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Abstract

Montreal is the epicentre of the COVID-19 pandemic in Canada with highest number of
deaths. The cumulative numbers of cases and deaths in the 33 areas of Montreal are modelled
through bivariate hierarchical Bayesian models using Poisson distributions. The Poisson
means are decomposed in the log scale as the sums of fixed effects and latent effects. The
areal median age, the educational level, and the number of beds in long-term care homes
are included in the fixed effects. To explore the correlation between cases and deaths inside
and across areas, three bivariate models are considered for the latent effects, namely an
independent one, a conditional autoregressive model, and one that allows for both spatially
structured and unstructured sources of variability. As the inclusion of spatial effects change
some of the fixed effects, we extend the Spatial+ approach to a Bayesian areal set up to
investigate the presence of spatial confounding.

Keywords: Bayesian inference, Conditional autoregressive distribution, Disease Mapping,
Spatial confounding, Spatial+

1. Motivation

As of July 25th, 2021, the coronavirus disease 2019 (COVID-19) pandemic counts a total
of 194,248,750 cases and 4,163,599 deaths worldwide (Dong et al., 2020). This disease is
caused by an infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). The World Health Organization declared COVID-19 to be a pandemic in March 2020
(Ghebreyesus, 2020) and since then, countries worldwide have instituted infection control
measures (e.g., lockdowns, curfews, mask mandates) to control the spread of the disease. We
are interested in studying the COVID-19 spread in the urban agglomeration of Montreal. As
of July 25th, 2021, Canada cumulates 1,426,903 cases and 26,547 deaths due to COVID-19
(Government of Canada, 2021) with 9.2% of the cases and 17.9% of the deaths recorded in
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Montreal ([dataset] Direction régionale de santé publique, 2021). The agglomeration covers
approximately 500 km2 and is the most populous administrative region in the province of
Quebec, Canada, with over 1.9 million inhabitants which represents, approximately, 6% of
the Canadian population (Statistics Canada, 2017a,b). The agglomeration incorporates 19
boroughs of the City of Montreal and 15 related cities. These boroughs and related cities
vary in demography, socio-economic status, and healthcare infrastructure.

This analysis focuses on data on the cumulative number of COVID-19 confirmed cases
and deaths in Montreal since the beginning of the pandemic, as of July 25th, 2021. The cases
and deaths distributions across the areas of Montreal are shown in Figure 1. This dataset is
made publicly available by the regional director of public health ([dataset] Direction régionale
de santé publique, 2021). The data consist of 34 boroughs and related cities of Montreal.
However, one related city, L’̂Ile-Dorval, did not record cumulative data. We exclude this
area from the analysis, yielding a total of 33 areas.

The Ministry of Health and Social Services defines a confirmed case or death due to
COVID-19 as follows. Cases are confirmed either by a laboratory or by an epidemiological
link. A laboratory confirms a case through the detection of nucleic acids of SARS-CoV-2.
To confirm a case by an epidemiological link, the manifestation of clinical symptoms must
be compatible with COVID-19 with a high risk of exposure to a case that was confirmed by
a laboratory during the period of contagion and no other apparent cause. Deaths may also
be confirmed by a laboratory or by an epidemiological link. A laboratory confirms a death
due to COVID-19 through the manifestation of clinical symptoms compatible with COVID-
19 before death and the detection of nucleic acids of SARS-CoV-2. A death is confirmed
to be due to COVID-19 by an epidemiological link if there was a manifestation of clinical
symptoms compatible with COVID-19 before death with a high risk of exposure to a case
that was confirmed by a laboratory during the period of contagion and no other apparent
cause (Ministère de la Santé et des Services sociaux, 2021). The death counts of two areas
are censored for privacy issues. Namely, Baie-d’Urfé and Montréal-Ouest recorded between
1 and 4 deaths. We also obtained data on the population size of each borough and related
city from the 2016 Canadian Census ([dataset] Ville de Montréal, 2016).
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Figure 1: Maps of the COVID-19 cases (left) and deaths (right) across the 33 boroughs of Montreal.

