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Abstract 

Automated live embryo imaging has transformed in-vitro fertilization (IVF) into a data-

intensive field. Unlike clinicians who rank embryos from the same IVF cycle cohort based 

on the embryos visual quality and determine how many embryos to transfer based on 

clinical factors, machine learning solutions usually combine these steps by optimizing for 

implantation prediction and using the same model for ranking the embryos within a cohort. 

Here we establish that this strategy can lead to sub-optimal selection of embryos. We reveal 

that despite enhancing implantation prediction, inclusion of clinical properties hampers 

ranking. Moreover, we find that ambiguous labels of failed implantations, due to either low 

quality embryos or poor clinical factors, confound both the optimal ranking and even 

implantation prediction. To overcome these limitations, we propose conceptual and 

practical steps to enhance machine-learning driven IVF solutions. These consist of 

separating the optimizing of implantation from ranking by focusing on visual properties 

for ranking, and reducing label ambiguity. 
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Lay Summary 

Background: In vitro fertilization (IVF) is the process where a cohort of embryos are 

developed in a laboratory followed by selecting a few to transfer in the patient’s uterus. 

After approximately forty years of low-throughput, automated live embryo imaging has 

transformed IVF into a data-intensive field leading to the development of unbiased and 

automated methods that rely on machine learning for embryo assessment. These advances 

are now revolutionizing the field with recent retrospective papers demonstrating 

computational models comparable and even exceeding clinicians’ performance, startups 

and medical companies are securing significant funds and at advanced stages of regulatory 

approvals. Traditionally, embryo selection is performed by clinicians ranking cohort 

embryos based solely on their visual qualities to estimate implantation potential, and then 

using non-visual clinical properties that are common to all cohort embryos to decide how 

many embryos to transfer. Machine learning solutions usually combine these two steps by 

optimizing for implantation prediction and using the same model for ranking the embryos 

within a cohort under the implicit assumption that training to predict implantation potential 

also optimizes a solution to the problem of ranking embryos from a specific cohort.  

Results: In this multi-center retrospective study we analyzed over 48,000 live imaged 

embryos to provide evidence that the common machine-learning scheme of training a 

model to predict implantation and using the same model for embryo ranking is wrong. 

We made this point by explicitly decoupling the problems of embryo implantation 

prediction and ranking with a set of computational analyses. We demonstrated that: (1) 

Using clinical cohort-related information (oocyte age) improves embryo implantation 

prediction but deteriorates ranking, and that (2) The label ambiguity of the embryos that 

failed to implant (it is not known whether the embryo or the external factors were the 

reason for failure) deteriorates embryo ranking and even the ability to accurately predict 

implantation. Our study provides a quantitative mapping of the tradeoffs between data 

volume, label ambiguity and embryo quality. In a key result, we reveal that considering 

embryos that were excluded based on their poor visual appearance (called discarded 

embryos), although commonly thought as trivially discriminated from high quality 

embryos, enhances embryo ranking by reducing the ambiguity in their (negative) labels. 
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These results establish the benefit of harnessing the availability of extensive data and 

reliable labels in discarded embryos to improve embryo ranking and implantation 

prediction. 

Outlook: We make two practical recommendations for devising machine learning 

solutions to embryo selection that will open the door for future advancements by data 

scientists and IVF technology developers. Namely, training models for embryo ranking 

should: (1) focus exclusively on embryo intrinsic features. (2) include less ambiguous 

negative labels, such as discarded embryos. In the era of machine learning, these 

guidelines will shift back the traditional two-step process of optimizing embryo ranking 

and implantation prediction independently under the appropriate assumptions - an 

approach better reflecting the clinician’s decision that involves the evaluation of all the 

embryos in the context of its cohort. 
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Introduction 

One of the major challenges in achieving effective in vitro fertilization (IVF) is selecting 

the specific embryos for implantation from a cohort of "sibling" embryos from the same 

IVF cycle [1, 2]. The decision as to how many and which embryos to implant back to the 

uterus is driven by the goal of achieving the birth of exactly one healthy baby [3, 4]. Toward 

this goal, clinicians score the visual properties of the developing embryos, alongside non-

visual clinical parameters that are common to all the embryos from the same cohort, such 

as previous IVF outcomes, oocyte age and underweight/obesity to estimate the probability 

of a successful implantation and use these parameters to decide how many and which 

embryos to implant [2, 5, 6, 7, 8] (Fig. 1A). Traditionally, embryo grading and selection 

are subjectively performed in a two-step process where clinicians first rank cohort embryos 

based solely on their visual qualities, as a proxy for embryo implantation potential, and 

then use non-visual clinical properties as a proxy for the embryo-extrinsic factors involved 

in implantation, to decide how many embryos to transfer [9, 7]. Recent advances in 

automated imaging and computation have led to objective and systematic data-driven 

approaches for embryo evaluation, where machine learning models are trained to output a 

score that predicts implantation potential [10, 11, 12, 13, 14, 15, 16]. These scores are then 

used to rank the embryos in an IVF cycle cohort and assist the clinician in making decisions 

regarding which embryos should be transferred. This approach of first using massive 

datasets to train a classifier that predicts retrospective implantation outcomes, and then 

using its prediction to rank embryos for transfer is performed under the implicit premise 

that a model trained to predict implantation potential is suitable for ranking embryos from 

a specific cycle cohort. 

Here, we challenge this axiom. There is a general consensus that non-visual clinical 

properties contribute to the prediction of implantation outcomes [17, 18, 6, 14], but that 

such information is not relevant for ranking embryos in the context of a single IVF cycle 

cohort that share the same non-visual clinical properties. This implies that the optimization 

task solved through machine learning in practice is different from the actual decision made 

in the clinic. Moreover, while successful implantation inherently implies that an embryo is 

of high implantation quality, a failed implantation can be caused by a defective embryo or 

be related to poor maternal clinical factors (such as oocyte age, uterus cavity and receptivity 
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of the endometrium). This creates uncertainty in the ground truth labels of failed implanted 

embryos that may hamper the ability of machine learning models to generalize well during 

training. It is not clear whether using machine learning models trained with clinical 

information can hamper the selection of the most promising embryos for implantation, and 

what is the magnitude of the errors caused by the ambiguous labels of failed implantations. 

