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Abstract 

Background: The effective reproduction number, tR , is a tool to track and understand epidemic 

dynamics. This investigation of tR  estimations was conducted to guide the national COVID-19 

response in Qatar, from the onset of the epidemic until August 18, 2021.  

Methods: Real-time “empirical” Empirical

tR  was estimated using five methods, including the 

Robert Koch Institute, Cislaghi, Systrom-Bettencourt and Ribeiro, Wallinga and Teunis, and 

Cori et al. methods. tR  was also estimated using a transmission dynamics model ( Model based

tR − ). 

Uncertainty and sensitivity analyses were conducted. Agreements between different tR  estimates 

were assessed by calculating correlation coefficients.  

Results: Empirical

tR  captured the evolution of the epidemic through three waves, public health 

response landmarks, effects of major social events, transient fluctuations coinciding with 

significant clusters of infection, and introduction and expansion of the B.1.1.7 variant. The 

various estimation methods produced consistent and overall comparable Empirical

tR  estimates with 

generally large correlation coefficients. The Wallinga and Teunis method was the fastest at 

detecting changes in epidemic dynamics. Empirical

tR  estimates were consistent whether using time 

series of symptomatic PCR-confirmed cases, all PCR-confirmed cases, acute-care hospital 

admissions, or ICU-care hospital admissions, to proxy trends in true infection incidence. 

Model based

tR −  correlated strongly with Empirical

tR  and provided an average Empirical

tR .    
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Conclusions: tR  estimations were robust and generated consistent results regardless of the data 

source or the method of estimation. Findings affirmed an influential role for tR  estimations in 

guiding national responses to the COVID-19 pandemic, even in resource-limited settings.  

Keywords: SARS-CoV-2; COVID-19; effective reproduction number; mathematical modeling; 

epidemiology.  
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INTRODUCTION 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is the most 

serious global health challenge in recent history [1,2]. Coronavirus Disease 2019 (COVID-19) 

morbidity and mortality has imposed unparalleled burdens on healthcare systems worldwide, and 

necessitated unprecedented restrictions on mobility and on social and economic activities [3,4]. 

Tracking and monitoring each wave of infection have become essential to avoid the adverse 

consequences of infection transmission [5-8]. With such serious consequences to the healthcare 

system, economy, and society, decisions regarding the escalation or easing of restrictions have 

become a critical facet of policymaking since the discovery of the virus in December of 2019 

[6,9,10]. 

The effective reproduction number ( tR ), the average number of secondary infections each 

infection is generating at a given point in time [6,11-13], has proven to be one of the most 

influential tools in monitoring and tracking the epidemic, and informing the escalation and 

easing of restrictions [6,11-13]. In the present study, we report on the use of tR  in Qatar, to 

understand epidemic dynamics and to establish national policy decisions and public heath 

interventions, in what has become a successful country experience. 

Qatar is a peninsula in the Arabian Gulf with a diverse population of 2.8 million people [5,14] 

that has been affected by three SARS-CoV-2 epidemic waves [5,6,15-19]. The first wave started 

with the introduction of the virus in February of 2020 and peaked in late May 2020 [5,6]. The 

second wave started in mid-January, 2021, and was triggered by the introduction and expansion 

of the B.1.1.7 (Alpha [20]) variant [15-19,21]. This wave peaked in the first week of March, but 

was followed immediately by a third wave that was triggered by introduction and rapid 
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expansion of the B.1.351 (Beta [20]) variant, which started in mid-March and peaked in mid-

April, 2021 [15-19,21]. 

Two forms of tR  estimation have been used in Qatar to inform the national COVID-19 response, 

and each proved to have its own intrinsic public health value. The first is the real-time 

“empirical” estimation which is done by calculating tR  directly from diagnosed cases. Different 

methods were explored for estimating the empirical tR  (henceforth, Empirical

tR ), and based on this 

exploration the Robert Koch Institute method [13,22] was used for feasibility, ease of use, and 

functionality. The second estimation method was model-based by calculating tR  using a 

population-level compartmental transmission dynamics model [6,23], hereafter designated as 

Model based

tR − . 

