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ABSTRACT 
 

PURPOSE: To provide comprehensive diagnostic and candidate analyses in a pediatric rare disease 
cohort through the Genomic Answers for Kids (GA4K) program. 
 

METHODS: Extensive analyses of 960 families with suspected genetic disorders including short-read 
exome (ES) and genome sequencing (srGS); PacBio HiFi long-read GS (HiFi-GS); variant calling for small-
nucleotide (SNV), structural (SV) and repeat variants; and machine-learning variant prioritization. 
Structured phenotypes, prioritized variants and pedigrees are stored in PhenoTips database, with data 
sharing through controlled access (dbGAP). 
 

RESULTS: Diagnostic rates ranged from 11% for cases with prior negative genetic tests to 34.5% in naïve 
patients. Incorporating SVs from GS added up to 13% of new diagnoses in previously unsolved cases. 
HiFi-GS yielded increased discovery rate with >4-fold more rare coding SVs than srGS. Variants and 
genes of unknown significance (VUS/GUS) remain the most common finding (58% of non-diagnostic 
cases).  
 

CONCLUSION: Computational prioritization is efficient for diagnostic SNVs. Thorough identification of 
non-SNVs remains challenging and is partly mitigated by HiFi-GS sequencing. Importantly, community 
research is supported by sharing real-time data to accelerate gene validation, and by providing HiFi 
variant (SNV/SV) resources from >1,000 human alleles to facilitate implementation of new sequencing 
platforms for rare disease diagnoses. 
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INTRODUCTION 
 
The Children’s Mercy Research Institute (CMRI) in Kansas City established a large-scale genomic disease 
program named “Genomic Answers for Kids” (GA4K) to expand diagnostic capabilities and catalog rare 
disease genomes and phenotypes within a healthcare system. Broad recruitment across all pediatric rare 
diseases resulted in most patients entering the study either with negative or no prior genetic testing. 
Recent studies have shown >10% rate of new findings upon reanalysis of exome or genome sequencing 
data in patients with a history of negative genetic testing.1-4 The predominant factors in identifying new 
diagnoses were recent publications establishing novel gene-disease associations, often through data-
sharing efforts such as GeneMatcher (upgrade from ‘gene of uncertain significance’ or GUS), or 
expanding the phenotypic spectrum of established disease genes (upgrade from ‘variant of uncertain 
significance’ or VUS).1,3,5 The next most helpful strategy to increase diagnostic yield was the 
incorporation of sequencing data from additional family members, particularly for singletons.4 Further, 
given the continued advances in technology and expanded availability of public data, samples 
sequenced and/or analyzed >3-5 years prior may also benefit from re-sequencing to enhance coverage 
and/or re-pipelining to incorporate improved filtering methods and more extensive population data.3,6  
 
The variable success in analyses/re-analyses is largely explained by patient ascertainment and testing 
schemes, though differing variant prioritization strategies are also likely to play a role. Specifically, 
depending on the relative weight placed on inheritance, variant-effect properties, and the 
identity/function of the gene harboring the rare variant, the ranking of candidate variants may yield very 
different results. Multiple machine-learning tools have emerged to balance the variant/locus 
characteristics in an attempt to systematically extract optimal candidate prioritization.7 The integration 
of such tools in rare disease molecular analyses has been demonstrated by several centers primarily for 
small, selected cohorts.8-12 The universal feature is the patient’s phenotype coded through human 
phenotype ontology (HPO) terms as a basis for prioritization, followed by the deployment of variable 
ranking algorithms.13 However, the utility of incorporating such tools for a systematic first-pass analysis 
of patient data within a large, unselected, and phenotypically diverse pediatric rare disease diagnostic 
setting is unknown. 
 
While variant prioritization strategies continue to improve, the choice of technology in genome-wide 
sequencing and primary data processing strategy have remained comparatively stable, despite missing 
some variant types including structural variation.14-16 At our center, short-read genome sequencing 
(srGS) performed similarly to exome sequencing (ES) in the diagnostic evaluation of suspected pediatric 
genetic disease on the same Illumina platform.17 However, alternative platforms have the potential to 
reduce uncertainty of chemistry-dependent errors and omissions, and scalable alternatives have 
emerged for short-read PCR-free genomes such as DNA NanoBall (DNB) sequencing.18 Further, long-read 
GS (lrGS) has been shown to detect variants missed by short-read sequencing, specifically complex 
structural variants including inversions and inverted duplications, as well as repeat expansions and 
variants in difficult-to-map regions.19 In addition, lrGS also has the potential to resolve phasing of 
variants in autosomal recessive genes when parental samples are unavailable. Recent technological 
advances in long-read platforms enable the consideration of lrGS for unsolved rare diseases.20 
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Herein we leveraged a large scale pediatric genomic medicine program with real-time return of results 
to explore automation of variant prioritization and expert clinical interpretation, as well as the re-testing 
of prior negative exomes at a scale that has not been previously reported. The results from the analyses 
of over 1000 rare disease patients highlight the utility of systematic variant prioritization, identify 
variants in ‘blind spots” associated with current technologies, and underscore the imperative for 
improved sharing strategies of suggestive results across rare disease programs and cohorts.21 
 