We hypothesized that predicting implantation is not the optimal machine learning strategy 

for solving the embryo-ranking problem because features derived from clinical information 

shared among embryos from the same cohort are not relevant for the ranking task and 

because ambiguous labels confound the optimal ranking. We confirmed this hypothesis by 

comprehensively assessing the contribution of visual embryo properties and clinical 

factors, and by evaluating several criteria for training data selection with less ambiguous 

labels. Finally, we quantified the extent of these non-optimal strategies and propose 

conceptual and practical setups to overcome these limitations by training and applying 

separate classifiers for the different tasks of predicting embryo implantation potential and 

ranking. 
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Results 

Decoupling embryo scoring and ranking using embryo morphology, 

morphokinetics and oocyte age 

One important application of machine learning in IVF clinics is the prediction of successful 

implantation. This task involves training a machine learning classifier using a large number 

of embryos that either succeeded (KID-positive, KID-P) or failed (KID-negative, KID-N) 

to implant back to the uterus (Methods). During classifier training, each embryo is 

represented by its visual properties and non-visual clinical properties that are provided 

together with the implantation outcome as the target label (Fig. 1A). The trained classifier 

receives as input new embryos and predicts a score corresponding to their implantation 

potential; i.e., the probability for successful implantation. The visual embryo properties 

include the appearance of the embryo (termed morphology) and the time it takes to reach 

predefined stages in development (termed morphokinetics). Oocyte age, which in this study 

is equivalent to the maternal age (see Methods) is the most studied non-visual clinical 

property correlating with implantation. Other non-visual clinical factors may 

include infertility causes, history of previous IVF treatments, uterus cavity, receptivity of 

the endometrium, or any other property that is shared across all the embryos from the same 

cohort and thus cannot be directly extracted from the specific embryo’s image. The 

embryo-specific visual properties reflect the intrinsic embryo's potential for implantation, 

whereas the cohort-specific non-visual clinical properties correspond to the embryo-

extrinsic parameters. Successful implantation is heavily dependent on both the embryo-

specific visual appearance and on the cohort-specific non-visual clinical factors. 

We sought to systematically assess the contribution of non-visual clinical properties to 

embryo implantation by comparing machine learning models that rely on visual embryo 

features with or without non-visual clinical properties. Our data were composed of time-

lapse videos collected from 4 clinics: 7904 IVF cycles that included 1314 KID-P and 6485 

KID-N for Train, and 380 KID-P and 637 KID-N for Test (Methods, Table S1). The non-

visual clinical property chosen was the oocyte age, shared among all embryos from the 

same IVF cycle cohort, and is probably the most common embryo-extrinsic property used 

for the embryo implantation prediction task [17]. First, we validated that the KID-P 
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embryos were associated with younger oocytes (Fig. 1B). Next, we preprocessed the 

images (Fig. S1) using the morphology-based deep learning classifier described in a 

companion paper and in the Methods (Fig. S2A). This classifier provides a continuous 

score reflecting the implantation score for each embryo over time with or without the 

oocyte age as additional input to the embryo image (Methods, Fig. S2C). As expected, the 

classifier that had access to oocyte age outperformed the classifier that relied on 

morphology alone over time (Fig. 1C). To further verify that the oocyte age contributes to 

visual properties we devised a new classifier that calculated a continuous implantation 

score from the embryo morphokinetic properties (Fig. S2B, Methods). The timing of a set 

of fifteen hallmark morphokinetic events were identified automatically by combining 

machine-learning and dynamic programming (Figs. S3-4). These morphokinetic features 

were used to train a deep learning classifier to predict the implantation potential of an 

embryo based on its developmental history (see Methods for full details). Including the 

oocyte age as an additional feature improved the morphokinetic performance over time 

(Fig. 1D). Although the morphology-based classifier was more accurate than the 

morphokinetic-based classifier, the inclusion of oocyte age flipped the classification 

performance in favor of the morphokinetic model (Fig. 1E). This result suggests that the 

residual contribution of oocyte age to morphokinetic features was greater than the 

contribution of oocyte age to morphological features in the context of the implantation 

classification task. Correlating the temporal derivative of the corresponding classifier pairs 

showed that the temporal trend of the classification performance was more similar between 

the classifier pair that was trained with morphological features (with and without the oocyte 

age) than the classifier trained with the morphokinetic features, thus providing further 

evidence that the common classification-related information between morphology features 

and oocyte age was higher than between morphokinetic features and oocyte age (Fig. 1F). 

Since oocyte age is common to all cohort embryos and thus irrelevant for the ranking task, 

the prediction of the higher performing classifier for the implantation potential is not 

necessarily aligned with the clinician's task of ranking "sibling" embryos originating from 

the same IVF cycle. Hence, although the classifier trained with both morphokinetic features 

and oocyte age outperformed the classifier trained with both morphological features and 

oocyte age (especially in early embryo development), embryo morphological features seem 
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more appropriate for the task of ranking high quality embryos. Thus, beyond providing a 

quantitative assessment of the contribution of oocyte age to implantation prediction, these 

results raise the possibility that clinical properties that are common across embryos from 

the same cohort contribute to the task of embryo scoring toward implantation but are not 

the optimal properties for the task of embryo ranking. 
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Figure 1: Decoupling embryo scoring and ranking using intrinsic and extrinsic features. (A) 

Embryo implantation potential relies on the embryo's visual and clinical properties. (B) 

Distribution of implanted (KID-P) versus non-implanted (KID-N) embryos according to oocyte 

age. The average oocyte age of the KID-P (KID-N) embryos was 32.82 (36.74) with a standard 

deviation of 4.93 (6.33). N KID-P = 1694, N KID-N = 7122. (C-D) Comparison of the 

implantation prediction performance (AUC) of models trained with or without the oocyte age 
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over time since fertilization. (C) Embryo morphological features (marked with an embryo image). 

(D) Embryo morphokinetic features (marked with “T”). (E) Comparing implantation prediction 

performance: the morphology-based classifier outperformed morphokinetic-based classifier but 

morphokinetic and oocyte age outperformed morphology and oocyte age. (F) Correlation 

between the temporal derivative of the morphology-based classification with and without oocyte 

age (Pearson correlation R = 0.43) versus correlation between the temporal derivative of the 

morphokinetic-based classification with and without oocyte age (Pearson correlation R = 0.27). 

 

Optimizing features for prediction of embryo implantation is not an 

optimal strategy for the task of embryo ranking 

Embryos in an IVF cycle are partitioned into three groups by the clinician based on their 

visual properties. These are composed of 1) transferred embryos - the most promising 

embryos for implantation (Video S1), 2) frozen embryos - other visually high-quality 

embryos that are kept for transfers in future IVF cycles and 3) discarded embryos - those 

selected to be excluded based on their poor visual appearance (Video S2-S4). Discarded 

embryos can be further partitioned into two subgroups: those that reached blastulation 

(termed blastocyst-discarded, Video S2) and those that did not reach blastulation (termed 

underdeveloped-discarded, Videos S3-4). These partitions define the expected ordered 

ranking of embryos based on their visual appearance (Fig. 2A). 

