

Kansas 

Medical 

Center’s 

(regional 

clinic) 

Healthcare 

Enterprise 

Repository 

for 

Ontological 

Narration 

(HERON).  

Retrospective 

cohort study  

Different sources 

of a diagnosis, 

different aspects of 

medication, 

different types of 

encounters where 

procedures were 

performed, 

different states of 

an alert  

15645 T2D 

patients 

GBM with 

weighted 

mean feature 

ensemble 

technique  

Training set = 

44.4% 

Internal validation 

set = 45.5%  

Temporal 

validation = 

10.1%  

Internal and 

external 

validation 

(AUC = 0.82, 

0.71)    

Lack of robustness 

persists against 

population shift. 

The differences in 

the feature 

selection algorithm 

are not taken into 

account.  

Andreas 

Heinzel et al. 

(53)  

Austria  

Predicting eGFR 

declination in T2D 

patients  

 A 

multinational 

cohort study 

from 

PROVALID  

Prospective 

cohort study  

Age, sex, serum 

cholesterol, uACR, 

HbA1c, mean 

arterial pressure, 

BMI, eGFR at the 

baseline level.  

2560 patients with 

17 biomarkers 

measured at the 

baseline.  

Logistic 

Regression  

The exact quantity 

of training and 

testing set is not 

mentioned 

Adjusted R2 = 

62.5%  

12 out of 17 

biomarkers 

were 

associated with 

34% of eGFR 

decline.  

A possibility of 

over-optimistic 

results in the 

selection of 

patients from the 

dataset. The 

follow-up result of 

patients is assumed 

to be relatively 

short.  

Masaki 

Makino et al. 

(54)  

Japan  

2019  

 

Prediction of DKD 

progression within 

6 months   

 An EMR 

dataset from 

a regional 

hospital’s 

(Fujita 

Health 

University 

Hospital) 

EHR 

repository 

A 

retrospective 

longitudinal 

cohort study  

. structured data 

(lab tests, 

medication, 

anamnesis etc.), 

text data 

(diagnosis, 

treatments records 

etc.), longitudinal 

data (laboratory 

test etc.)  

64059 T2D 

patients  

Convolutional 

autoencoder  

The exact quantity 

of training and 

testing set is not 

mentioned 

Accuracy = 

71%  

AUC = 0.743  

The extracted data 

were from 

different sources; 

thus, it was not 

unified. The 

samples are from a 

single centre, and 

the model is not 

validated in other 

samples from 

different hospitals. 

The progression of 
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DKD for six 

months and 

medication’s 

relationship is 

unavailable. 

Violeta 

Rodriguez-

Romero et al. 

(55) 

USA  

2019 

Prediction of DKD 

in T2D patients  

 Dataset 

obtained 

from 

Biological 

Specimen 

and Data 

Repository 

Information 

Coordinating 

Center of the 

National 

Heart, Lung 

and Blood 

Institute 

(NHLBI) 

Retrospective 

longitudinal 

study  

Age, sex. Race, 

history of CV 

event, GHb, eGFR, 

UCr, SCr, Ualb, 

CPK, HDL, K, 

LDL cholesterol, 

uACR, BP, FPG, 

triglycerides 

10251 T2D 

patients  

One Rule 

(1R)  

Training set = 

66%  

Testing and 

validation set = 

34%  

 Sensitivity > 

0.78 

Accuracy > 

0.77 

The data of 

patients having 

developed DN was 

not considered in 

the analysis. The 

novel biomarker 

variables that are 

related to the DN 

pathogenesis is not 

applied. The model 

is not externally 

validated.  

J48 DT Sensitivity > 

0.72  

Accuracy > 

0.74 

RF  Sensitivity > 

0.76  

Accuracy > 

0.92  

Simple 

Logistic 

 Sensitivity > 

0.74  

Accuracy > 

0.77 

Sequential 

Minimal 

Optimization  

Sensitivity > 

0.75  

Accuracy > 

0.73  

Naïve Bayes   Sensitivity > 

0.67  

Accuracy > 

0.73  

Sitong Lin et 

al. (56) 

China  

2021  

Early renal damage 

detection in DM 

patients  

 The sample 

size is 

obtained 

from EI 

database 

Retrospective 

cohort study   

Age, gender, FPG, 

2h PPG, HbA1c 

variables 

100 DM patients  LeNet  The exact quantity 

of training and 

testing set is not 

mentioned 

The evaluation 

is not 

mentioned  

To verify and 

analyze the renal 

biopsy of DM 

patients a large 

sample is needed.  