METHODS 

Data sources 

Analyses were conducted using the centralized, integrated, and standardized national SARS-

CoV-2 databases compiled at Hamad Medical Corporation (HMC), the main public healthcare 

provider and the nationally designated provider for all COVID-19 healthcare needs. These 

databases have captured all SARS-CoV-2-related data since the start of the epidemic, including 

all records of polymerase chain reaction (PCR) testing, antibody testing, COVID-19 

hospitalizations, vaccinations, infection severity classification per World Health Organization 

(WHO) guidelines [24], and COVID-19 deaths, also assessed per WHO guidelines [25]. 

Every PCR test conducted in Qatar, regardless of location (outpatient clinic, drive-thru, or 

hospital, etc.), is classified on the basis of symptoms and the reason for testing (clinical 
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symptoms, contact tracing, random testing campaigns, individual requests, healthcare routine 

testing, pre-travel, and at port of entry). PCR-confirmed infections are classified as 

“symptomatic” if testing was done because of clinical suspicion due to symptoms compatible 

with a respiratory tract infection.  

Classification of infections by variant type was informed by weekly rounds of viral genome 

sequencing and multiplex, real-time reverse-transcription PCR (RT-qPCR) variant screening [26] 

of randomly collected clinical samples [15-19], as well as by results of deep sequencing of 

wastewater samples [17]. Based on existing evidence [27-29] and confirmation with viral 

genome sequencing [21], a B.1.1.7 case was defined as an S-gene “target failure” using the 

TaqPath COVID-19 Combo Kits (Thermo Fisher Scientific, USA) [30]. This accounted for 

>85% of PCR testing in Qatar, applying the criterion of a PCR cycle threshold (Ct) value ≤30 for 

both the N and ORF1ab genes, and a negative outcome for the S gene [29]. This definition was 

used to derive the B.1.1.7 case series data that were used subsequently to derive Empirical

tR  for only 

the B.1.1.7 variant. 

Empirical estimation methods 

Five methods [13,31] were used to calculate Empirical

tR  from daily diagnosed cases. To minimize 

effects of bias due to variation in the PCR testing volume over time, Empirical

tR  was calculated 

using only the time series of cases diagnosed due to presence of clinical symptoms. Cases 

diagnosed through testing conducted for other reasons were not used in these analyses, except in 

a sensitivity analysis.  

Robert Koch Institute method 
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This method, which was chosen as the standard method for Empirical

tR  estimation in Qatar, utilizes 

the generation time (
G
 ), the time interval between the infection of an infector and an infectee in 

a transmission pair [13,22], to provide an estimate for Empirical

tR . Empirical

tR  is calculated as the sum 

of newly diagnosed cases during 
G
  consecutive days over the sum of previously diagnosed 

cases during the 
G
  preceding days [22]. 

G
  was assumed to be seven days, as informed by 

empirical evidence [32,33]. To smooth the curve and to avoid strong daily variations due to 

noise, Empirical

tR  was calculated as a three-day moving average.  

The range of uncertainty in the estimated Empirical

tR  due to sampling variation was derived by 

applying the binomial sampling distribution to the number of positive PCR tests out of all tests, 

day by day, and repeating this process 1,000 times.  

Four sensitivity analyses on the estimated Empirical

tR  were conducted. In the first sensitivity 

analysis, the time series of all diagnosed cases (regardless of reason for PCR testing) was used 

instead of the time series of only symptomatic cases. In the second and third sensitivity analyses, 

the time series of hospital admissions in acute-care beds and ICU-care beds was used to proxy 

the epidemic trend, instead of the time series of symptomatic cases. In the fourth sensitivity 

analysis, the generation time 
G
  was assumed to be 5, 7, and 10 days, instead of the fixed value 

of seven days [32,33].  

Cislaghi method 

This method utilizes the incubation time (
I

 ), the time interval between infection and symptom 

onset in an infected individual [33], to generate an estimate for Empirical

tR .  Empirical

tR  is calculated as 
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the number of newly diagnosed cases on day s over the number of newly diagnosed cases on day 

− Is   [34]. 
I

  was assumed to be five days [32,33]. To smooth the curve and to avoid strong 

daily variations due to noise, Empirical

tR  was calculated as a three-day moving average.  