In the literature, many studies identify age as a risk factor of COVID-19 mortality (Zhou
et al., 2020; Bonanad et al., 2020; Yanez et al., 2020). Some studies also highlight the rela-
tionship between socio-economic status and COVID-19 cases (Hawkins et al., 2020; Gangemi
et al., 2020) and COVID-19 deaths (Hawkins et al., 2020; Bermudi et al., 2021). Moreover,
apart from COVID-19, there exist important health disparities due to socio-economic in-
equalities in Montreal. These have been shown to lead to a difference in life expectancy
of up to 11 years between areas (Le Blanc et al., 2011). On the other hand, healthcare
infrastructure has been positively associated with reactive responses to COVID-19 (Sharma
et al., 2021). In Quebec, there exist five classes of senior residences. Three of these fall under
the denomination of residential and long-term care centres, which may be public, private
and subsidised by the government, or private and non-subsidised. Most senior residences
are of the two remaining classes: intermediary resources and private seniors’ residences.
Although all of these residences can provide similar services, residential and long-term care
facilities specifically serve seniors with an important loss of autonomy (Gouvernement du
Québec, 2021). Hospitals in Quebec, under the direction of the Ministry of Health, were
generally better prepared to respond to the COVID-19 pandemic than long-term care homes
during the first months of the pandemic (Doucet, 2020). The vast majority of COVID-19
deaths in senior residences in Quebec are linked to long-term care homes. In fact, as of July
25th, 2021, 51% of all COVID-19 deaths in Quebec are linked exclusively to residential and
long-term care centres (Institut national de santé publique du Québec, 2021).

This literature review motivates our covariates’ selection in order to model the cases and
deaths due to COVID-19 in the 33 areas of Montreal. To account for the age profile of
each borough, we obtain data on the median age of the population by borough and related
city from the 2016 Canadian census ([dataset] Ville de Montréal, 2016). As a proxy for
the socio-economic status of each borough, we consider the percentage of the population
between 25 and 64 years old with a university diploma. These data are also extracted
from the 2016 Canadian census ([dataset] Ville de Montréal, 2016). Finally, regarding the
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healthcare infrastructure in Montreal, we include the number of beds in all long-term care
homes of each borough (Centre d’hébergement et de soins de longue durée, CHSLD). These
records are available in public databases ([dataset] Ministère de la Santé et des Services
sociaux, 2021a,b).

In this paper, we analyse the joint distribution of COVID-19 cases and deaths across the
33 boroughs of Montreal through a Bayesian hierarchical joint model. We are interested in
measuring the strength of the associations between the three available covariates and the
cases and deaths due to COVID-19. Also, we aim at investigating how these two outcomes
are correlated within and across boroughs. We examine whether the covariates impact the
risk of being a case or the risk of dying from COVID-19 in a similar fashion. Additionally,
we investigate if there is any structure left in the data after accounting for the available
covariates. We explore different prior specifications for these local latent effects, ranging
from independent to spatially structured ones. It is known that the inclusion of spatially
structured latent effects can affect the estimation of the fixed effects (Reich et al., 2006; Khan
and Calder, 2020; Dupont et al., 2021); this is known in the literature of Spatial Statistics
as spatial confounding. We fit a Bayesian version of the Spatial+ approach proposed by
Dupont et al. (2021) to investigate if there is spatial confounding in the fitted models.

This paper is organised as follows: Section 2 describes the proposed models, the method
for spatial confounding adjustment and the inference procedure. In Section 3, the results of
the analyses of the COVID-19 cases and deaths are presented. Finally, Section 4 concludes
and discusses our findings.

2. Methods

Let Ci be the recorded number of COVID-19 cases in borough i, for i = 1, . . . , n, where
n = 33 is the number of non-overlapping boroughs in Montreal. Let Di be the number of
deaths due to COVID-19 in borough i. We model the deaths and cases through a joint
hierarchical Bayesian model in order to accommodate the natural relationship one expects
between cases and deaths of a disease. First, we define a marginal distribution for the cases,
and then, conditional on the number of cases, we define a distribution for the number of
recorded deaths. Sahu and Böhning (2021) modelled the cases and deaths due to COVID-
19 in England in a similar fashion, using a 2-stage Bayesian hierarchical model. However,
their interest lied in the temporal structure of the data and did not consider joint latent
effects. Our approach differs because we do not conduct a spatio-temporal analysis, and we
are interested in measuring the correlation between cases and deaths inside and across the
boroughs of Montreal. To that end, we include a correlation parameter that helps borrow
strength from the cases and deaths inside and across boroughs. More specifically, we assume,

Ci ∼ Pois(EC
i λ

C
i ) and Di | Ci ∼ Pois(ED

i λ
D
i ), (1)

where Pois stands for the Poisson distribution, λCi and λDi denote, respectively, the relative
risk of the cases and the deaths in area i, whereas EC

i and ED
i are offsets. The offset for

the number of cases is computed based on the population size Pi of each borough, while
the offset for the number of deaths given the number of cases is computed based on the
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number of cases observed in borough i. More specifically, EC
i = Pi