DetectionNet  

 Kang Zhang 

et al. (57) 

China  

2021  

 

Detecting CKD 

and T2DM through 

retinal fundus 

images  

 Retinal 

fundus image 

dataset from 

the China 

Consortium 

of Fundus 

Retrospective 

longitudinal 

study  

Retinal fundus 

images, and 

metadata (age, sex, 

height, weight, BP  

57672 patients 

where 115344 

retinal fundus 

photographs were 

obtained  

RF using 

clinical 

metadata  

 

Training, tuning 

and internal 

testing ratio 7:1:2 

Early CKD 

detection on 

internal test set 

and external 

test set (AUC 

= 0.805, 0.8)  

The algorithm 

should be tested in 

a multiethnic 

cohort. There is a 

possibility of 

inaccurate 
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Image 

Investigation 

 estimation of 

eGFR among 

patients with rapid 

deterioration of 

renal function.   

Identifying 

T2D on 

internal test set 

and external 

test set (AUC 

= 0.828, 0.796)   

 

DL model 

with fundus 

image 

 

Early CKD 

detection on 

internal test set 

and external 

test set (AUC 

= 0.839, 0.829) 

 

Identifying 

T2D on 

internal test set 

and external 

test set (AUC 

= 0.923, 0.854)  

  

 

Combined 

DL and RF 

model  

Early CKD 

detection on 

internal test set 

and external 

test set (AUC 

= 0.864, 0.849  

 

Identifying 

T2D on 

internal test set 

and external 

test set (AUC 

= 0.929, 0.871)  

Lijun Zhao et 

al. (58)  

China  

2020  

Predicting ESRD 

through the 

severity of DR 

during biopsy  

 An EHR 

dataset from 

a regional 

hospital 

(West China 

Retrospective 

longitudinal 

study  

Colour photograph 

of each retina pf 

the patients using 

45° using a 
fundus camera 

91 T2D patients 

with renal biopsy 

confirmed DN  

RetinalNET 

(Lesion-

aware DL 

system)  

The exact quantity 

of training and 

testing set is not 

mentioned  

HR = 2.18  

P = 0.04  

The casual 

relationship 

between DN and 

DR were not 

inferred. There 
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Hospital of 

Sichuan 

University)  

was the existence 

of selection bias. 

The renal 

outcomes were 

infrequent.  

Hongxia Xu et 

al. (59)  

China  

2020  

Predictive model 

for the early 

diagnosis of DKD  

 An EMR 

dataset from 

a regional 

hospital 

(Beijing 

Pinggu 

Hospital)  

Retrospective 

longitudinal 

study  

Age, haemoglobin, 

hematocrit, 

average red blood 

cell volume, mean 

haemoglobin 

content, mean 

haemoglobin 

concentration, red 

blood cell 

distribution width, 

lymphocyte count, 

monocyte count, 

eosinophilic fine 

count, basophilic 

granule count, 

percentage of 

lymphocyte, 

monocyte 

percentage 

………… 

1177 DM patients- 

914 DM patients 

with non-

concurrent DKD 

and 263 DM 

patients with DKD 

RF  

 

Training set = 685 

patients with non-

concurrent DKD 

and 197 DKD 

patients  

Testing set = 229 

patients with non-

concurrent DKD 

and 66 DKD 

Precision = 0.9 

Recall = 0.9 

F1-score = 

0.89  

 

The AI algorithm 

was not externally 

validated and the 

sample size is 

relatively small.  

LR 

 

Precision = 

0.88  

Recall = 0.88  

F1-score = 

0.88 

 

KNN 

 

Precision = 

0.88 

Recall = 0.88 

F1-score = 

0.88 

 

DT  Precision = 

0.89 

Recall = 0.89 

F1-score = 

0.89 

 

Jivan Parab et 

al. (60) 

India  

2021  

Monitoring blood 

urea and 

Glucose for DM 

patients with CKD  

 Laboratory 

samples and 

analytical 

grade 

compounds 

from Sigma 

Aldrich Ltd 

Experimental 

study  

Laboratory 

samples 

resembling blood 

mixed with 

glucose, ascorbate, 

urea, lactate, and 

alanine in the 

proportion found 

in the blood in an 

aqueous solution 

Spectra of 57 

samples  

 PLSR  Training set = 53 

samples  

Testing set = 4 

samples  

Prediction of 

blood urea and 

glucose (R2 = 

0.93, 0.97) 

(accuracy = 

94.2%, 

90.14%)  

The blood samples 

used in both 

training and testing 

data is made from 

a laboratory. The 

model should be 

applied in human 

tissue to properly 

estimate urea and 

glucose.  