Wallinga and Teunis method 

This method utilizes the serial interval (
S
 ), the time interval between symptom onset of an 

infector and that of an infectee [33], to generate an estimate for Empirical

tR . A likelihood-based 

estimate for Empirical

tR  is derived by using pairs of diagnosed cases and the probability distribution 

for 
S
  [35]. 

S
  was assumed to have a Weibull distribution with a mean of 5.19 days and a 

standard deviation of 1.39 days, as informed by a meta-analysis of available data for SARS-

CoV-2 infection [36]. 

Systrom-Bettencourt and Ribeiro method 

This method utilizes an approximate relationship between Empirical

tR  and the exponential growth of 

the epidemic, and assumes that Empirical

tR  evolves as a Gausian process to provide a Bayesian 

Empirical

tR  estimation [12,37-39]. A Gaussian filter was applied to account for daily variations 

(noise) in Empirical

tR  using a variance that was estimated by maximizing the log-likelihood of 

observing newly diagnosed cases [12,37-39]. 

Cori et al. method 

This method utilizes the infectivity profile (
S

 ) of an infected individual to generate an estimate 

for Empirical

tR  [31]. The average Empirical

tR  is estimated by the ratio of the number of newly 

diagnosed cases at time step t , to the sum of newly diagnosed cases up to time step 1t − , 
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weighted by 
S

 . The infectivity profile was approximated by the distribution of the serial 

interval [31]. Bayesian statistical inference based on a Poisson process was used to generate the 

posterior distribution of Empirical

tR , after assuming a gamma prior distribution for Empirical

tR  [31]. 

Model-based estimation method 

An age-structured deterministic mathematical model was developed to describe SARS-CoV-2 

transmission dynamics in the population of Qatar [6,23]. The model was developed as informed 

by other models [6,23,40-42], and has been used, expanded, and continuously refined since the 

onset of the epidemic. This model has been the reference model for policy decision-making in 

Qatar, for providing forecasts, investigating epidemiology, and assessing the impact of public 

health interventions [6,23].  

The model stratified the population into compartments according to age group (0-9, 10-19, 20-

29, …, ≥ 80 years), infection status (infected, uninfected), infection type (asymptomatic/mild, 

severe, and critical), COVID-19 disease type (severe or critical disease), and vaccination status 

(vaccinated, unvaccinated) using sets of coupled, nonlinear differential equations (Figure S1 in 

the Online Supplementary Document). 

The model was parameterized using current data for SARS-CoV-2 natural history and 

epidemiology [6,23]. It was fitted to the national standardized, integrated, and centralized 

databases of SARS-CoV-2 diagnosed cases, SARS-CoV-2 PCR and antibody testing, COVID-19 

hospitalizations, and COVID-19 mortality [6], as well as to data of a series of SARS-CoV-2 

epidemiological studies in Qatar [5,21,43-48]. The size and demographic structure of the 

population of Qatar were based on data from Qatar’s Planning and Statistics Authority [5,14,49].  
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Model based

tR −  was derived using this model and was expressed in terms of the social contact rate in 

the population, transmission probability of the infection per contact, duration of infectiousness, 

and proportion of the population that is still susceptible to the infection [6,23]. A detailed 

description of the model, its input data, and fitting are available in References [6,23]. The model 

was coded, fitted, and analyzed using MATLAB R2019a [50].   

Agreements between tR  estimates 

Agreements between different tR  estimates were assessed by calculating both the Pearson 

correlation coefficient, to assess the existence of a linear relationship, and also by calculating the 

Spearman correlation coefficient, to assess the existence of a monotonic (rank) relationship.   

Ethical approvals 

The study was approved by the Hamad Medical Corporation and Weill Cornell Medicine-Qatar 

Institutional Review Boards with waiver of informed consent. 