(∑n
j=1Cj/

∑n
j=1 Pj

)
and

ED
i = Ci

(∑n
j=1Dj/

∑n
j=1Cj

)
. To model the number of deaths conditionally on the number

of cases, the Poisson distribution is used as an approximation to a Binomial distribution with
size Ci and probability pi. This approximation is reasonable because of high values of Ci’s
and small pi’s as estimated in an exploratory data analysis (Wakefield, 2013, section 7.3.2).
In the next step, we model the log relative risks as follows:

log(λCi ) = βC
0 + xiβ

C + bCi and log(λDi ) = βD
0 + xiβ

D + bDi , (2)

where βC
0 and βD

0 denote, respectively, the overall mean log risks of cases and deaths, xi is
a vector of K = 3 covariates used to model both the cases and deaths associated with the
K-dimensional vectors of coefficients, βC and βD, and bCi and bDi are latent random effects
that accommodate whatever is left after accounting for the available covariates. Further,
the inclusion of the latent random effects in both log risks’ decompositions allows for the
accommodation of overdispersion which is observed in the exploratory data analysis.

We explore bivariate models for the latent random effects, bi = [bCi , b
D
i ]>. The models

that we consider are special cases of the general formulation bi = Γuui + Γvvi, where the

vector of independent random effects, vi = [vCi , v
D
i ]>

i.i.d.∼ N2(0, I2), i = 1, . . . , n, is indepen-
dent of ui = [uCi , u

D
i ]>, the vector of spatially structured effects following independent CAR

models (Besag, 1974), and where Id is the d-dimensional identity matrix and

ΓuΓ>u = Σu =

[
σ2
C,u ρuσC,uσD,u

ρuσC,uσD,u σ2
D,u

]
and ΓvΓ

>
v = Σv =

[
σ2
C,v ρvσC,vσD,v

ρvσC,vσD,v σ2
D,v

]
.

Let the CAR distributed effects u`i | u`
(−i) ∼ N

(∑n
j=1wiju

`
j/di, 1/di

)
, ` = C,D, where

u`
(−i) = [u`1, . . . , u

`
i−1, u

`
i+i, . . . , u

`
n]>, di =

∑n
j=1wij and W = [wij] is the matrix of weights

that defines the neighbourhood structure. Commonly, we define wij = 1 if areas i and j share
a border, denoted by i ∼ j, and wij = 0, otherwise. This neighbourhood structure is used
throughout this paper. Let D = diag(di) and Q = D−W , we may write u` ∼ Nn(0,Q−),
which is not properly defined since Q is not positive definite (Banerjee et al., 2014).

The first special case of the model for bi that we consider is one with independent random

effects across the areas, denoted the IID model: bi = Γvvi
i.i.d.∼ N2(0,Σv). Hence, ρv denotes

the correlation between the latent effects for cases and deaths. When ρv = 0, the IID
joint model results in independent random effects for the cases and deaths inside each area.
Further, if one assumes prior independence between the fixed effects in both models, then it
does not make a difference to perform the inference about the two processes independently
or jointly. In other words, there is no borrow of strength between the number of cases and
deaths within boroughs. If ρv 6= 0, this bivariate IID model allows for dependence between
the deaths and cases within a particular borough.

The IID model, however, does not allow for spatial autocorrelation. Yet, one may ex-
pect the cases from neighbouring areas to be more correlated than cases from further apart
boroughs, and similarly for the numbers of deaths. To adjust for this possible spatial au-
tocorrelation, the second special case that we consider for bi is a multivariate CAR model
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(Lawson, 2020): bi = Γuui. One may write the joint distribution for the long vector of latent
effects, b = [bC1 , . . . , b

C
n , b

D
1 , . . . , b

D
n ], as b ∼ N2n (0,Σb ⊗Q−) (Jin et al., 2007). From this

joint formulation, we see that the multivariate CAR model allows for a dependence between
the cases and deaths of a particular borough as well as between the counts of neighbouring
areas.

The multivariate CAR model assumes a priori that the latent effects are necessarily
distributed according to a spatial structure. To relax this assumption, we consider the mul-
tivariate extension of the BYM model (Besag et al., 1991) that allows for both unstructured
and spatially structured sources of variability. This corresponds to the general formulation,
bi = Γuui + Γvvi. The long vector of latent effects is distributed as b ∼ N2n(0,Σb), for

Σb =

[
σ2
C,uQ

− + σ2
C,vIn ρuσC,uσD,uQ

− + ρvσC,vσD,vIn
ρuσC,uσD,uQ

− + ρvσC,vσD,vIn σ2
D,uQ

− + σ2
D,vIn

]
.