BP-ANN  Prediction of 

blood urea and 

glucose (R2 = 

0.96, 0.99) 

(Accuracy = 
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Abb: PMBB (Penn Medicine Biobank), CAD (coronary artery disease), HF (Heart Failure), BP (blood pressure), BSA (body surface area), uACR 

(urine albumin creatinine ratio), sGFR (standard glomerular filtration rate),  FPG (fasting plasma glucose), GHb (glycosylated haemoglobin), CV 

(cardiovascular event), CPK (creatinine phosphokinase), K (potassium), UAlb (Urinary albumin), UCr (urinary creatinine), SCr (serum creatinine), , 

True Positive Rate (TPR),  receiver operating characteristic curve (ROC), SLR (Sparse Longitudinal Representations), WB (weighted bagging), AUC-

ROC (area under the receiver operating characteristics curve), GBM (Gradient Boosting Machine), P (null hypothesis test),  R2 (coefficient of 

determination), BMI (body mass index), HbA1c (Hemoglobin A1c),  

 

Table-3: The summary of findings in the included articles 

95.96%, 

98.65%)  

Jinghe Zhang 

et al. (61)  

USA  

2020 

Early detection of 

CKD in DM 

patients 

 An EHR 

dataset from 

the 

University of 

Virginia 

Health 

System  

Prospective  

longitudinal   

data 

Sparse longitudinal 

representation of 

patients’ medical 

records 

395 DM patients 

who are diagnosed 

with CKD at least 

18 months after 

DM diagnosis.  

Bagged SLR  Exact figures not 

mentioned  

Sensitivity = 

0.829 ± 0.023 

The sample-set 

employed is 

relatively small 

and the model is 

not externally 

validated  

Specificity = 

0.865 ± 0.020 

AUC = 0.842 

± 0.020 

F2 score 

=0.818 ± 0.028 

WB-SLR  Sensitivity = 

0.835 ± 0.025 

Specificity = 

0.852 ± 0.012 

AUC = 0.891 

± 0.018 

F2 score = 

0.820 ± 0.027 

Kinsuk 

Chauhan et al. 
(62)  

2020 

USA  

Predicting kidney 

outcomes of T2D 

patients 

 An EHR 

dataset and 

plasma 

specimens 

from BioMe 

Biobank  

 

Retrospective 

Longitudinal 

study 

Age, sex, race, 

BMI, 

hypertension, 

CAD, heart failure, 

BP, follow-up, 

eGFR, uACR, 

Hb1Ac, ARB, 

plasma biomarker 

concentration  

871 T2D patients  KidneyIntelX Training set = 

80%  

Testing set = 20%  

AUC = 0.77 

Positive 

predictive 

values = 62% 

Negative 

predictive 

values = 92%  

Further validation 

of the model is 

necessary in 

geographically 

diverse population. 

Overfitting of the 

model is possible. 
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The scheme of this study is summarized into four different categories based on the AI framework 
in use. The categories include 1) predictive AI model for the early detection of DN (40, 44, 45, 46, 
48, 51, 54, 55, 59, 61), 2) AI Framework for the diagnosis of DN (42, 50, 57), 3) predictive model 
for the progression of DKD (39, 41, 49, 58, 62), 4) the management of DN for existing patients 
OR early management indication to DM patients without DKD with the help of AI (43, 47, 52, 53, 
56, 60). The studies included in this systematic review are from various parts of the world. Seven 
of the included studies are from the USA (29%), six of them are from China (25%). In addition, 
three studies are from Japan (12.5%) and Korea (12.5%). Although the number of observational 
studies included was greater, the comprehensive review consisted of both observational study 
and experimental study.  
 
A total of 8 studies (39, 40, 44, 45, 48, 49, 53, 59) included a cohort population/ sample size of 
1000+ patients/samples to develop the AI model. Meanwhile, 7 studies (41, 50, 51, 52, 54, 55, 
57) included a cohort size/ sample size over 10,000 patients/sample size. In addition, a large sum 
of 14 studies (39, 40, 42, 44, 48, 49, 51, 52, 53, 55, 56, 57, 59, 62) used ML to build the predictive 
model. On the other hand, 5 studies (47, 50, 54, 58, 60) used DL algorithms as the AI method in 
their study. Finally, 5 other studies used both ML and DL as separate baselines or in an integrated 
system (41, 43, 45, 46, 61).  It is worth noting that a large number of the studies used EHR 
datasets from a regional hospital/clinic. A total of nine studies (42, 43, 46, 51, 52, 54, 58, 59, 61) 
used an EHR dataset from a regional hospital.  
 