 
MATERIALS and METHODS 
 
Detailed methods are described in the Supplementary text online. All analyses were completed on 
GRCh38.  
 
Cohort 
The case cohort described includes 1083 affected patients from 960 families, with a total of 2,957 
sequenced individuals collectively (detailed in Supplementary Tables S1 and S2). Cases included 595 
males and 488 females, ages 1 to 55 years old (older individuals were typically ascertained as follow-up 
from affected child). Of these, 158 (14.6%) were singletons whereas the remaining 955 had at least one 
additional family member sequenced. Patients were referred from 22 different specialties, with the 
largest proportion nominated by Clinical Genetics (47.7%), followed by Neurology (22.9%). Given the 
broad referral pool, we acknowledge limitations in the ethnic diversity of this population that may 
reflect systemic healthcare issues; these will be addressed directly in future studies. A continuum of 
pediatric conditions is represented, ranging from congenital anomalies to more subtle neurological and 
neurobehavioral clinical presentations later in childhood. Of the 1083 patients, 125 entered the study 
with a known genetic diagnosis, as the program is building an inclusive rare disease genome resource 
with solved cases serving to benchmark new methods and processes. Phenotypes were manually 
extracted from the medical records and primary features recorded in PhenoTips utilizing HPO 
terminology.13,22 These structured data were used for automated prioritization tools, whereas expert 
review used the complete clinical notes for variant prioritization and interpretation. 
 
Short-read exome and genome sequencing (ES/srGS) 
Exome libraries were prepared according to manufacturer’s standard protocols using the Illumina 
TruSeq PCR-Free library preparation kit (Illumina, San Diego, CA) with 10 cycles of PCR, followed by 
enrichment with the IDT xGen Exome Research Panel v2, with additional spike-in oligos (Integrated DNA 
Technologies, Coralville, IA) to capture the mitochondrial genome and dispersed genomic regions for 
CNV detection.23 PCR-Free genome libraries were prepared according to manufacturer’s standard 
protocols for Illumina TruSeq library preparation. 
 
MGI sequencing (srGS) 
Genome sequencing libraries were constructed using the MGIEasy Universal DNA Library Prep Set (MGI, 
Shenzhen, Guangdong, China) according to manufacturer’s standard protocols. srGS was performed on 
an MGI DNBSEQ-G400. 
 
PacBio HiFi long-read sequencing (HiFi-GS) and analysis 
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DNA was sheared to a target size of 14 kb using the Diagenode Megaruptor3 (Diagenode, Liege, 
Belgium).  SMRTbell libraries were prepared with the SMRTbell Express Template Prep Kit 2.0 (100-938-
900, Pacific Biosciences, Menlo Park, CA) following the manufacturer's standard protocol (101-693-800) 
with modifications described in the Supplementary methods. Libraries were sequenced on the Sequel IIe 
Systems using the Sequel II Binding Kit 2.0 (101-842-900) or 2.2 (102-089-000) and Sequel II Sequencing 
Kit 2.0 (101-820-200) with 30 hr movies/SMRT cell. 175 samples were sequenced to a target of >25X 
coverage; 297 samples were sequenced on 1 SMRT Cell (average: 10X coverage). 
  
Read mapping, variant calling, and genome assembly were performed using a Snakemake workflow.  
HiFi reads were mapped with pbmm2 v1.4.0 and structural variants were called with pbsv 2.4.0  Small 
variants were called with DeepVariant 1.0 following DeepVariant best practices for PacBio reads. 23 De 
novo assembly was performed with hifiasm v0.9-r289 using default parameters.24  
 
Structural variant call sets were compared using svpack match which considers two SV calls to match 
when the variants are of the same type (considering INS and DUP to be the same), nearby (start position 
difference ≤ 100 bp), and similar size (size difference ≤ 100 bp). To systematically evaluate expansions at 
known pathogenic tandem repeat loci, tandem-genotypes was used to count the length of tandem 
repeats in HiFi reads for each sample.25 As long [GA]-rich repeats have been noted to have lower 
coverage in HiFi reads, a complementary system was setup to identify haplotypes with coverage 
dropouts at the known pathogenic tandem repeat loci.26 At each locus, the number of reads that span 
the repeat region were counted per haplotype (based on a Whatshap-haplotagged BAM from phased 
SNVs).27 A coverage dropout was identified as a locus with fewer than 2 spanning reads in a haplotype. 
 