Let Yi = [Ci, Di]
> ≡ [Y C

i , Y
D
i ]>. Although the marginal distribution of Yi with respect to

the latent effects is not available in closed form, it is possible to obtain the marginal moments
using the properties of conditional expectations and the law of total covariance. Table 1
shows the marginal moments of the cases and deaths obtained from the models discussed
above. The detailed computation of these marginal moments is available in Appendix A.
From Table 1 it is clear that the IID model is only able to capture correlation between cases
and deaths within a borough. The covariance will be negative if ρv < 0. On the other hand,
the CAR and BYM models are able to accommodate correlations both within and among
neighbouring boroughs. In the CAR model, if ρu < 0 the correlation within and among
neighbouring boroughs will be negative, and positive if ρu > 0. In the BYM model, there
are two parameters capturing the correlation within a borough, and a negative correlation
results if ρuσC,uσD,u[Q−]ii + ρvσC,vσD,v < 0. On the other hand, for neighbouring boroughs
the correlation is captured only by the parameter ρu so that if ρu < 0 a negative correlation
results in this case.

2.1. Investigating spatial confounding: a Bayesian alternative to Spatial+

When modelling disease risks through a Poisson model, Clayton et al. (1993) noted that
covariates effects may change in the presence of spatially structured latent effects. This
issue is termed spatial confounding (Reich et al., 2006). Spatial confounding corresponds
to the situation where spatially structured latent effects are correlated with the covariates,
resulting in biased estimates of the fixed effects (Reich et al., 2006; Page et al., 2017). Reich
et al. (2006) proposed a restricted spatial regression (RSR) model to overcome this issue, by
removing the collinearity between the covariates and the spatial effects. However, Khan and
Calder (2020) point out that RSR models are challenging to use. Additionally to leading to
a loss of computational efficiency, these models cannot be naturally extended to other spatial
models than the conditional autoregressive ones. Khan and Calder (2020) also note that
their use may entail an increased type-S error for both correctly and incorrectly specified
models, where a type-S error occurs when a posterior confidence interval for a particular
coefficient does not include 0 even though the true value is 0. Recently, Dupont et al. (2021)
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Model Moment

IID

E(Y `
i ) = E`

i exp
(
β`
0 + xiβ

` + σ2
`,v/2

)
≡ µ`

i

V(Y `
i ) = µ`

i

[
1 + µ`

i

{
exp(σ2

`,v)− 1
}]

Cov(Ci, Dj) =

{
µC
i µ

D
i [exp(ρvσC,vσD,v)− 1] , if i = j,

0, otherwise.

CAR

E(Y `
i ) = E`

i exp
(
β`
0 + xiβ

` + σ2
`,u[Q−]ii/2

)
≡ µ`

i

V(Y `
i ) = µ`

i

[
1 + µ`

i

{
exp

(
σ2
`,u[Q−]ii

)
− 1
}]

Cov(Ci, Dj) =


µC
i µ

D
i [exp (ρuσC,uσD,u[Q−]ii)− 1] , if i = j,

µC
i µ

D
j [exp (ρuσC,uσD,u[Q−]ij)− 1] , if i ∼ j,

0, otherwise.

BYM

E(Y `
i ) = E`

i exp
(
β`
0 + xiβ

` + σ2
`,v/2 + σ2

`,u[Q−]ii/2
)
≡ µ`

i

V(Y `
i ) = µ`

i

[
1 + µ`

i

{
exp(σ2

`,v)− 1
}{

exp
(
σ2
`,u[Q−]ii

)
− 1
}]

Cov(Ci, Dj) =


µC
i µ

D
i [exp (ρuσC,uσD,u[Q−]ii + ρvσC,vσD,v)− 1] , if i = j,

µC
i µ

D
j [exp (ρuσC,uσD,u[Q−]ij)− 1] , if i ∼ j,

0, otherwise,

Table 1: Marginal moments of Yi = [Ci, Di]
> = [Y C

i , Y
D
i ]>, i = 1, . . . , n, for each model, where ` = C,D.

proposed an approach to accommodate spatial confounding called Spatial+. The proposal
is to “regress away” the spatial structure from the covariates and only include the residuals
from such regression in the modelling of the variable of interest. Dupont et al. (2021) suggest
to use Spatial+ as a tool to investigate for the presence of spatial confounding. If after fitting
a model with and without spatial effects the fixed effects estimates are similar, this might
be an indication that there is no spatial confounding. The Spatial+ approach of Dupont
et al. (2021) is based on generalised additive models (GAM). As pointed out by Dupont
et al. (2021), because of the relationship between splines and Gaussian Markov random
fields (GMRF), Spatial+ can also be used when one captures the spatial structure through
a GMRF. Next, we follow Schmidt (2021) and describe how to adapt the Spatial+ approach
when the latent effect follows a CAR prior distribution.