RESULTS 

The Empirical

tR  calculated using the Robert Koch Institute method captured effectively the 

evolution of the epidemic through its three waves, starting from the first wave (the wild-type 

variant wave) [5,6], the second (B.1.1.7) wave [15-19,21], and the third (B.1.135) wave [15-

19,21] (Figure 1A). It also captured and correlated with key response landmarks, such as partial 

lockdowns during the three waves and subsequent easing of public health restrictions, and major 

social events that led to transient increases in the social contact rate in the population. It further 

captured transient fluctuations that were associated with significant clusters of infection, 
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especially during low-incidence phases between August 1, 2020 and January 17, 2021, and 

between May 25, 2021 and August 18, 2021. 

The epidemic expansion of B.1.1.7 cases starting from January 18, 2021 was associated with a 

large and rapid increase in Empirical

tR  (Figure 1A), suggesting the higher infectiousness of this 

variant. Empirical

tR  calculated using only B.1.1.7 case series data is shown in Figure 1B and 

demonstrated higher values, confirming further the higher infectiousness of this variant. Empirical

tR  

for only the B.1.1.7 variant averaged 1.45 during the exponential growth phase of the second 

(B.1.1.7) wave (February 1-22, 2021). It was unstable during the first two weeks of this wave 

(January 18-31, 2021; not shown), as transmission appears to have been influenced by one or 

more superspreading events that were not representative of the average community transmission. 

It was also unstable after April 1, 2021, as the number of daily B.1.1.7 cases was too small.  

The first sensitivity analysis on the estimated Empirical

tR , in which the time series of all diagnosed 

cases was used instead of only symptomatic cases, showed overall excellent agreement 

regardless of the input-data source used to calculate Empirical

tR  (Figure 2A). The Pearson 

correlation coefficient was 0.914 (p-value<0.001) and the Spearman correlation coefficient was 

0.913 (p-value<0.001), both confirming the excellent agreement. There were only few noticeable 

differences that occurred when the number of diagnosed cases was too small (periods when 

SARS-CoV-2 incidence was low); thus, Empirical

tR  was more susceptible to transient variation in 

the number of diagnosed cases, such as due to sporadic, random PCR testing campaigns. Peaks 

in Empirical

tR  were also slightly larger using only symptomatic cases versus all diagnosed cases.   
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The second sensitivity analysis, in which the time series of acute-care hospital admissions was 

used to proxy the epidemic trend, instead of the time series of symptomatic cases, showed rather 

strong correlation between Empirical

tR  estimates (Figure 2B). The Pearson correlation coefficient 

was 0.512 (p-value<0.001) and the Spearman correlation coefficient was 0.716 (p-value<0.001), 

both confirming strong agreement. The third sensitivity analysis, in which the time series of 

ICU-care hospital admissions was used to proxy the epidemic trend, instead of the time series of 

symptomatic cases, also showed rather strong correlation between the Empirical

tR  estimates, but also 

large fluctuations in Empirical

tR  (Figure 2C). The Pearson correlation coefficient was 0.589 (p-

value<0.001) and the Spearman correlation coefficient was 0.550 (p-value<0.001), both 

confirming strong agreement, but inferior to that for acute-care hospital admissions (Figure 2B 

versus Figure 2C). 

The fourth sensitivity analysis, in which different values for the generation time 
G
  were used, 

showed also strong agreement between different Empirical

tR  estimates (Figure 2D). The Pearson 

correlation coefficient was 0.901 (p-value<0.001) and the Spearman correlation coefficient was 

0.900 (p-value<0.001), both confirming excellent agreement. The main differences between the 

estimates occurred in the timing and magnitude of peaks of the epidemic waves, as expected, 

since variation in generation time changes the rate of epidemic growth [51].  

Empirical

tR  estimated using the Robert Koch Institute method (Figure 3A), Cislaghi method (Figure 

3B), Systrom-Bettencourt and Ribeiro method (Figure 3C), Wallinga and Teunis method (Figure 

3D), and Cori et al. method (Figure 3E), all showed similar results and were able to capture the 

evolution of epidemic waves and transient variations due to national public-health response 
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landmarks and major social events. There were also overall strong correlations between them 

(Table 1 and Figure 4). However, the Systrom-Bettencourt and Ribeiro method (Figure 3C) 

tended to provide something of an average Empirical

tR  and was not as sensitive to transient changes 

in Empirical

tR  (Figures 3 and 4). 