Joint calling of structural and small variants was also completed for HiFi-GS. A multi-sample structural 
variant callset was produced by merging single-sample pbsv callsets with JASMINE v1.1.4.28 A multi-
sample small variant callset was produced by running GLnexus v1.2.7 on all single-sample DeepVariant 
gVCF files using glnexus_cli --config DeepVariant_unfiltered and converting the resulting BCF to VCF with 
bcftools view v1.10.29 
 
Analyses and variant prioritization pipeline 
Figure 1 depicts an overview of the sequence processing, variant calling and interpretation pipeline. Re-
analysis was carried out using ES/srGS data in parallel. Exomiser v12.1 (data version 2102) and AMELIE 
v3.1.0 were applied for variant prioritization and highly ranked variants were manually reviewed and 
flagged for expert interpretation.30,31 An additional sequencing platform using srGS was tested in a 
subset of trios (MGI), whereas long-read HiFi-GS (PacBio) was predominantly deployed for cases without 
diagnosis after srGS. Finally, an early phase of the study employed 10X-linked read GS, predominantly in 
singleton cases (see Supplementary methods). Supplementary Tables S3 summarizes the different types 
of data generated for the cohort. 
 
Annotation of structural variants (SVs) for disease relevance utilized both frequency (MAF <1%) in a 
sequence modality specific, local, SV warehouse, and focused on overlap with OMIM morbid genes, 
followed by manual curation to interpret the validity of candidate SV calls, as well as relevance in 
context of the phenotype/known transmission of disease at locus. 
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Clinical validation of research results 
Variants identified through research sequencing were reviewed according to ACMG criteria; pathogenic 
and likely pathogenic variants related to the disease phenotype were confirmed in the Children’s Mercy 
CLIA-certified laboratory through best applicable validated methods and reported clinically in real-time 
for incorporation into clinical management.32 
 
 
RESULTS 
 
Machine-assisted interpretation 
A combination of two publicly available tools was implemented to aid with variant prioritization: 
Exomiser and AMELIE.30,31 Both tools (E/A) rely on structured phenotyping (with HPO terms) but apply 
algorithms that explore different features of variants/genes (see Supplementary methods). Therefore, 
we hypothesized that the combination would improve speed and accuracy of analysis. To test the 
efficacy of these tools, we first reviewed the combined top 50 ranked E/A candidate variant list for cases 
with known molecular diagnoses at study entry (n=125), with knowledge of the phenotype of each 
proband but blinded to the original genetic results. Of these, 88 had diagnostic SNVs serving as a 
positive control set (other known diagnoses included aneuploidies, microdeletions/duplications, repeat 
expansions, or special cases such as SMN1/2 variants not in the scope of exome or genome 
interpretation provided here, and described in Figure 2a as “other mechanism”). The causative variant 
was ranked by E/A in 84 (95.5%) of “positive control” cases. Three of the four cases for which the 
diagnostic variant was not ranked had deep intronic pathogenic variants, a recognized limitation of E/A 
prioritization; therefore, only one diagnostic coding variant was missed in this subset of cases. 
 
Expanding the strategy to the entire dataset and comparing with expert review where variants were 
prioritized based on multiple criteria (zygosity, segregation, population frequency, gene function, etc.) 
as we previously described, variant prioritization was concordant in ~49.8% of 1083 cases (Figure 2a), 
meaning that the top variants selected from the combined E/A files were consistent with those 
identified by expert review (score distribution is illustrated in Figure 2b).33 No strong E/A candidates 
were identified in ~8.4% of cases which were positive for a variant that would not have been annotated 
by these tools (such as copy number variants, deep intronic variants, structural variants, repeat 
expansions, etc). Moreover, ~30.6% of cases were deemed negative by both expert analysis and 
combined E/A ranking, giving us an overall consistency of ~88.7% (see Figure 2a). Importantly, in ~3.4% 
of cases (n=37), these tools pointed us towards new candidates that may not have otherwise been 
considered.  
 