Let x·k = [x1k, . . . , xnk]> be the vector for the kth covariate. For each covariate k =
1, . . . , K, we model the covariates through Gaussian distributions with latent spatial effects
that follow a CAR distribution a priori. More specifically, let

xik ∼ N (β0k + fik, σ
2
k), (3)

where, a priori, fk = [f1k, . . . , fnk] ∼ Nn(0, σ2
fkQ

−). After assigning prior distributions
to the parameters for the model of each x·k we follow the Bayesian paradigm and obtain a
sample from the resultant posterior distribution. Then, we define rik as the posterior mean of
the residual xik − β̂0k − f̂ik, i = 1, . . . , N, j = 1, . . . , K, where β̂0k and f̂ik are, respectively,
the point estimates (posterior means) of β0k and fik. Finally, each vector of potentially
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spatially confounded covariate, x·k is replaced by r·k = [r1k, . . . , rnk]>, k = 1, . . . , K in the
models for the cases and deaths that include spatial effects.

2.2. Inference procedure

In the fully Bayesian framework that we consider, regardless of the prior specification of
the parameters, none of the Poisson models fitted to the data result in closed form poste-
rior distributions. Hence, we approximate these posterior distributions using computational
methods, specifically, Markov chain Monte Carlo (MCMC) methods. The MCMC proce-
dures are run in R using the Nimble package (de Valpine et al., 2017, 2021). The advantage
of Nimble is that censored outcome values are naturally accounted for, as is necessary for
the areas Baie-d’Urfé and Montréal-Ouest.

The CAR prior is not a proper distribution and is invariant to the addition of a constant
(Rue and Held, 2005). This implies there is an identifiability issue between the spatially
structured effects and the global mean, the intercept. To ensure the posterior distribution is
proper, we impose a sum-to-zero constraint for each of the CAR distributed effects. For each
of the MCMC iterations, we impose (1/n)

∑n
i=1 u

`
i = 0, ` = C,D. Lawson (2020) discusses

how to implement the multivariate CAR model in Nimble. The Nimble codes used for this
analysis are all available in Appendix C.

3. Results

For each of the 33 boroughs and related cities of Montreal, we have available the case
and death counts due to COVID-19 that were recorded until July 25th, 2021. Let Ci be
the case count in area i = 1, . . . , 33, and Di, the death count. The spatial distributions of
the cases and deaths are shown in Figure 1 in Section 1. To model the cases and deaths,
we consider as covariates the number of residential and long-term care centre beds, the
percentage of the population with a university diploma, and the median age in each area.
Figure 2 shows the maps of the variables as included in the models. The median age is
scaled and the log of the number of beds is computed. Note that the log scale is used to
assume a normal approximation of the number of beds. This is necessary, when fitting the
Spatial+ models, as we assume that the covariates are normally distributed when adjusting
for potential spatial confounding following Dupont et al. (2021). The resulting covariates
from the spatial confounding adjustment are shown in Figure B.6 in Appendix B.
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Log beds
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Figure 2: Maps of the three covariates included in the models

We are interested in assessing the association of the selected covariates with the num-
ber of cases and deaths. We are also interested in measuring the correlation between the
cases and deaths inside a particular area or between neighbouring areas. To that end, we
allow for a spatial autocorrelation between the cases and deaths, as described in Section 2.
Hence, we fit six different Poisson models, as described in Section 2. Table 2 presents the
models characteristics, namely the form of the latent effects, b`i , i = 1, . . . , 33, ` = C,D,
and the covariates included. For all these models, the same priors are defined for the pa-
rameters involved in the fixed effects: βC

0 , β
D
0 , β

C
k , β

D
k ∼ N (0, 102), k = 1, 2, 3. Additionally,

the relevant standard deviations that appear in the latent effects’ prior distributions are
given a half-Cauchy prior, σ`,v, σ`,u ∼ HC(0, 1), ` = C,D. Finally, when appropriate, the
latent effects’ correlation parameters are assumed to follow a noninformative uniform prior
distribution: ρv, ρu ∼ U(−1, 1).

Latent effects Covariates included in the fixed effects
Unstructured Structured Original Adjusted for Spatial Confounding

Γvvi Γuui x·k r·k

Simple - - X -
IID X - X -
CAR - X X -
BYM X X X -
CAR+ - X - X
BYM+ X X - X

Table 2: List of the fitted models to the number of cases and deaths due to COVID-19 across the boroughs
of Montreal. The symbol Xdenotes which components were included in the respective model.