A basic expectation of an embryo-ranking model is to prioritize KID-P over discarded 

embryos. To assess the performance of models trained to predict implantation results (KID-

P versus KID-N) on the task of embryo ranking, we evaluated the average time to live birth 

(TTLB), the number of attempts for embryo transfer from an IVF cycle until a successful 

implantation was reached, where the transfer order was determined by the model’s ranking 

based on its classification score [19]. For example, a TTLB value of 2 implies a cohort 

where the KID-P was ranked second; i.e., one discarded embryo had a higher classification 

score (Fig. 2B). The analysis included embryo cohorts that contained a successful 

implantation (KID-P) and multiple discarded embryos. While it is widely believed that 

transferring a discarded embryo will result in a failed implantation, the implantation 

outcome for frozen embryos is not clear-cut; hence, they were not considered in this 

analysis. To avoid the bias of cohorts with different numbers of embryos we compared the 

average TTLB of sub-cohorts consisting of the same number of embryos sampled from the 

full cohorts (Methods). 
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Figure 2: Using oocyte age as feature for improving implantation prediction reduced the 

accuracy of ranking embryos from the same cohort. (A) Embryo visual evaluation: KID-P > KID-

N > Blastocyst-discarded > underdeveloped-discarded. KID-N and frozen embryos are not 

considered in embryo ranking evaluations because there is no clear distinction based on their 

visual properties. (B) Time To Live Birth (TTLB) for sub-cohorts of sibling embryos, as a 
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function of the number of embryos considered for each cohort. Each sibling sub-cohort consisted 

of one implanted embryo and multiple discarded embryos sampled from the full cohort. In the 

example here the number of embryos was 5 and the TTLB was 2 because the KID-P embryo was 

ranked second. (C-D) Morphology-based models (marked with an embryo image) with or without 

oocyte age. (C) Ranking KID-P and all discarded embryos. Number of cycles with n = 2-8 

embryos: 201, 180, 163, 141, 115, 93, 67. Corresponding Wilcoxon signed rank tests on the null 

hypothesis that the two ranking schemes were drawn from the same matched distribution: 

<0.0001, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, 0.005. (D) Ranking KID-P and 

blastocyst-discarded embryos. Number of cycles with n = 2-6 embryos: 145, 98, 54, 32, 13. 

Corresponding Wilcoxon signed-rank tests: <0.0001, <0.0001, <0.0001, 0.001, 0.074. (E-F) 

Morphokinetic-based models (marked with “T”) with or without oocyte age. Number of cycles 

according to panels C-D respectively. (E) Ranking KID-P and all discarded embryos. Wilcoxon 

signed-rank tests: 0.001, 0.001, 0.001, 0.001, 0.004, 0.004, 0.039. (F) Ranking KID-P and 

blastocyst-discarded embryos. Wilcoxon signed-rank tests: 0.004, 0.004, 0.071, 0.157, 0.655. 

 

Oocyte age contributed to improved implantation prediction (Fig. 1C-D) but this 

information is not relevant for ranking embryos from the same cohort that share the same 

oocyte age. To test the hypothesis that optimizing features for the KID-P versus KID-N 

classification task can deteriorate ranking accuracy, we compared the performance of two 

classifiers that were trained with morphological features with or without the oocyte age. 

We first ranked sub-cohorts of one KID-P and multiple discarded embryos (Methods). The 

average TTLB was at most 1.25 and the inclusion of oocyte age led to less efficient (i.e., 

higher TTLB) ranking, that required on average 1.7 attempts to achieve successful 

implantation (Fig. 2C). The same less efficient ranking with oocyte age was observed for 

sub-cohorts with one KID-P and multiple blastocyst-discarded embryos (Fig. 2D). As 

expected, ranking with blastocyst-discarded embryos constituted a more challenging task 

because the visual defects are less obvious with respect to embryos that did not reach 

blastulation. Similar trends were obtained for morphokinetic features with or without 

oocyte age (Fig. 2E-F). Altogether, these results suggest that selecting features to optimize 

implantation prediction is not the optimal strategy for embryo ranking, specifically when 

these features are clinical properties that are common to all embryos in a cohort. 
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KID-N embryos are not the ideal negative labels for the task of embryo 

ranking 

After demonstrating that the features selected for their performance at implantation 

prediction were not optimal for embryo ranking we asked how different training data would 

affect the models’ performance when discriminating high quality from poor quality 

embryos. We defined a set of classification tasks that consisted of discriminating KID-P 

embryos from different subsets of discarded and/or unsuccessful implanted embryos. First, 

discriminating KID-P from all discarded embryos (Fig. 3A). This is an easy classification 

task because discarded embryos are characterized by evident visual defects. The second 

classification task involved discriminating KID-P from blastocyst-discarded embryos (Fig. 

3B). The third involved discriminating KID-P from a subset that included both the KID-N 

as well as the discarded embryos (Fig. 3C). This latter setting is the one most similar to the 

true embryo ranking tasks in the clinic. For each of these embryo subsets we trained six 

morphology-based classifiers (Table S2) and their classification performance was 

compared on different classification tasks (Table S3, Fig. 3A-C).  

Classifiers trained to predict implantation (KID-P versus KID-N) were less accurate than 

the classifiers that were trained with discarded embryos on all tasks (Fig. 3A-C). Inclusion 

of the oocyte age deteriorated the performance to the levels of the classifiers that were 

trained to predict implantation (Fig. 3A-C). Direct evaluation of time to live birth 

established that models trained to predict embryo implantation were not necessarily 

optimal for the task of embryo ranking (Fig. 3D-E).  

The KID-P versus KID-N labeled training data was severely limited in size because only a 

small subset of all embryos were selected for transfer and thus discarded embryos 

constitute the vast majority of embryos in IVF clinic in our study (Table S1) and in general 

[13, 20]. To assess the contribution of the extended volume of training data we limited the 

amount of negative labeled training data across the different categories of discarded 

embryos to align with the number of KID-N embryos (Table S2) and demonstrated that 

classifiers trained with discarded embryos outperformed the classifier trained to predict 

implantation even without extra training data (Fig. 3A-E, compare orange and green versus 

red). Additional training data further enhanced the classifiers’ performance (Fig. S5). 
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Similar results were obtained when using morphokinetic features (Figs. S6-7). Altogether, 

these results suggest that the elementary requirement of distinguishing poor from high 

quality embryos broke more frequently in the KID-P/KID-N trained classifiers, suggesting 

that KID-P/KID-N are not the optimal training data for the task of embryo ranking. 
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Figure 3: KID-N embryos are not the ideal negative label for solving the task of embryo ranking. 