Diagnostic yields stratified by earlier testing history 
Of the 958/1083 patients (88.5%) that entered the study without a prior diagnosis, the largest group 
consisted of patients with an earlier negative genetic testing history (584/958), either by ES, srGS or 
panel testing. New ES and sr/lrGS with (re)analysis yielded definitive diagnoses for 64/584 cases (11%). A 
smaller group of patients, referred to the research study and to clinical ES in parallel, achieved a 
diagnostic rate of 71/206 cases (34.5%), and among patients that had no clinical genetic testing 
approved/ordered, the diagnostic rate was 34/168 (20.2%). Various modes of re-interpretation success 
are exemplified in Table 1 (and illustrated in Supplementary Figures S1-S8). We note that 8/64 of 
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previously tested but negative cases were diagnosed by analyses of GS when ES analyses were negative, 
suggesting that among cohorts of ES tested patients the contribution of GS can be >10% of achievable 
diagnoses. Most stem from SVs with intronic breakpoints. Among previously untested patients, GS was 
required to solve pathogenic variation not detected by ES in 5/90 of diagnostic cases (6%) due to 
intronic variation, small deletions difficult to detect with ES, repeats expansion disorders, and disease 
associated non-coding RNAs not covered in the exome capture.  
 
Impact of GS platforms 
GS contributed 6-13% of diagnoses (see above). The different platforms assessed in our study exhibited 
distinct characteristics that can contribute to individual variant types and overall potential for 
augmentation of ES. We examined three srGS platforms: 10X Linked sequencing (10X Genomics, n=587 
total/542 patients), DNA NanoBall seq (MGI, n=180 total/74 patients) and PCR-free srGS (Illumina, 
n=1660 total/683 patients), along with a subset of samples assessed by HiFi-GS (PacBio, n=472 total/274 
patients). The 10X Linked read sequencing exhibited inconsistent coverage across the genome, which 
resulted in suboptimal variant sensitivity (97.8% mean sensitivity), and we discontinued the method in 
favor of the other GS platforms which performed similarly (>98.3% sensitivity >98.8% specificity) against 
Infinium Global Screening microarray genotypes (Supplementary Figure S9). Considering the moderate 
increase in diagnostic yield with srGS, long-read genome sequencing utilizing PacBio HiFi reads was 
systematically deployed, allowing for a thorough comparison of HiFi-GS to srGS with a particular focus 
on the potential for rare disease variant discovery. Direct comparison of overall SNV calls and SV calls 
indicated an approximately 5% increase in SNV called from high coverage lrGS (25x HiFi WGS) vs. srGS 
(35x Illumina WGS), with a much more dramatic impact on SV detection with nearly double the 
discovery rate with lrGS (Supplementary Table S4).  
 
To gauge the impact on potential rare disease SNV alleles, we compared a subset of probands (n=102) 
with both srWGS and HiFi-GS, focusing on rare coding variants. On average there were 476 coding 
variants per proband genome, of which 14% were unique to HiFi-GS, in contrast to 6% unique rare 
coding variants in srGS. Of these variants, transmission (variant detected in parent) supported nearly all 
(98%) variants observed by both srGS and HiFi-GS, whereas 40% of HiFi-GS specific variants appeared 
transmitted and 20% of srGS specific variants showed evidence of transmission. Extrapolating true 
positive rates per genome and per technology based on transmission suggests that on average lrGS 
exclusively detects 31 coding variants and srGS six coding variants per genome (Supplementary Table 
S5). More striking differences are observed for family-transmitted rare SVs (MAF <1%) generated at our 
center in either srGS or HiFi-GS data and not seen in publicly available reference data including DGV for 
srGS, HPRC HiFi-GS, or variants published from ONT-lrGS by Decode for lrGS.19,34,35 On average, 70 rare 
transmitted SVs are observed in srGS data and >300 for HiFi-GS: a greater than four-fold difference. The 
discovery advantage for HiFi-GS also applies for transmitted rare coding SVs (Table 2). Similarly to earlier 
reports, the rate of de novo SVs is low and only two (non-coding) examples were found in manual 
curation of eight high coverage HiFi-GS trios (Supplementary Table S6).36 
 
Enabling rare disease allele discovery by HiFi-GS 
One tangible consequence of higher discovery rate of variant detection by HiFi-GS was the detection of 
4,369,149 recurrent (observed in at least 2 unrelated individuals) SNVs not reported in gnomAD, as well 
as 115,595 recurrent SVs detected in our aggregated HiFi-GS resource (30,707 not seen in any previously 
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published dataset).37 These findings serve as a reminder that publicly available datasets remain highly 
incomplete. To enable new rare disease discovery efforts by HiFi-GS, we are sharing these recurrent 
variants and their frequencies derived from >1,000 alleles of HiFi-GS data 
(https://github.com/ChildrensMercyResearchInstitute/GA4K). As anticipated, the recurrent variants 
detected in HiFi-GS were biased to regions with poor srGS resolution (e.g. segmental duplications and 
satellite repeats), but recurrent SVs not in DGV were widely dispersed across genic regions, and >800 
OMIM loci also showed higher than GENCODE average rate of HiFi-GS specific SNVs (Supplementary 
Tables S7, S8). 
 