The models are fitted through the R package Nimble (de Valpine et al., 2021). The
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MCMC procedure consists of 2 chains of 800,000 iterations each, with a burn-in period of
400,000 iterations and a thinning factor of 160. An elliptical slice sampler is used for the
regression coefficients, as these are normally distributed a priori. This sampler was chosen
to efficiently sample from these posterior full conditionals. Metropolis-Hastings algorithms
are used for the independent random effects in the IID, BYM and BYM+ models. For
the spatial effects included in the CAR, BYM, CAR+, and BYM+ models, the default
CAR normal sampler from Nimble is used. The chains have mixed well, as assessed by the
trace plots, effective sample sizes and the statistic proposed by Gelman and Rubin (1992).
The reason for the need of these long chains seems to be related to the possible collinearity
between the variable diploma and the models that include a spatial effect. The IID model
and the ones that accommodate spatial confounding showed convergence before reaching the
burn in of 400,000 iterations. For consistency, all models were fitted with the same number
of iterations.

The posterior summaries for the fixed effects’ coefficients are presented in Figure 3 for
each model. The solid circles correspond to the estimated posterior means, while the seg-
ments are the limits of the 95% posterior credible intervals. The first row corresponds to
the fixed effects in the log relative risk of cases and the second row, to the ones in the log
relative risk of recorded deaths due to COVID-19. Clearly, the inclusion of random effects
in each of the equations change the importance of each of the covariates. The covariate
beds is negatively associated with the log relative risk of cases under the Simple model and
as a random effect is included in the model, zero falls within the 95% posterior credible
interval, suggesting that the number of beds is not associated with the cases. For the log
relative risk of deaths, on the other hand, the association with the number of beds is strictly
positive. This is expected as the majority of deaths in Quebec are connected to residential
and long-term care centres.

The variable diploma is negatively associated with the log relative risk of cases. The
range of the 95% posterior credible interval is much wider under the CAR+ and BYM+
models than the ones obtained under the IID and CAR models. Although diploma results
in a positive association with the log relative risk of death under the Simple model, once
a random effect is included, zero is within the 95% posterior credible of the coefficient
associated with diploma. This suggests that the average educational level of the borough is
not associated with the risk of death.

For the median age of the borough, the Simple and IID models suggest a negative
association with the log relative risk of cases and a positive association with the log relative
risk of deaths. For the log relative risk of cases once a spatial structure is included in the
model, zero falls within the 95% posterior credible interval. This is also true for the CAR+
and BYM+ models which account for spatial confounding.
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Figure 3: Posterior summaries for the model coefficients across all the fitted models. Solid circles: posterior
means; Vertical lines: 95% posterior credible intervals; Dashed line: indicates no association.

We model the cases and deaths jointly in order to borrow strength from the different
recordings both inside each area (e.g., IID model) and between areas (e.g., CAR model).
Figure 4 shows the posterior summaries (posterior mean and posterior 95% credible inter-
val) for the correlation coefficients, ρv and ρu, respectively included in the latent effects’
IID, CAR, CAR+, BYM or BYM+ models. The BYM and BYM+ yield posterior 95%
credible intervals that include 0 for ρu and ρv. On the other hand, the IID, CAR and
CAR+ result in negative correlations between the latent effects for the cases and for the
deaths ([−0.73,−0.08], [−0.72,−0.07] and [−0.76,−0.02], respectively). This suggests that
modelling the cases and deaths jointly is adequate. Note that for the BYM and BYM+
models, if the posterior 95% credible limits for ρu and ρv include zero, this does not neces-
sarily imply that the marginal correlations will also include zero. From Table 1, it is clear
that under models BYM and BYM+ the correlation between cases and deaths within and
across boroughs also depends on the latent effects’ standard deviations as well as the spatial
structure. Figure B.7 in Appendix B shows the posterior summaries for the intra-borough
correlation between cases and deaths for each model. Although ρu and ρv have posterior
credible intervals that include zero, the BYM model yields strictly negative intervals in 19
boroughs.
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Figure 4: Posterior summaries for the correlation coefficient of the latent effects. Solid circles: posterior
means; Vertical lines: 95% posterior credible intervals. Dashed line: ρu = 0 and ρv = 0.