(A-C) Prediction accuracy (AUC) over time since fertilization (higher scores reflect better 

performance). (D-E) Time To Live Birth (TTLB) for cohorts of sibling embryos, as a function of 

the number of embryos in each cohort (lower scores reflect better performance). Each siblings 

sub-cohort consisted of one implanted embryo and multiple discarded embryos from the same 

cohort. Number of cycles corresponding to those reported in Fig. 2. (A-E) All models were 

trained with morphological features. (A) KID-P versus discarded. (B) KID-P versus blastocyst-

discarded. (C) KID-P versus KID-N and discarded. (D) Ranking KID-P and all discarded 

embryos. (E) Ranking KID-P and blastocyst-discarded embryos. 

 

Tradeoffs between training labels ambiguity and specificity in 

predicting implantation and ranking 

In the clinic, embryo ranking within an IVF cycle is exclusively determined by assessing 

the embryos’ visual properties. In contrast, in the machine-learning solution, visual embryo 

properties only provide partial information in the context of implantation prediction. Failed 

implantations can be caused either by defected embryos or by embryo-extrinsic maternal 

clinical properties leading to non-receptive endometrium. This limitation translated to 

ambiguous (noisy) KID-N labels that can mislead the classifier during model training. The 

confidence in discarded embryos labels, in the context of successful or failed implantation 

is high because the criterion of being discarded is inherently visual and thus is not/less 

affected by external factors. 

To assess the contribution of training data volume and confidence in labels we turned again 

to the task of predicting implantation. We found that including the discarded embryos as 

negative labels in addition to KID-N during training, enhanced the classifier's performance 

in the KID-P versus KID-N classification task (Fig. 4A). Similar results were achieved 

when using morphokinetic features (Fig. S8). These results imply that despite the fact that 

the KID-P/KID-N classifier was trained for the most visually challenging task, the 

availability of extensive data and reliable labels improved classification performance. 

The contribution of training label specificity to a particular classification task was 

demonstrated by the superiority of the model trained with the KID-N and the discarded 

embryos over the model trained with discarded embryos alone (Fig. 4A – blue versus cyan 

correspondingly, both have comparable volume of negative training labels). This result is 

strengthen by the lack of a similar trend in other classification tasks where the addition of 
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KID-N embryos to the training set did not contribute much to the performance (Fig. 3). 

These data demonstrate the tradeoff between label ambiguity and specificity and reveal 

that the combination of reduced ambiguity (but reduced specificity) in the discarded 

embryo labels along with increased specificity (but increased ambiguity) in the KID-N 

labels led to the most accurate implantation predictions.  
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Figure 4: Analysis of implantation prediction and ranking performance as a function of negative 

label ambiguity and label specificity. All classifiers were trained using morphological features. (A) 

AUC of implantation prediction (KID-p versus KID-N) over time. Comparison of models trained 

to discriminate KID-P from different sets of negative labels: KID-N, discarded, blastocyst 

discarded, underdeveloped discarded, and KID-N+discarded with or without oocyte age. (B) AUC 

of implantation prediction (KID-p versus KID-N) over time for models trained to discriminate 

between KID-P and discarded embryos with increasing fractions of label ambiguity - flipping 

"KID-P" to "discarded" labels (see Methods). (C-D) Time To Live Birth (TTLB) for models trained 

in panel B. (C) KID-P versus all discarded. (D) KID-P versus blastocyst-discarded.  

 

To identify the breaking point between label ambiguity and specificity we simulated a 

gradual deterioration in the negative labels by flipping increasing fractions of positive 

labels to negative labels. This mimics the ambiguity of KID-N labels, where some viable 

embryos fail to implant for extrinsic maternal reasons and are thus mistakenly labeled as 

negatives. We evaluated the optimization problem of training models to discriminate KID-

P from discarded embryos because of the higher confidence in the discarded embryos' 

negative label. This analysis revealed that flipping 10% of the discarded embryo labels was 

sufficient to drop the performance of the KID-P/discarded trained classifier below that of 

the KID-P/KID-N-trained classifier for the tasks of predicting implantation potential and 

ranking, thus underscoring the fact that small fractions of erroneous labels can cause major 

deteriorations in the model’s performance (Fig. 4B-D). Altogether, these results highlight 

the interplay between label ambiguity, label specificity to a particular classification task 

and data volume during training in the context of IVF (Fig. 5). 
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Figure 5: Trade-offs between data volume, label ambiguity and specificity to a particular 

classification task of the negative labels. In our case the specificity was aligned with the embryo 

quality (KID-P > blastocyst-discarded > underdeveloped-discarded, Fig. 2A). Data volume of 

underdeveloped-discarded was the highest (Table S1). Label ambiguity was high for KID-N. The 

positive labels were always KID-P.  
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Discussion 

There is a consensus that clinical properties that are shared across all embryos within a 

cohort, such as oocyte age, play a key role in determining embryo implantation potential 

but have no effect on embryo ranking within a cohort. It is also well-accepted that some 

KID-N embryos are functional embryos that failed implantation due to embryo- extrinsic 

clinical factors. In this study we took the next conceptual step by demonstrating that 

training classifiers to predict implantation can lead to non-optimal transfer decisions as 

evident by the higher probabilities of preferring obviously visually defective embryos over 

successfully implanted embryos. 

These results raise concerns as to the current common pipeline for machine-learning driven 

IVF that directly imply several practical recommendations. First, training models for 

embryo ranking should focus exclusively on embryo intrinsic features. These may include 

engineered features that measure specific embryo properties such as the appearance of 

pronuclei and fading timing (tPNa, tPNf), the number of pronuclei, pronuclei shape, 

symmetry [21, 22, 23] blastocyst expanded diameter and trophectoderm cell cycle length 

[24], temporal events [25, 26] and/or training deep neural networks on the raw images [13] 

while avoiding embryo- extrinsic clinical factors that are shared by the other sibling 

embryos within the cohort. Second, the ambiguity in the KID-N labels makes implantation 

prediction a sub-optimal optimization problem both in model training as well as in model 

evaluation. Thus training with less ambiguous negative labels, such as discarded embryos, 

can enhance ranking accuracy (and perhaps even implantation prediction). Training with 

less ambiguous negative labels can either be implemented by including discarded embryos 

in the training binary classification tasks, as demonstrated here, and/or by defining 

optimization problems that are more specific for ranking [27]. The current data suggest that 

this approach can be beneficial using discarded embryos as negative labels even though 

discarded embryos are commonly thought as trivially discriminated from high quality 

embryos (low label specificity). Beyond better reflecting the clinician’s decision that 

involves the evaluation of all the embryos in an IVF cycle, another benefit of considering 

discarded embryos lies in the magnitude of data available for training that exceeded five-

folds in the current dataset, and bypasses the biased selection of transferred embryos. 
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Hence avoiding/reducing the confounding effects of embryo- extrinsic clinical factors and 

ambiguous labels, when solving a ranking problem, as well as using all the available 

embryos to increase training data, are key practical concepts to consider when devising 

machine learning solutions for IVF. We hope that the awareness raised by our findings will 

bring back the traditional two-step process of ranking embryos within a cohort and 

determining how many embryos to transfer based on embryo scoring that approximates 

implantation probabilities, where each of these tasks is optimized independently under the 

appropriate assumptions. 
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Methods 