The current diagnostic evaluation for rare disease relies on a multitude of genome-wide tests (ES, GS, 
microarray, chromosomes) as well as specialized directed tests (for repeat expansions, methylation 
defects, etc). We explored the potential for HiFi-GS to consolidate some of this testing and therefore 
reduce costs in the diagnostic odyssey for each proband. Developing a toolkit for HiFi-GS in rare disease 
included the accommodation of specific queries for known repeat expansion loci (Supplementary Table 
S9). Among our cohort, where each sample had a minimum 8x HiFi-GS coverage across 51 loci, we 
identified three pathogenic events (one FMR1, not shown, and two STARD7 expansions, illustrated in 
Figure 3a-c). Additionally, while not specifically explored, there are known disease genes among the loci 
with an excess of “non-gnomad” variation (see above) such as OTOA and STRC which are challenging to 
test due to known pseudogenes/duplications (Supplementary Table S7). We note that the current 
alignment/variant calling pipeline for HiFi-GS also generates phased haplotypes, that allow detection of 
compound heterozygotes even in the case of singletons (Figure 3d-g), with an average phase block of 
400kb (Supplementary Figure S10). Finally, the combination of SV calls and personal assemblies allowed 
the identification of HiFi-GS signatures for large CNVs clinically detected by microarray (Supplementary 
Table S10). Further, the implementation of personal assembly data can add basepair-level resolution for 
complex rearrangements interpreted as “balanced” by cytogenetic assays due to resolution limitations 
(Supplementary Figure S11). 
 
New candidate genes following re-analysis across all data and variant prioritization 
The joint sequencing results and automated prioritization were reviewed by an expert analysist (genetic 
counsellor or clinical laboratory director) to identify a large fraction of patients (58%) with potential new 
disease genes. Compelling candidates were systematically submitted to GeneMatcher (GM).5 At the 
time of manuscript submission, 152 candidate genes were active in GM, 12 of which were identified in 
more than one unrelated family, and six of which were recently published or close to publication and 
therefore in transition from GUS to diagnostic. More than 36% of submitted GUS had more than 10 hits 
in GM, suggesting they are strong candidates. This underscores the imperative for data sharing and 
collaboration in rare disease research and diagnosis. 
 
Individual data sharing to enhance variant and gene discovery  
Uniform research consents permit sharing of sequences and structured phenotypic data with other rare 
disease investigators to enhance gene matching beyond the variation submitted to GeneMatcher. Raw 
data submitted to dbGAP (phs002206.v2.p1) will allow for joint calling with other available rare disease 
datasets. Access to processed data for rare variants, de-identified pedigrees and coded phenotypes will 
be available to registered users through a cloud-hosted PhenoTips web UI: https://phenotips-
ga4k.cmh.edu (access inquiries for investigators GA4k@cmh.edu) (Supplementary Figure S12).24 This 
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web UI provides a simple interface for users to review participant data, identify cohorts of participants 
based on phenotypic or genotypic attributes, and review rare variants in the context of a specific 
phenotype. Furthermore, this interface will continue to be dynamically synchronized with the GA4K 
program, and already included >1000 additional cases in various stages of ongoing analyses at the time 
of manuscript submission, for a total of 5922 individuals across 2537 families and processed variants for 
2069 patients.  
 
 
DISCUSSION 
 
We developed a comprehensive rare disease phenotype-genotype data repository across a large 
pediatric healthcare system in the Genomic Answers for Kids program. Full access is provided to enable 
medical genomic testing, complete annotation for reanalysis, and use by contemporary research 
genomic tools. Using multiple sequencing methods and analytic approaches the first 1,083 patients 
evaluated serve as a roadmap to improve rare disease diagnostics, and as a catalog of case data for 
utility in biomedical discovery.  
 