There were differences in how rapidly each method detected a change in epidemic dynamics 

(Figure 4). The Wallinga and Teunis method was the fastest at detecting a change, while the 

Robert Koch Institute method was the slowest, leading to weaker Pearson and Spearman 

correlation coefficients between them (Table 1). For instance, the surge in Empirical

tR  during the 

first Eid al-Adha after epidemic onset (a festival that occurred between July 30 and August 6, 

2020 and is associated with celebrations and social gatherings) was detected on August 1, 

August 7, August 8, August 11, and August 13 using the Wallinga and Teunis, Cislaghi, 

Systrom-Bettencourt and Ribeiro, Cori et al., and Robert Koch Institute methods, respectively.  

Uncertainty intervals around the Empirical

tR  estimates of the various methods were narrow overall, 

except when the number of diagnosed symptomatic cases or the number of PCR tests was small, 

specifically during the low-incidence phases of the epidemic (Figure 3). Overall, the uncertainty 

in Empirical

tR  estimates did not impact the interpretation of the Empirical

tR  results (Figure 3). The only 

exception was for the Systrom-Bettencourt and Ribeiro method, as it showed rather wide 

uncertainty intervals compared to the point estimates for Empirical

tR  (Figure 3C). 

The Model based

tR −  correlated strongly with the Empirical

tR  using different methods (Table 1), and 

provided somewhat of an average of the Empirical

tR  (Figure 1). For example, Model based

tR −  and 

Empirical

tR  averaged 1.15 and 1.14 during the first wave, respectively. While it captured the three 
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epidemic waves, it could not capture the transient fluctuations in Empirical

tR , nor the effects of 

significant clusters during low-incidence phases. 

DISCUSSION 

Two forms of tR  estimation were used in Qatar to inform the national COVID-19 response, the 

“empirical” estimation, Empirical

tR , and the model-based estimation, Model based

tR − . Both forms proved 

useful in real-time tracking of epidemic trends, understanding epidemic dynamics, and setting 

interventions to control transmission, such as application or easing of public health restrictions. 

Both forms were integral to the national public health response and to formulating evidence-

based policy decisions to minimize the epidemic’s toll on health, society, and the economy 

throughout the phases of this epidemic. 

Empirical

tR  effectively captured the evolution of the epidemic during its three waves, the effects of 

the response landmarks, such as the partial lockdowns and easing of public health restrictions, 

and the major social events that affected the social contact rate in the population. Even transient 

fluctuations in infection transmission that occurred because of significant infection clusters were 

captured by Empirical

tR . Strikingly, the introduction and expansion of the B.1.1.7 variant [21], that 

resulted in the second epidemic wave, was discovered immediately through Empirical

tR  monitoring, 

as there was a sudden large, sustained increase in tR  that coincided precisely with a rapidly 

increasing number of S-gene “target failures” in PCR testing, even before viral genome 

sequencing was conducted to confirm the presence and expansion of this variant in the 

population [18]. 
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While Model based

tR −  provided an average tR  that closely tracked the average Empirical

tR , it did not 

have the resolution to capture transient changes in Empirical

tR , other than major changes associated 

with the three epidemic waves. Still, Model based

tR −  was useful and influential, as it was, along with 

the model that generated it [6,23], the basis for forecasting and future planning, such as 

forecasting the epidemic time-course and epidemic potential, forecasting healthcare needs of 

acute-care and ICU-care bed hospitalizations, predicting the impact of social and physical 

distancing restrictions, planning for easing of restrictions, and forecasting the impact of different 

mass vaccination strategies [6,23]. Therefore, both forms of tR  complement each other and 

should be part of any effective COVID-19 national response.  

Empirical

tR  estimation proved robust in sensitivity analyses conducted to assess its utility. Baseline 

estimation of Empirical

tR  was based on the time series of symptomatic cases as a proxy of the actual 

incidence of SARS-CoV-2 infection in the population, which is unknown. Using the time series 

of all diagnosed cases instead of just symptomatic cases did not appreciably impact Empirical

tR  

estimation, even though PCR testing volume and strategies varied throughout the epidemic. 