Experiments 

Data collection and ethics 

The data were retrospectively collected from four clinics: the Ein-Kerem, and Mt. Scopus 

campuses of the Hadassah Hebrew University Medical Center, the Soroka University 

Medical Center, and the NYU Langone Prelude Fertility Center. After fertilization, the 

embryos were incubated in EmbryoscopeTM (Vitrolife, Copenhagen, Denmark), a time-

lapse incubation and imaging system that acquires seven-layers of z-stack images 15µm 

apart at each time point every 15 to 20 minutes, where time 0 is defined as the fertilization 

time. We used the central focal plane, which was usually the most focused, for further 

analysis, on a total of roughly 360-480 images over a 5-day period for a single embryo. 

Time-lapse sequences of embryos were collected between July 2014 and December 2019 

for oocytes aged 23.6-43.6 years (Fig. 1B). This study did not include donor oocyte IVF 

sessions and transfer of previously frozen embryos and thus the oocyte age is identical to 

the patient/maternal age and is shared among all embryos in a cohort. Embryos that were 

discarded before 114 hours were excluded from further analysis. Human embryo 

image/video data collected from patients were used in this study with institutional review 

board approval from the Investigation Review Board of Hadassah Hebrew University 

Medical Center (IRB# HMO-006-20). Overall, our dataset contained 47162 recorded 

videos of embryos collected from 7904 patients with informed consent for research and 

publication, under an institutional review board approval for secondary research use. Table 

S1 details the data splits between train and test. 

Annotation of embryo clinical quality 

Once the embryos reached the desired developmental stage, single or more embryos from 

a cohort were transferred. For those embryos that were transferred, implantation tagging 

was defined by one of the three possible Known Implantation Data (KID) tags: (i) KID-

positive (KID-P): when all transferred embryos were successfully implanted (Video S1); 

(ii) KID-negative (KID-N): when none of the transferred embryos were successfully 

implanted; (iii) KID-unknown (KID-UK): when the outcome of each transferred embryo 
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was uncertain. KID-UK embryos were excluded from further analysis due to their 

ambiguous outcomes. Non-transferred embryos were partitioned into two groups: (1) 

Discarded – embryos that were excluded by the clinician because of defective morphology: 

poor morphology [8] or morophkinetics (i.e., slow or halted development). The discarded 

embryos were further partitioned into two subgroups: “blastocyst-discarded” (Video S2), 

embryos that reached blastulation, and “underdeveloped-discarded” (Videos S3-4), that did 

not reach blastulation. Based on these selection criteria we assume that discarded embryos 

fail to implant, and thus used these discarded embryos as a non-ambiguous label to assess 

the model’s performance when ranking KID-P over discarded embryos. (2) Frozen – 

visually proper embryos that were not selected for transfer because other sibling embryos 

from the same cohort were ranked higher. These embryos were frozen for a future transfer 

but were not considered for further analysis because their implantation potential was 

unknown. These partitions defined the embryo clinical ranking of implantation potential 

(Fig. 2A). 

 

Analysis 

Cropping and resizing embryo images 

A simple, low-cost, Convolutional Neural Network (CNN) was trained to segment and 

localize the embryo. The time-lapse incubation images are of size 500x500 pixels at seven 

focal planes. The segmentation network accepts a downscaled version of size of 128x128 

pixels to enhance efficiency and speed. To deal with varying image focus we randomly 

selected different focal planes for training. The network outputs a pixel- wise binary 

classification segmentation mask of size 128x128. A U-NET architecture [28] was used, 

with 4 convolutional layers at each of the downlink/uplinks. Each layer was followed by a 

maxpool/upsample layer, ReLU activation function and batch normalization, where the 

number of features started from 8 and was doubled after each pooling. A diagram of the 

architecture and examples of the segmentation mask are shown in Fig. S1. Finally, the 

bounded embryo was cropped from the full sized (500x500 pixels) image and resized to 

256x  256 pixels image, denoted 𝑥𝑖
𝑡. 
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Training classifier to discriminate KID-P embryos from different subsets of lower 

quality embryos 

The data included the KID-P, KID-N, and discarded embryos that were split into 

Train/Validation/Test datasets (Tables S1). Each cohort of sibling embryos was allocated 

to one of the Train/Validation/Test datasets. Transferred embryos in the training set had 

incubation periods ranging from 2 to 6 days, whereas transferred embryos in the test set 

were composed solely of embryos that reached incubation durations of 114 to 120 hours to 

enable comparable results between different time points on the exact same set. This design 

makes the KID-N test set even more challenging compared to the training negative set 

since some of the embryos in the training set were transferred earlier on day 3 but would 

eventually have been labelled inviable, discarded and not transferred if they were allowed 

to incubate until day 5.  

The learning task was to classify an input 𝑥𝑡, where x is a feature representation of an 

embryo and 𝑡 is time, to its ground-truth implantation binary outcome (detailed below). 

Features representations of an embryo included morphology (raw image), morphokinetic 

(timing of a predetermined set of embryo developmental stages) and each of these with the 

oocyte age as an additional feature. Details on each of these feature sets can be found 

below. The loss function used to train all three models was the binary cross entropy loss, a 

special case of equation (2), with K=2. The output of the classifier was a scalar 𝑠𝑡 = 𝑠2
𝑡 −

𝑠1
𝑡 that represent the implantation probability 𝑝𝑡:  

 𝑝𝑡 =
𝑒𝑠𝑡

1+𝑒𝑠𝑡, (9) 

thus, all the models were of the form 𝐹: 𝑥𝑡 → 𝑠𝑡 , where the feature representation 𝑥𝑡 

changed between models and 𝑠𝑡 is the scalar prediction. 

We trained twelve different classifiers. Six classifier where trained with morphology-based 

features and another six classifiers with morphokinetic-based features. Each classifier was 

trained to discriminate KID-P embryos from different sets of embryos (Table S2): (1) KID-

P vs. KID-N; (2) KID-P vs. underdeveloped; (3) KID-P versus blastocyst discarded; (4) 

KID-P vs. all discarded; (5) KID-P vs. KID-N and all discarded; (6) KID-P vs. KID-P vs. 