Different AI algorithms such as RF (Random Forest), LR (Logistic Regression), SVM (Support 

Vector Machine), feed-forward network, ANN (Artificial Neural Network), KNN (k-nearest 
neighbours), ),  MLP (Multilayer Perceptron), RNN (Recurrent Neural Network), Naive 
Bayes (NB), Adaboost, DT (Decision Tree), Ridge LR, Apriori, DNN (Deep Neural Network), GBM 
(Gradient Boosting Machine), convolutional autoencoder, One rule, Simple Logistic, Sequential 
Minimal Optimizer, LeNet, DetectionNet, Lesion aware DL system, PLSR (Partial Least Square 
Regression), Backpropagation Artificial Neural Network (BP- ANN). Above all, RF is the most 
used model for predictive models being used 7 times.  
 
As most of the included studies are predictive models, they require a certain criterion to be met. 
The data should be pre-processed with the necessary imputation, dimensionality reduction, 
transformation etc. The training model used in the dataset is used to find the patterns from the 
feature vectors with the output vectors with the help of the AI algorithm(s). A testing dataset is 
also necessary from the same source as the training that is unseen to the algorithm. Therefore, 
the accuracy of the AI algorithm can be assessed. However, a lot of the studies did not mention 
the exact quantity of the development process of the dataset i.e the training and testing sample 
size (40 45, 46, 49, 50, 53, 54, 56, 58, 61). As a result, if the performance of the AI model is 
overfitting or not cannot be determined.
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Table 4:  Quality Assessment of the studies:  

 Limits in 
current non-
AI approach 

Reproducibility External 
data 
validation 

Feature 
Engineering 

Hyperparameters 

Lili Chan et 
al. (39) 

Yes  No  Yes  No  

Hee-Sung 
Ahn (40) 

Yes  Yes  Yes  Yes  

Sunil Belur 
Nagaraja (41) 

Yes  Yes  Yes No  

Jinxia Chen 

(43) 
Yes  Yes Yes  Yes  

Xiaoyuan 
Bao (44) 

Yes  N/A Yes  No  

Baek Hwan 
Cho (46) 

Yes  Yes  Yes  No  

Shinji 
Kitamura (42)  

Yes  Yes Yes Yes 

Brandon 
Ginley (47) 

Yes  Yes Yes  Yes  

Jialing 
Huang (48) 

Yes Yes  Yes  No  

Lijun Zhao 
(58) 

Yes  No  No  Yes  

Sitong Lin (56)  N/A Yes  Yes  N/A  

Jivan Parab 
(60) 

Yes  No N/A  No  

Hongxia Xu 
(59) 

No  Yes  Yes  No  

Kang Zhang 
(57) 

Yes  Yes  Yes  Yes  

Jinghe 
Zhang (61)  

Yes  Yes  Yes  No  

Violeta 
Rodriguez-
Romero (55) 

Yes  Yes  No  No 

Xing Song 
(51)  

Yes  Yes  Yes  No  

Xing Song 
(52)  

Yes  Yes  Yes  Yes  

Yoichi 
Hayashi (45) 

No  Yes Yes No 

Masaki 

Makino (54) 
Yes  Yes  No No  

Ji Eun Kim 

(50)  
Yes  Yes  No  No  

Andreas 

Heinzel (53)  
Yes Yes No  Yes  

Yong-Mi Kim 

(49) 
Yes  No  Yes  No  

Kinsuk 

Chauhan (62) 

 

Yes  Yes  Yes  No  
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In the quality assessment (Table 4) the shortcomings OR strengths of the studies were assessed. 
To ensure the included study adds something new to clinical practices and fulfils a void that cannot 
be assessed by conventional statistical methods, the “limits in current non-AI approach” column 
is present in Table-4. If the AI model even outperformed the conventional statistical method the 
cell is filled with a ‘yes’. Except for two studies (59, 45), all 22 other included studies either 
outperformed conventional methods or accomplished the result which is not attainable through 
non-AI frameworks. This proves that AI algorithms are superior to conventional methods, and they 
might be suitable in clinical practices to aid physicians. The feature generation of the AI 
algorithm(s) before undergoing training is also mentioned. Feature engineering is particularly 
important as they are essential to select and transform raw data from clinical variables to essential 
features. As well as, handling missing data or imbalanced data is accounted for in the studies. 
From the included studies, a total of studies 19 conducted feature engineering in the raw data to 
make the algorithm more feasible. Four studies (39, 49, 58, 60) did not use feature engineering. 
Also, before the training of AI algorithms, some studies chose to tune hyperparameters to yield 
better outcomes. Among 24 studies only four (50, 54, 55, 58) studies did not include 
hyperparameters in the study. Hyperparameter tuning is necessary for ML models as the optimal 
combination reduces the predefined lost function as low as possible, which leads to a better 
performance of the model.  
 