We combined publicly available machine learning approaches Exomiser and AMELIE (“E/A”) for variant 
and disease gene prioritization at scale where the nominated candidate variant was ranked by E/A in 
539 (49.8%) cases, supporting the use of machine-learning tools as a first-pass, resource-saving analysis. 
Primarily retrospective studies suggested higher rates of relevant results, and we replicate similar 
success to these studies in our observed concordance among previously diagnosed cases.7,30,38 
Importantly, the vast majority of our patients were undiagnosed when entering the study. This allowed 
us to establish the utility of computationally assisted interpretation among prospective diverse rare 
disease patients, on a scale far beyond any previously assessed rare disease cohort.9,38 We also 
showcase patients having a strong candidate or diagnostic variant identified through machine-learning 
ranking (subsequently confirmed through expert review) that may not have otherwise been prioritized 
for further investigation due to combined supporting data being pulled by artificial intelligence from 
multiple sources and not easily digested by manual analysis in a timely manner, as expected in a clinical 
setting (i.e. not an obvious candidate that would arise from easily checked metrics such as gene 
constraint and protein function). This supports the utility of the approach, not only for diagnostic 
evaluation, but also as a systematic source for generating hypotheses on disease gene discovery. 
Importantly, prioritization is still biased given that it will inevitably rank genes that have more linked 
resources (be those clinical, functional, or otherwise) higher than poorly characterized genes, and 
therefore genetic prioritization independent of literature mining remains important for gene 
discovery.39 
 
We demonstrated there is diagnostic utility in ES re-analyses and/or repeat ES to improve coverage; 
however, more than 10% diagnoses we made in previously negative ES cases were solved with elevation 
to GS which, unlike most ES analyses, included systematic CNV calling. As expected, the utility of GS was 
lower in previously unassessed cases, however even in this group 1/20 diagnoses required GS. Similarly 
to previously unsolved cases, GS contributed primarily to the detection of SVs. Given known benefits of 
HiFi-GS in SV detection, we pursued HiFi-GS in unsolved rare diseases beyond earlier demonstration 
studies as routine streamlining of trios.19,20 Early results from HiFi-GS demonstrated the expected 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.07.21264628doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.07.21264628


   
 

  9 
 

improvement in detection rates for SVs, but also provided first glimpses of diagnostic variation currently 
only achievable by HiFi-GS such as the discovery of novel repeat expansions (including repeat size  and 
sequence composition), the solving of CNV breakpoints and orientation/localization, and the resolution 
of phase in the absence of parental samples. The potential for having full genome analyses by HiFi-GS 
was explored here as proof-of concept; further work will elaborate underexplored areas of HiFi-GS 
utility, such as personal assemblies, haplotype-phasing, and directed work on duplicated gene regions. 
In the meantime, our HiFi-GS variant catalogs extending across hundreds of individuals provide the first 
building blocks for using alternative GS methods in clinical settings and particularly for unsolved 
diseases. 
 
Finally, the majority of unsolved cases in our cohort do have candidate genes and variants but lack 
sufficient evidence to assign pathogenicity due to a lack of replication (also known as the “n of 1” 
problem), with hundreds of genes and variants currently followed through GeneMatcher. Greater data 
sharing is paramount for enhancing benefits to participants and advancing scientific progress, along with 
maximizing the utility of genomic data.40 Unfortunately, hesitancy towards extensive data sharing 
persists among investigators due to reasons that include the arduous processes required for data 
sharing, concerns about participant privacy, and fear for loss of priority in data publication.40,41 Our 
study follows regulations and considers recommendations for responsible sharing of pediatric genomic 
data to support the benefits of data sharing to research participants and patients while protecting 
privacy.40 
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FIGURE LEGENDS 

 

Figure 1. Genomic Answers for Kids (GA4K) pipeline. Overview of sequencing, variant calling and 
variant prioritization pipeline. Sequencing included exome sequencing as well as genome sequencing 
through multiple technologies (Illumina, MGI, and 10X for short-reads, and PacBio for long-reads). 
Standard quality control (QC) and filtering were applied. Variant prioritization relied on inheritance 
pattern and AI tools (Exomiser/Amelie) as well as tandem genotypes. 

 
Figure 2. Variant prioritization tools showed great concordance with expert analysis. (a) Distribution of 
Exomiser/Amelie (E/A) predictions for all 1083 patients. Prioritization was deemed concordant when the 
main candidate variant was concordant with expert review (“candidate consistent”), negative by both 
E/A and expert review (“Neg-consistent”), or when the causative variant was not an SNV and therefore 
not expected to be ranked by E/A (“Neg-other mechanism), totaling almost 89%. Prioritization was 
deemed non concordant when a different candidate variant was highly ranked (“Not consistent”) or 
when the top candidate was not ranked/very low ranked (“Missed”), totaling about 8%. Finally, 
approximately 3% had a new strong candidate variant prioritized by E/A that was missed by expert 
review.  (b) The distribution of E/A scores in shown for cases with known diagnosis at enrollment (“PD”) 
and new diagnosis (“ND”).  Exomiser scores range from 0 to 1, with 1 being the highest/best match. 
Amelie scores range from 0 to 100, with 100 being the highest/best match. Median is shown to illustrate 
the shift in mean due to a minority of missed rankings (when diagnostic variant was not ranked the 
lowest score was used). 
 