KID-N and all discarded learned with oocyte age as an additional feature.  
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The morphology classifier, denoted Mh, received as input a single raw image. The 

morphokinetic classifier, denoted Mk, received a 15-dimensional vector holding the timing 

of specific morphokinetic events that were automatically extracted from the time-lapse 

stream. These two classifiers are described next.  

Classification using morphological features 

The morphology-based model 𝑀ℎ accepts single images as input and therefore exploits 

the embryo morphological information to predict implantation. The model was 

implemented using a CNN with a modified ResNet50 architecture [32]. To compensate for 

the drastic morphological changes throughout the embryo developmental process we used 

the ResNet50 base layers with multiple prediction heads {ℎ𝑛}𝑛∈[1...Δ𝑡/2] , each 

corresponding to a temporal window of two hour. Each head consisted of a 128 channel 

dense layer, followed by a scalar output layer 𝑠𝑡 . Fig. S2A depicts the network’s 

architecture. The morphology-based classier was described in a separate manuscript that is 

currently under review and is attached to the submission.   

Automating the timing identification of morphokinetic events with machine-learning 

and dynamic programming  

The problem of estimating the timing of early morphokinetic events was studied recently 

up to four [29, 30], and up to eight [31] cells in the developing embryo, where all the later 

stages were considered as one state. We extended this scope to quantify both early and late 

morphokinetic events. Specifically, we automatically extracted timing of 15 morphokinetic 

events in the embryo development, i.e., the timing of specific morphological changes 

during embryo development identified from the time-lapse images (Fig. S3-4, Video S1). 

These morphokinetic features were then used to train classifiers (Fig. S2B).   

More formally, the morphokinetic state S was defined by the following K = 15 

morphokinetic events: Zygote, Pronuclei (PN) appearance and fading, 1Cell, 2Cell ,¦3Cell, 

4Cells, 5Cells, 6Cells, 7Cells, 8Cells, 9+Cells, Morula, Start Blastulation, Blastocyst and 

Expanded Blastocyst.  

 𝑆 = {Z, PN, 1C, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9+C, M, SB, B, EB} (1) 

We combined machine-learning and dynamic programming to automated the timing 
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identification of each specific morphokinetic event. The learning task was defined as 

classifying an image acquired at time 𝑡, 𝑥𝑡, to its corresponding morphokinetic event 𝑦𝑡 ∈

[1. . . 𝐾], where the ground-truth annotations were determined manually by an expert for 

model training and evaluation. The training data were a set of the form {{𝑥𝑖
𝑡, 𝑦𝑖

𝑡}𝑖∈[𝑁], 𝑡 ∈

Δ𝑡𝑖}, where N was the number of embryos, and Δ𝑡𝑖  was the time interval of the 𝑖-th 

embryo time-lapse incubation stream. 

The morphokinetic model 𝑀𝑘  is a multi-class classifier, trained using a CNN with a 

ResNet50 architecture [32] that accepts a single image 𝑥𝑖
𝑡 and predicts its morphokinetic 

event. 𝑥𝑖
𝑡  represents a cropped and resized image of the centered and resized embryo 

inside its well. The loss function was Categorical Cross Entropy loss [33] defined as  

 𝐿 = −
1

𝑁
∑𝑖∈[𝑁],𝑡∈Δ𝑡

∑𝑘∈𝐾 𝑦𝑖,𝑘
𝑡 log(𝑝𝑘

𝑡 ), (2) 

  𝑝𝑘
𝑡 =

𝑒𝑠𝑘
𝑡

∑𝑘∈𝐾 𝑒𝑠𝑘
𝑡 , (3) 

where 𝑠𝑘
𝑡  denotes the 𝑘-th output of 𝑀𝑘 at time 𝑡. 𝑝𝑘

𝑡  is derived from 𝑠𝑘
𝑡  and represents 

the likelihood (0 ⩽ 𝑝𝑘
𝑡 ⩽ 1) of each image 𝑥𝑡 to be in 𝑘 − 𝑡ℎ state. 𝑦𝑖,𝑘

𝑡  is the one-hot 

encoded ground-truth. Namely,  

 𝑦𝑖,𝑘
𝑡 = {

1, 𝑦𝑖
𝑡 = 𝑘

0, otherwise
 (4) 

We denote by T, the set of K-1 morphokinetic events, defined by the starting time of all 

states in equation (1), except the first zygote, which is trivially defined by the time of the 

first frame 𝑥𝑖
0, ∀𝑖 ∈ [𝑁]. Namely,  

 𝑇 = {𝑡PNa, 𝑡PNf, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9+, 𝑡𝑀 , 𝑡SB, 𝑡B, 𝑡EB} (5) 

where 𝑡𝑋 denotes the starting time of the X-th event. 

The K size vector 𝑝𝑡 can be thought as a "soft annotation" per each frame. To estimate the 

sequence of morphokinetic events given the per-frame soft annotations, we used dynamic 

programming, where the updating step at time 𝑡 + 1 is given by 

 
𝑄𝑘

𝑡+1 = {𝑄𝑘̃
𝑡 , 𝑘}

𝑘̃ = argmax𝑗∈{𝑘,𝑘−1}{𝑞𝑗
𝑡}

 (6) 
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where 𝑄𝑘
𝑡  is a vector of size 𝑡, with the morphokinetic path at each time point 𝑡 ∈ [1, 𝑡], 

that ends at the 𝑘-th state at time 𝑡, and 𝑞𝑘
𝑡  denotes a scalar score associated with the path 

𝑄𝑘
𝑡 . Where 𝑄𝑘

𝑡  denotes the optimal path of state 𝑘 at time 𝑡, in the sense that 𝑄𝑘
𝑡  has the 

highest score 𝑞𝑘
𝑡  out of all possible paths that end at the 𝑘-th state at time 𝑡. 

Further, the updated score 𝑞𝑘
𝑡+1 is given by  

 𝑞𝑘
𝑡+1 = 𝑞𝑘̃

𝑡 + 𝑝𝑘
𝑡+1 (7) 

Simply stated, at each time 𝑡 + 1, and for each state k, the optimal paths at time t of the 

states {𝑘 − 1, 𝑘} are compared. The best path of the 𝑘-th state at time 𝑡 + 1 is the path 

with the highest score at time t, concatenated with the state 𝑘 at time 𝑡 + 1. The new path 

score is the sum of the score of the best path from the {𝑘 − 1, 𝑘} states and the score of 

the soft annotations score of the 𝑘-th state at time 𝑡 + 1. Finally, the estimated ME vector 

𝒎 = [𝑚1, 𝑚2, . . . . 𝑚𝑘−1]𝑇 is obtained by travelling over the transitions between states in 

𝑄𝑘
𝑡 . Namely: 

 𝑚𝑘 = 𝑡, if 𝑄𝑘
𝑡 = 𝑘 ∩ 𝑄𝑘

𝑡−1 = 𝑘 − 1 (8) 

Fig. S3 demonstrates the soft annotations and dynamic programming outcomes for 

embryos with different developmental paths. 