Another goal of this analysis, other than to investigate the association of the log relative
risks of cases and deaths with the available covariates, is to estimate the correlation between
the cases and deaths within and across boroughs. The posterior summaries for the intra-
borough correlations between cases and deaths obtained for each model are available in
Appendix B, in Figure B.7 and the posterior means for the correlation between areas
estimated under the CAR, BYM, CAR+, and BYM+ models are available in Appendix B,
in Figure B.8, Figure B.9, Figure B.10 and Figure B.11, respectively. We note that all the
estimated correlations are negative. Figure 5 maps the posterior means of the correlations
between cases and deaths inside each borough for each model that include latent effects. The
IID model does not allow for a correlation across boroughs but does accommodate an intra-
borough correlation (see Table 1). All the models estimate negative correlations between
the cases and deaths on average a posteriori. For example, the correlation’s posterior mean
in Senneville is −0.2 for the CAR model and −0.1 for the BYM model. In Côte-des-Neiges-
Notre-Dame-de-Grâce, the posterior mean is −0.4 for the CAR+ model and −0.3 for the
BYM. For the IID, CAR and CAR+ models, the correlations’ posterior 95% credible intervals
(see Figure B.7 in Appendix B) are always negative. In Figure 5, there does not seem to be
a spatial structure in the negative posterior means of the intra-borough correlations between
the cases and deaths due to COVID-19. Additionally, Figure B.12 in Appendix B maps
the relative risks of cases and deaths as estimated by each model. The negative correlations
between cases and deaths can be visualized in this Figure B.12. For example, the southwest
region of Montreal has low estimated risks of cases but high estimated risks of deaths for
each model.
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Figure 5: Maps of the posterior means of the intra-borough correlation between cases and deaths for each
model. These correlations were estimated based on the equations for the covariance under each model shown
in Table 1.

Finally, we compare the models’ performances using the WAIC (Watanabe and Opper,
2010) in Table 3. In terms of WAIC, for which smaller values are preferred, the Simple
model is the least adequate among the fitted ones, with a value of 3,320 and 265 effective
number of parameters. This suggests that there is a need for latent effects in the modelling
of cases and deaths due to COVID-19 in Montreal. However, there does not seem to be a
need for a spatial structure in these random effects as the CAR, BYM, CAR+, and BYM+
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all perform worse than the IID model. The IID model yields a WAIC of 205 whereas the
others yield a WAIC of 212, 225, 243 and 227, respectively.

Simple IID CAR BYM CAR+ BYM+

WAIC 3320.1 205.0 212.2 224.9 242.7 227.1
pW 265.2 57.2 60.7 67.2 75.3 68.0

Table 3: Values of WAIC and effective number of parameters for each fitted model. The smallest value
indicates the best model among fitted ones (in italics).

4. Discussion

In this paper, we analyse the case and death counts due to COVID-19 across the 33
boroughs of Montreal, as of July 25th, 2021. We fit six different models with conditional
Poisson distributions for the cases and for the deaths in each borough. The areal means
are decomposed in the log scale as the sum of an offset, fixed effects, and latent random
effects. One model is fitted without latent effects. We then allow for a correlation between
the cases’ latent effects and the deaths’ latent effects within an area. In one model, we
assume that the latent effects are independent across the areas, whereas in the other four
models, we accommodate a potential spatial autocorrelation between the latent effects of
neighbouring areas. In two of these models, we set multivariate CAR and BYM priors for
the latent effects. In the final two models, we first adjust the covariates for potential spatial
confounding following Dupont et al. (2021) and then consider again multivariate CAR and
BYM priors for the latent effects.

Interestingly, the posterior summaries for the fixed effects parameters are reversed be-
tween the cases and deaths components of the models. Regarding the log number of beds,
the coefficient has posterior 95% credible intervals that include zero for the cases (through
the IID, CAR, BYM, CAR+, and BYM+ models) but the posterior credible intervals are
strictly positive for the deaths. We used the number of beds in CHSLDs as a proxy for the
healthcare infrastructure in Montreal. This result suggests that this covariate has no link
with the recorded number of cases but that, given the number of cases, an increased number
of beds corresponds to a higher risk of death due to COVID-19. This result is consistent
with the COVID-19 situation in Montreal and in the province of Quebec. In particular,
residential and long-term care centres were the epicentre of the COVID-19 crisis in Quebec
(Hsu et al., 2020; Institut national de santé publique du Québec, 2021). The associations
between the percentage of the population with a university diploma and the cases and deaths
due to COVID-19 in Montreal are also different for each outcome considered. There does
not seem to be a relationship between the percentage of people with diploma and the risk
of death due to COVID-19, given the cases, for the IID, CAR, BYM, CAR+, and BYM+
models. On the other hand, each model results in negative posterior credible intervals for
the effects of the diploma on the number of cases. The diploma variable is used as a proxy
to the socio-economic situation of each borough in Montreal. This result seems to be aligned
with other studies that also found that level of education is negatively associated with the
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log risk of cases (see e.g., Hawkins et al. (2020)). Finally, the risk of COVID-19 cases does
not seem to be associated with age for the CAR, BYM, CAR+, and BYM+ models whereas
older populations seem correlated with higher risks of death due to COVID-19. Once again,
this result agrees with the current knowledge on COVID-19: all may contract COVID-19,
but younger people are less likely to die from this disease (Williamson et al., 2020).