Figure 3. Examples of cases solved by HiFi-GS. 
Long read genome sequencing addresses challenges in srGS as exemplified by three cases. (a) HiFi-GS 
identified a novel pentamer expansion in STARD7, previously associated with Familial adult myoclonic 
epilepsy, 2 in an extended family. (b) Pedigree of family with STARD7 disease, case 192 had adult-onset 
dystonia, while case 160 and case 189 had childhood onset of disease, consistent with anticipation. (c) 
Repeat primed-PCR confirmed the expansion detected in the HiFi-GS in case 189, which was also 
detected by the tandem genotyping tool. The negative control had a normal repeat pattern. (d) Affected 
siblings case 110 and case 111 were found to be compound heterozygous for two pathogenic variants in 
AARS2, NM_020745.4: c.595C>T (p.Arg199Cys), maternally inherited, and a paternally inherited 
deletion, chr6:44306625-44310745 encompassing exons 5-7 of AARS2. (e) Clinical confirmation of the 
deletion using long read PCR detected the deletion (arrow) and normal allele in both siblings and 
unaffected father. (f) Clinical sanger confirmation of the maternally inherited c.595C>T (p.Arg199Cys) 
variant. (g) case 259 was clinically diagnosed with Niemann-Pick disease, but parents were unavailable 
for phasing. HiFi-GS confirmed the pathogenic variants were in trans, consistent with autosomal 
recessive disease. NPC1: c.3570_3573dupACTT (p.Ala1192Thrfs*67) (left)/ c.1947+5G>C (right). 
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Table 1. Example cases for which diagnosis was initially “missed” and subsequently solved through research analysis 
 

Case Phenotype  Previous clinical 
testing 

Previous 
result 

Research Test/ 
Analysis 

Diagnostic Finding (b38) Inheri-
tance 

Barrier Overcome by Research 
Methods  

New diagnosis upon reanalysis 
239/240 
[Fig S1] 

lipodystrophy microarray, ES neg 10X-linked 
read GS, srGS 

MFN2 (NM_014874.3): 
c.2119C>T (p.Arg707Trp) 
(homozygous)  

AR reanalysis revealed atypical disease 
presentation 

272 narrow chest, 
small stature, 
macrocephaly, 
tall forehead, 
high palate 

skeletal ciliopathies 
panel, ES 

HUWEI ES, srGS, 
scRNA 

HUWEI (NM_031407.5): 
c.647C>T (p.Thr216Ile);   
MAP3K7 (NM_145331.2): 
c.745C>T(p.Pro249Ser) 

de novo research uncovered second 
diagnosis, not reported by 
commercial laboratory 

453 
[Fig S2] 

congenital 
myotonic 
dystrophy 

CLCN1, DMPK, 
SCN4A seq & DMPK 
expansion  

neg ES, 10X-linked 
read GS, srGS 

SCN4A (NM_000334.4): 
c.4342C>T (p.Arg1448Cys)  

AD (nk) not reported by commercial clinical 
laboratory due to low coverage 
cutoff 

953/954 precocious 
puberty, 
epilepsy, DD 

brain malformation 
panel, ES 

neg ES, srGS, WGBS PTEN (NM_000314.4): 
c.269T>C (p.Phe90Ser) 

AD (pat) not reported by commercial clinical 
laboratory due to atypical 
phenotype 

Not detected in previous testing – technology and/or analysis limitations 
110/111 
[Fig 3 d-f] 

septo-optic 
dysplasia, 
hypotonia, 
strabismus, 
tremor, DD   

microarray, HESX1 
seq del/dup, ALSM1 
seq, neuro-muscular 
panel 

neg ES, srGS, HiFI-
GS, WGBS 

AARS2 (NM_020745.4): 
c.595C>T (p.Arg199Cys); 
6p21.1(44306618_4431069
9)x1  

AR deletion of exons 5-7 difficult to 
detect; AARS2 related disease 
reported after clinical testing was 
completed 

129 
[Fig S3 a-c] 

profound 
congenital 
hypotonia, 
motor deficits, 
cerebral visual 
impairment 

chromosomes, 
microarray, DMPK 
expansion, neuro-
muscular panel 

neg ES, srGS (blood 
and muscle) 