The accuracy of the annotation classification was measured by two measurements: (1) the 

average per frame accuracy, calculated as the average the 0-1 loss over frames, and (2) the 

confusion matrix of the morphokinetic events. Fig. S4 presents the confusion matrices of 

morphokinetic events for the morphokinetic classifier before and after applying the 

dynamic programming stage, where rows denote the ground truth annotations, and columns 

the multi-class prediction. The confusion rates were prominent only between adjacent 

events. The first and final events presented relatively low confusion rates, whereas the 

intermediate morphokinetic events were subject to greater confusion rates with adjacent 

events. For example, distinguishing between 5C and 6C is more difficult than between 1C 

and 3C or between the morula and start of blastulation. These results align with annotation 

errors by expert embryologists. One exception is a blastocyst embryo, which the model 

confused with expanded blastocyst. However, this can be explained by the relatively vague 

definition of expansion, which in turn led to an inter (and even intra) variability in 
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annotating the exact timing of when expansion began. The confusion matrix for the 

dynamic programming decision executed over the multi-class prediction exhibited a higher 

true positive rate for all events and improved average accuracy to 85.5% compared to 

83.6% for the multi-class prediction. This is attributed to the consideration of the full 

developmental trajectory as a global optimization problem. 

Classification using morphokinetic features 

The morphokinetic-based model 𝑀𝑘  accepts as input the estimated ME vector 𝒎, as 

calculated at time 𝑡. To allow the network to recognize embryos that stopped developing 

the time 𝑡 was embedded to input vector. Formally, the input for model 𝑴𝒌 was the K-

dimensional vector 𝒎𝑡, defined as  

 𝑚𝑘
𝑡 = {

𝑚𝑘, 𝑚𝑘 ⩽ 𝑡, 𝑘 < 𝐾
∞ 𝑚𝑘 > 𝑡, 𝑘 < 𝐾
𝑡, 𝑘 = 𝐾

 (10) 

The classifier was implemented with a neural network that consisted of 6 consecutive dense 

layers. The first 5 layers with 256 channels, and the last hidden layer consisted of 128 

channels. Each layer was followed by ReLU activation and batch normalization. The final 

output layer was the scalar prediction. Fig. S2B depicts the network’s architecture. 

Classification using oocyte age 

The oocyte age was determined by the age of the patient when the oocytes were retrieved 

from the ovary. Our dataset did not involve donors and did not include frozen embryos that 

were thawed and transferred. Thus, in this study, the oocyte age is equivalent to the 

patient/maternal age and is common to all embryos in a cohort. Oocyte age was previously 

reported to be highly correlated with implantation rates [18]. We included as an additional 

input to the morphology- and morphokinetic-based models, resulting in two new models 

denoted by 𝑴𝒉𝒐, 𝑴𝒌𝒐 respectively. The architecture of these models was identical to their 

original models with the addition of an embedded layer that accepted oocyte age, digitized 

by one-hot encoding to one of five possible age groups, and outputted 128 features that 

corresponded to the hot age group. This output was added to the last hidden layer of the 

original model, followed by a dense layer with 128 channels and a scalar output layer. Fig 

S2C depicts the network’s architecture. 
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Evaluating classifier performance in predicting embryo implantation and ranking 

We evaluated the trained models’ performance with Area Under the Curve (AUC) 

measurement on four different binary classification tasks of discriminating KID-P embryos 

from different sets of embryos (Table S3): (1) KID-P vs. KID-N; (2) KID-P vs. all 

discarded embryos; (3) KID-P vs. blastocyst discarded; (4) KID-P vs. KID-N and all 

discarded embryos. This latter setting is most resembling the true embryo ranking in the 

clinic. 

To directly assess the task of embryo ranking we evaluated the average number of attempts 

for embryo transfer from an IVF cycle until a successful implantation was reached, where 

the transfer order was determined by the model’s ranking based on its classification score. 

This measurement is called time to live birth (TTLB) [19]. This analysis included embryo 

cohorts that contained a successful implantation (KID-P) and multiple discarded embryos, 

where transferring a discarded embryo is assumed to result in a failed implantation. Thus, 

a basic requirement from a ranking model is to prioritize KID-P over discarded embryos. 

To avoid the bias of cohorts with different numbers of embryos we compared the average 

TTLB of sub-cohorts consisting of the same number of embryos sampled from the full 

cohorts. For a given number of embryos (N = 2-8) we created sub-cohorts by selecting the 

KID-P embryo and N-1 discarded embryos. We considered two scenarios: (1) calculating 

TTLB for sets of one KID-P and discarded embryos (blastocyst and underdeveloped); (2) 

calculating TTLB for sets of one KID-P and multiple blastocyst-discarded embryos (more 

challenging). 

Software and data availability 

We are currently organizing our source code and will make it publically available as soon 

as possible (before journal publications). The clinical data are owned by Hadassah Hebrew 

University Medical Center, the Soroka University Medical Center, and the NYU Langone 

Prelude Fertility Center. Patients’ data were anonymously used under ethical agreements 

with each clinic separately, without explicit patient consent for their data to be made public. 