Using the time series of acute-care hospital admissions instead of the time series of symptomatic 

cases also led to comparable estimates for Empirical

tR . This was also the case, but with weaker 

agreement, when the time series of ICU-care hospital admissions was used to proxy trends in 

infection incidence. This is not surprising as there is a long delay between onset of infection and 

ICU-care hospital admission, and the number of ICU-care admissions was relatively small with 

the low COVID-19 severity in Qatar’s predominantly young and working-age population [5,48]. 

Variations in the assumed value for the generation time in the Empirical

tR  estimation did not heavily 
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impact estimates. These findings support the robustness of the approach employed to estimate 

Empirical

tR .   

Examination of different methods to estimate Empirical

tR  demonstrated consistency of the results, 

generally strong correlations between the estimates, and an acceptable level of uncertainty in 

them. The only exception was the Systrom-Bettencourt and Ribeiro method which tended to 

provide something of an average Empirical

tR . It was not as sensitive to transient changes in Empirical

tR , 

and had wide uncertainty intervals compared to the point estimates. There were also differences 

in how rapidly each method detected a change in epidemic dynamics. The Wallinga and Teunis 

method was the fastest to detect a change, while the Robert Koch Institute method was the 

slowest. Yet, overall, these findings support the robustness of using these methods in Empirical

tR  

estimation and to guide COVID-19 national responses.   

This study has limitations. The estimated Empirical

tR  and Model based

tR −  are contingent on the validity 

and generalizability of input data. The uncertainty/credible intervals estimated here accounted for 

the uncertainty arising from sampling variation, or from our imperfect knowledge of specific 

epidemiological quantities, such as the serial interval, but did not account for other sources of 

uncertainty, such as our imperfect knowledge of the true incidence of infection in the population. 

To reduce bias due to variation in volume and strategies of PCR testing over time, Empirical

tR  was 

calculated using the time series of symptomatic cases, but the distribution of the delay between 

onset of infection and onset of symptoms may bias these estimates. Model based

tR −  was estimated 

using a deterministic compartmental model, but this type of model may not be representative of 

stochastic transmission dynamics, particularly when the number of infections is small. Despite 
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these limitations, Empirical

tR  and Model based

tR −  were able to capture the evolution of the epidemic 

through its several waves, and to effectively inform the national response and policy decision-

making. 

CONCLUSIONS 

tR  estimations played a critical and influential role in the COVID-19 national response in Qatar. 

Even though surveillance data of SARS-CoV-2 infection are imperfect and prone to bias, tR  

estimations were robust and generated consistent results regardless of the data source used, or the 

method employed in generating estimates. These findings affirm the value and complementarity 

of using both Empirical

tR  and Model based

tR −  to track the epidemic in real-time and to inform public 

health decision making at a national level. This can also be done despite low-resource demands, 

as tR  estimation utilizes existing surveillance data. Moreover, application of some of the 

estimation methods is feasible even without established expertise in infectious disease modeling. 

Since the choice of estimation method does not impact the estimates, each country may decide 

on the best approach, method, and source of data to be used in the estimation, weighing 

feasibility, ease of use, and functionality, given its specific circumstances.  
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Figure 1. Effective reproduction numbers Empirical

tR  and Model based

tR −  in Qatar. A) Trend in Empirical

tR  and Model based

tR − , April 1, 2020 to 

August 18, 2021, and association with major events, response landmarks, and introduction and expansion of the B.1.1.7 and B.1.135 

variants. B) Trend in Empirical

tR  for only the B.1.1.7 variant cases, February 1, 2021 to April 1, 2021. Empirical

tR  was estimated using the 

Robert Koch Institute method [22] applied to symptomatic case series data. The dashed green line represents the threshold of 0 1R = . 
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Figure 2: Sensitivity analyses of estimated Empirical

tR  using the Robert Koch Institute method. A) 