The model's higher predictive accuracy makes it more reliable for clinical use. In addition to the 
need for high accuracy in the model, validation of the model in different settings outside of the 
research’s framework is critical. The vast majority of models have not been externally validated. 
External validation is required to determine the model's reproducibility and generalizability to 
unique patients. Aside from that, it is critical to ensure that the model is tested on a multiethnic 
cohort before implementing the AI framework globally. Only seven (40, 43, 47, 52, 53, 57, 58) of 
the 24 included articles had the predictive AI model externally validated (29 percent). 
 

 
4. Discussions:  

 
This is the first systematic review that reviews current applications of AI in DKD. The heterogeneity 
in the types of AI algorithms used are shown in the results - SVM, DT, RF, ANN, Naive Bayes etc. 
The myriads of different feature vectors used in the predictive performances were observed. 
Studies in this review were performed in different parts of the globe. Some of the studies included 
multiethnic cohorts. In most of these studies, it is observed that there persist limitations in 
conventional statistical models. However, ML and DL models proved to be far superior in many 
instances. AI methods applied in different aspects of DN had met the substantial needs, which 
conventional methods lack, in the proposed clinical applications. The only aspect of shortcoming 
in AI algorithms is the generalizability, which can be met with the growing number of EHR datasets 
in clinics.  
 
It should be pointed out that most selected papers are published within the last four years, which 
indicates the application of AI in DN is an emerging technology. Despite being not so perfect, AI 
still prevails a large opportunity to improve the current uses. The predictive models can be 
improved a lot if expert knowledge is integrated with the data-driven approach. The physicians 
with adequate knowledge in DN can craft safety constraints as a guide during the training process 
(16). The performance of AI frameworks in clinical practices of DKD can adequately be assessed 
from prospective studies (63). For future work, prospective studies should be conducted in studies 
focused on category four. Therefore, the study would be able to both assess the performance of 
the AI algorithm along the acceptance and satisfaction of patients with automated approaches. 
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For the generalizability of the study, the best performing AI algorithm in internal validation should 
be tested on multiple different ethnic cohorts before adopting its use in clinical practices. On the 
other hand, further AI devices can be developed that can help the patients of DN to maintain the 
risk of ESRD at a low rate. However, caution must be adopted before adopting AI algorithms. 
Such as, whether AI-enabled care is safe and effective enough from the results of robust studies. 
As well as, the machine-generated results need to be confirmed by a physician or not etc (38).  
 
The review has a few limitations. At the outset, the review only searched open-access databases. 
Thus, ignoring registers and webpages and other databases such as Scopus and Embase etc. 
However, this study aimed to only include articles published in peer-reviewed journals to avoid 
any existing biases. On the other hand, to ensure the reproducibility of the review the manuscript 
only included open-access databases.  
 
In this study, a systematic effort was made by the author to identify every possible peer-reviewed 
article available and review AI application in DN. DN is one of the most dangerous complications 
caused by DM. However, with the proper caution and early detection of DN, a lot of the harmful 
outcomes can be avoided. The advent of computational biology, with the vast amount of EHR 
datasets generated every day, enables the further in-depth application of AI in the diagnosis and 
treatment of DN. Despite its recent emergence in healthcare, they have already outperformed 
conventional statistical methods. It is high time that physicians adopt AI-based algorithms in 
clinical approaches of DN.  
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Figure 1: | Supervised and unsupervised machine learning. a, General workflow of 
supervised machine-learning approaches. First, training and test datasets are collected. Next, 
part of the training set is used to build the prediction model, and the other part to tune and 
validate the model (circular arrow). After the machine-learning model is finalized (crossed-out 
circular arrow), the established model is used to generate predictions on the test dataset and 
the model’s performance is estimated by comparing the predicted outcomes with the observed 
outcomes for the test dataset. b, Unsupervised machine learning includes clustering, anomaly 
detection and dimensionality reduction. Clustering algorithms group data points with similar 
measurements into clusters. Anomaly detection identifies outliers in the dataset. Dimensionality 
reduction reduces the number of random variables used to describe the data; for example, by 
representing an image with thousands of parameters as a smaller vector of summary features. 
The resulting summary vector preserves the important information in the raw data; for example, 
summary vectors from similar images will bear more resemblance than those obtained from 
irrelevant images 

 
Note: Descriptive phrase that serves as title and description. Reprinted from “Artificial 
Intelligence in Healthcare” by Ognjanovic I, Year 2020, Stud Health Technol Inform, 
Volume(issue), doi: 10.3233/SHTI200677. PMID: 32990674 (7). 
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