TBCK 
(ENST00000394708.2): 
c.1039C>T 
(p.Arg347Ter)/c.2060-
6793_2235+426del 
(p.Glu687Valfs*8) 

AR single exon deletion in setting of 
large intronic regions difficult to 
detect with ES 

189 
[Fig 3 a-c] 

global DD, 
dystonia 

microarray, exon 
array, ES 

neg ES, srGS, 
WGBS, HiFi-GS 

STARD7: triplet expansion  AD (pat) novel expansion disorder 

302 
[Fig S4] 

autoimmune 
hypothyroidism
, autoimmune 
neutropenia, 

microarray, ES SPECC1L ES, srGS, 
scRNA 

SPECC1L: 
(ENST00000314328.9): 
c.1900C>T (p.Arg634Ter) & 

AD (pat) & 
AR 

research uncovered second 
diagnosis, missed in clinical ES due 
to no coverage (non-coding RNA 
not covered on most ES) 
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immunodeficie
ncy (unknown 
type, low B 
cells) 

RNU4ATAC (NR_023343.1): 
n.37G>A/n.8C>T 

305 
[Fig S3 d-e] 

generalized 
hypotonia, 
global DD, 
infantile 
spasms 

microarray, ES VUS 10X-linked 
read GS, srGS 

TBCK 
(ENST00000394708.2): 
c.2060-6793_2235+426del 
(p.Glu687Valfs*8) 
homozygous 

AR single exon deletion in setting of 
large intronic regions difficult to 
detect with ES 

397/398 
[Fig S5] 

Becker 
muscular 
dystrophy 

microarray, ES neg RNAseq 
(outside 
research 
study) 

DMD 
(ENST00000357033.4): 
c.6290+3076A>G 
(p.Thr3055Serfs*1) 

XL (mat) deep intronic variant, required 
functional RNAseq on muscle 
biopsy to identify the creation of 
pseudo-exon 

451 
[Fig S6] 

multiple 
congenital 
anomalies (incl. 
severe heart 
malformations), 
slow growth, 
DD 

microarray 1.73 Mb dup 
1q21.1q21.2 

ES, 10X-linked 
read GS, srGS 

GATA4 (NM_002052.3): 
c.886G>A, p.Gly296Ser  

AD (mat) research uncovered a second 
unexpected, diagnosis by 
automated variant prioritization - 
clinically relevant 

678 
[Fig S7] 

lissencephaly lissencephaly panel neg 10X-linked 
read, HiFi-GS 

CEP85L 
(NM_001042475.2): c.3G>T 
(p.Met1?) 

AD (nk) novel gene not included in panel 
testing (and poor coverage of exon 
1 in 10X GS) 

791 
[Fig S8] 

hypotonia, 
persistent 
global DD, 
epilepsy 

microarray, ES AOH region 
6q15; HEXB 
carrier status 

srGS CACNA1A 
(NM_001127221.1) 
deletion exons 7-9 

AD (not 
mat) 

CNV analysis of ES analysis not 
completed clinically, though 
covering region, did not call 
deletion without manual 
inspection of coverage 

799 global DD, 
language 
delays, 
hypotonia 

none n/a ES, srGS SHANK3 
(ENST00000262795.3) 
deletion exons 12-25 

AD (not 
mat) 

Intronic Breakpoints detected by 
GS, CNV analysis not completed by 
ES 

 
AD = autosomal dominant; AR = autosomal recessive; DD = developmental delay; dup = duplication; ES = exome sequencing; GS = genome sequencing; mat = maternally 
inherited; neg = negative; nk = inheritance not known; pat = paternally inherited; scRNA = single-cell RNA expression analysis; seq = sequencing; sr = short read; WGBS = whole-
genome bisulfite sequencing; XL = X-linked  
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Table 2. Structural variation 
 Average proband counts - Illumina/MGI srGS (49 trios), >30x Coverage 
 TOT BND CNV DEL DUP INS INV 

All 11036 2046  4299 393 4299  
Rare 260 98  43 10 108  
Family-validated 9127 1537  3876 339 3375  
Rare family-validated 69 24  19 4 22  
Rare family-validated coding 20 6  6 1 7  

 

 

Average proband counts – PacBio HiFi-GS (81 trios) > 25x (proband) >10x 
(parents) 

 TOT BND CNV DEL DUP INS INV 
All 22013 52 5 9104 412 12354 86 
Rare 398 4 1 160 15 217 2 
Family-validated 21114 45 5 8768 390 11824 81 
Rare family-validated 332 3 1 136 12 179 2 
Rare family-validated coding 119 1 0 46 4 67 1 
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Figure 3
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