Thus, restrictions apply to the availability of these data. Requests for the anonymized data 

should be made to Dr. Assaf Ben-Meir (assafb@hadassah.org.il), Dr. Iris Har-Vardi 

(harvardi@bgu.ac.il), or Dr. James Grifo (james.grifo@nyulangone.org). Requests will be 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.21264503doi: medRxiv preprint 

mailto:assafb@hadassah.org.il
mailto:harvardi@bgu.ac.il
mailto:james.grifo@nyulangone.org
https://doi.org/10.1101/2021.10.07.21264503
http://creativecommons.org/licenses/by/4.0/


 

reviewed by a data access committee, taking into account the research proposal and 

intended use of the data. Requestors are required to sign a data-sharing agreement to ensure 

patients' confidentiality is maintained prior to the release of any data. The methods 

presented are not specific to the datasets used in this study and users can train and test the 

deep learning model on any relevant imaging data. 
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Supplementary figures  

Figure S1: Embryo segmentation network. (A) U-NET architecture for embryo localization and 

segmentation. (B) Output masks for different developmental stage embryos. From upper left to 

lower right: 2 cells, 9+ cells, blastocyst, expanded blastocyst. 
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Figure S2: Implantation model architectures. (A) Morphological model 𝑀ℎ, 128x128 input 

image, fed into Resnet50 CNN with multiple prediction heads. Each head corresponds to a 

temporal window of 2 hours. (B) Morphokinetic model 𝑀𝑘, accepts vector 𝒎 with the estimated 

starts of 15 morphokinetic events, and the time from fertilization. A simple neural network with 

eight dense layers was used. (C) The oocyte age was added as input to each model, resulting in 

models 𝑀ℎ𝑜, 𝑀𝑘𝑜 respectively. The oocyte age was passed through an embedded layer with 128 

output channels. The embedding layer digitized the oocyte age to one of 5 age bins, and outputted 

the corresponding 128 channels. The embedded output was then added to the output of each of 

the basis models. Two dense layers conclude the architecture. 
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Figure S3: Predicted morphokinetic events vs. the ground truth (manual) annotations of different 

ending stage embryos: (A) 4Cells, (B) 8Cells, (C) Start Blastulation, (D) Expanded Blastocyst. 

The map represents the network multi-class prediction 𝑠𝑡 of each frame vs. time. The horizontal 

lines are the dynamic programming output path 𝑄𝑘
𝑡 , executed over the multi-class prediction map, 

and the vertical lines are the ground truth (manual) annotations. See Methods for full details. 
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Figure S4: Confusion matrix of morphokinetic state classification. Rows denote the ground truth 

annotations, and columns the multi-class prediction. Shown are multi-class model predictions 

before (A), and after (B) dynamic programming.  
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Figure S5: Additional training data enhances morphology-based models. Prediction accuracy: 

AUC vs. time since fertilization (hours) (A-C), average time to live birth (TTLB) (D-E) for 

morphology- based models, trained with different amounts of discarded embryos (negative 

labels): 10K and 30K, tested over different test sets. Training with more discarded embryos lead 

to better AUCs for all times and over all test sets, but did not change the TTLB. (A) KID-P vs. 

discarded. (B) KID-P vs. blastocyst discarded. (C) KID-P vs. KID-N and discarded. (D) Ranking 

KID-P and all discarded. (E) Ranking KID-P and blastocyst discarded. 
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Figure S6: KID-N embryos are not the ideal negative label for solving the task of embryo 

ranking. Prediction accuracy: AUC vs. time since fertilization (hours) (A-C), average time to live 

birth (TTLB) (D-E) for morphokinetic- based models, trained over different negatives: KID-N, 

discarded, blastocyst discarded, underdeveloped discarded, and KID-N+discarded, tested over 

different test sets. (A) KID-P vs. all discarded. (B) KID-P. vs. blastocyst discarded. (C) KID-P vs. 

KID-N and all discarded. (D) Ranking KID-P and discarded. (E) Ranking KID-P and blastocyst 

discarded. 
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Figure S7: Additional training data enhances morphokinetic-based models. Prediction accuracy:  

AUC vs. time since fertilization (hours) (A-C), average time to live birth (TTLB) (D-E) for 

morphokinetic- based models, trained with different discarded amounts: 10K and 30K, tested 

over different test sets. Training with more negatives lead to better AUCs and yields to shorter 

TTLB over all test sets and times. (A) KID-P vs. discarded. (B) KID-P. vs. blastocyst discarded. 

(C) KID-P vs. KID-N and discarded. (D) Ranking KID-P and discarded. (E) Ranking KID-P and 

blastocyst discarded. 
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Figure S8: An analysis of optimizing implantation prediction accuracy by trading off label noise 

level and training data quality based on morphokinetic features. (A) Comparison of models trained 

on different negatives: KID-N, discarded, blastocyst discarded, underdeveloped discarded, and 

KID-N+discarded (with and without oocyte age) over KID-P vs. KID-N test set. (B) AUCs for 

models trained with known noise levels (of positive labels) over KID-P vs. KID-N test set (C) 

TTLB for models trained with known noise levels (of positive labels) over KID-P vs. discarded test 

set (D) TTLB for models trained with known noise levels (of positives labels) over KID-P vs. 

blastocyst discarded test set. 
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Supplementary tables legends 

Table S1. Data table. Divided into Train/Validation and Test sets, where all embryos from a 

given cycle where either used for train, validation or test.  

Table S2. Train splits for the different trained models. The same amount of negative labels from 

each embryo discarded category was maintained across all sets of training in order to compare 

training with different negatives fairly. KID-N consists of the smallest amount of 6500 embryos, 

so 6500 embryos were randomly selected from all other negative sets 

(Underdeveloped  discarded + Blastocyst discarded, Blastocyst discarded, KID-N + 

Underdeveloped  discarded + Blastocyst discarded and Underdeveloped discarded), first 

considering all valid negatives, and then selecting 6500 embryos at random from the valid set. 

Table S3. Test splits for the different negatives sets. 

 

Supplementary videos legends 

Video S1. Temporal evolution of a KID-P embryo. Bounding box marks the automatically 

detected embryo contour. Time (in hours) is displayed at the bottom-left. The predicted 

morphokinetic state and morphological-based implantation prediction score (KID-Score, from 

time = 30 hours) are displayed at the top-left. The KID-P score at the final frame is 1. 

Video S2. Temporal evolution of a blastocyst discarded embryo. Bounding box marks the 

automatically detected embryo contour. Time (in hours) is displayed at the bottom-left. The 

predicted morphokinetic state and morphological-based implantation prediction score (KID-

Score, from time = 30 hours) are displayed at the top-left. The embryo was discarded after 126 

hours, reaching the blastocyst (tB) stage, with a KID-P score of -0.95. 

Video S3. Temporal evolution of an underdeveloped discarded embryo. Bounding box marks the 

automatically detected embryo contour. Time (in hours) is displayed at the bottom-left. The 

predicted morphokinetic state and morphological-based implantation prediction score (KID-

Score, from time = 30 hours) are displayed at the top-left. The embryo was discarded after 127 

hours, reaching the start of blastulation (tSB) stage with a KID-P score of -1.31. 

Video S4. Temporal evolution of a very low-quality underdeveloped discarded embryo. 

Bounding box marks the automatically detected embryo contour. Time (in hours) is displayed at 

the bottom-left. The predicted morphokinetic state and morphological-based implantation 

prediction score (KID-Score, from time = 30 hours) are displayed at the top-left. The embryo 

stopped developing after reaching the Pronuclei fading stage (tPNf), with a KID-P score of -9. 
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