Sensitivity analysis using the time series of all diagnosed cases instead of only symptomatic 

cases in estimating Empirical

tR . B) Sensitivity analysis using the time series of hospital admissions 

in acute-care beds instead of symptomatic cases in estimating Empirical

tR . C) Sensitivity analysis 

using the time series of hospital admissions in ICU-care beds instead of symptomatic cases in 

estimating Empirical

tR . D) Sensitivity analysis using different values for the generation time in 

estimating Empirical

tR . The dashed green line represents the threshold of 0 1R = . 
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Figure 3: Trend in Empirical

tR  in Qatar, April 1, 2020 to August 18, 2021, using the A) Robert 

Koch Institute method [22], B) Cislaghi method [34], C) Systrom-Bettencourt and Ribeiro 

method [12,37-39], D) Wallinga and Teunis method [35], and E) Cori et al. method [31]. The 

figure includes the 95% uncertainty or credible interval, as applicable for each method. The 

dashed green line represents the threshold of 0 1R = . 
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Table 1. Correlations between Model based

tR −  and Empirical

tR  using the A) Robert Koch Institute method [22], B) Cislaghi method [34], C) 

Systrom-Bettencourt and Ribeiro method [12,37-39], D) Wallinga and Teunis method [35], and E) Cori et al. method [31]. 

 Model based

tR −
 Empirical

tR , Robert Koch 

Institute method  

Empirical

tR , Cislaghi 

method 

Empirical

tR , Systrom-

Bettencourt and Ribeiro 

method  

Empirical

tR , Wallinga 

and Teunis method 

Pearson correlation coefficient 
Empirical

tR , Robert Koch 

Institute method  

0.731 

(p-value<0.001) 

    

Empirical

tR , Cislaghi method  0.567 

(p-value<0.001) 

0.605 

(p-value<0.001) 

   

Empirical

tR , Systrom-Bettencourt 

and Ribeiro method  

0.785 

(p-value<0.001) 

0.852 

(p-value<0.001) 

0.718 

(p-value<0.001) 

  

Empirical

tR , Wallinga and Teunis 

method  

0.648 

(p-value<0.001) 

0.471 

(p-value<0.001) 

0.446 

(p-value<0.001) 

0.589 

(p-value<0.001) 

 

Empirical

tR ,  Cori et al. method  0.718 

(p-value<0.001) 

0.943 

(p-value<0.001) 

0.760 

(p-value<0.001) 

0.886 

(p-value<0.001) 

0.469 

(p-value<0.001) 
 

Spearman correlation coefficient 
Empirical

tR , Robert Koch 

Institute method  

0.684 

(p-value<0.001) 

    

Empirical

tR , Cislaghi method  0.540 

(p-value<0.001) 

0.597 

(p-value<0.001) 

   

Empirical

tR , Systrom-Bettencourt 

and Ribeiro method  

0.749 

(p-value<0.001) 

0.853 

(p-value<0.001) 

0.718 

(p-value<0.001) 

  

Empirical

tR , Wallinga and Teunis 

method  

0.635 

(p-value<0.001) 

0.492 

(p-value<0.001) 

0.421 

(p-value<0.001) 

0.608 

(p-value<0.001) 

 

Empirical

tR ,  Cori et al. method  0.677 

(p-value<0.001) 

0.946 

(p-value<0.001) 

0.745 

(p-value<0.001) 

0.880 

(p-value<0.001) 

0.473 

(p-value<0.001) 
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Figure 4: Pairwise comparison between Empirical

tR  estimated using the Robert Koch Institute 

method [22] and that estimated using the A) Cislaghi method [34], B) Systrom-Bettencourt and 

Ribeiro method [12,37-39], C) Wallinga and Teunis method [35], and D) Cori et al. method [31]. 

The dashed green line represents the threshold of 0 1R = . 
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Figure S1. A conceptual diagram illustrating the basic structure of the deterministic 

mathematical model developed to describe SARS-CoV-2 transmission dynamics in the 

population of Qatar. The detailed structure of this model and its description are found in [1,2]. In 

this figure, solid lines denote progression or forward movement from one population 

compartment to the next, while dashed lines denote backward movement from the present 

population compartment to the previous one.  
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