As the importance of the covariates changed when a latent spatially structured random
effect was considered, we also investigated if there is spatial confounding by fitting a Bayesian
version of the method proposed by Dupont et al. (2021). We find that the log number of
beds does not seem to be spatially confounded whereas the diploma and median age do. As
suggested by Dupont et al. (2021), we believe there is an interest in adjusting for spatial
confounding even when there is no intuition of spatial confounding, as their method can be
used as a test for the presence or absence of such confounding. However, in terms of WAIC,
the model with only IID latent effects seems to perform the best among the fitted ones. This
suggests that there is no need to account for spatially structured latent effects. Note that
the adjustment for spatial confounding is unnecessary in this IID model.

We believe that there is an interest to the data analysis conducted in this paper, as we are
able to provide an estimate of the correlations between the cases and deaths due to COVID-
19 within, and across, boroughs. Fitting separate models for cases and deaths, or even joint
models that assume parameters to be independent a priori, such as in the Simple model,
impose independence between cases and deaths. Our proposed approach allows the data to
drive the inference procedure, and if there is correlation between the two outcomes, this can
be estimated through the marginal correlations computed from the results shown in Table
1. Note that in terms of WAIC, we find that the Simple model performs worse than the five
other models that include latent effects which allow for marginal correlations between cases
and deaths both within and across boroughs. Finally, we find that the correlation between
the cases and deaths due to COVID-19 within and between boroughs is always negative.
This may be due to the aggregation of cases and deaths over time. We only have available
aggregated data, which may yield different correlations than what would be observed at a
certain time or through a temporal analysis. Looking at aggregated provincial time series of
cases and deaths due to COVID-19, the number of cases and deaths were positively correlated
at the beginning of the pandemic. We hypothesise that the estimated negative correlation
between cases and deaths are related to different policies that were instituted throughout the
pandemic and, moreover, due to the fact that people started being vaccinated. For instance,
in the province of Quebec, the number of cases increased from 573 to 1683 between March
15th, 2021, and April 15th, 2021, whereas the vaccination coverage for the population aged
80 and older increased from 57.9% to 91.1% in the same period (Institut national de santé
publique du Québec, 2021). It can be observed in the aggregated time series that, in this
period, the daily number of deaths somewhat stabilised at low numbers.

In this paper, we used the median age of the boroughs as a proxy to the age population
profile. If data for different age groups are available, one could consider models for case and
death counts for each age stratum, allowing for different effects of the available variables
and correlation parameters across the different age groups. In this framework, one would
need to carefully consider the inclusion of the number of long-term care home beds in the
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various strata.
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Bonanad, C., Garćıa-Blas, S., Tarazona-Santabalbina, F., Sanchis, J., Bertomeu-González, V., Fácila, L.,
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Appendix A. Detailed computation of the covariance between cases and deaths

In this section, we develop the general expression for the correlation between the cases
and deaths inside each area and between areas. Recall the general formulation of the model
described in section 2 for Ci, the number of cases in area i, i = 1, . . . , n, and Di, the death
count:

Ci ∼ Pois(EC
i λ

C
i ) and Di | Ci ∼ Pois(ED

i λ
D
i ),

where Pois stands for the Poisson distribution and where EC
i and ED

i are offsets. We further
decompose the relative risks, λCi and λDi , in the log scale as follows:

log(λCi ) = βC
0 + xiβ

C + bCi and log(λDi ) = βD
0 + xiβ

D + bDi ,

for βC
0 and βD

0 the mean log risks and for xi the vector of K covariates associated to the
coefficients βC and βD. The latent random effects bCi and bDi may be defined in the general
form:

bi ≡ [bCi , b
D
i ]> = Γuui + Γvvi,

where vi = [vCi , v
D
i ]>

i.i.d.∼ N2(0, I2) is independent of ui = [uCi , u
D
i ]>, for u` ∼ Nn(0,Q−), ` =

C,D, with Id, the d × d identity matrix, Q, the matrix defining the spatial structure, and
with

ΓuΓ>u = Σu =

[
σ2
C,u ρuσC,uσD,u

ρuσC,uσD,u σ2
D,u

]
and ΓvΓ

>
v = Σv =

[
σ2
C,v ρvσC,vσD,v

ρvσC,vσD,v σ2
D,v

]
.

Hence, the distribution for the long vector b = [bC1 , . . . , b
C
n , b

D
1 , . . . , b

D
n ]> is b ∼ N2n(0,Σb),

for

Σb =

[
σ2
C,uQ

− + σ2
C,vIn ρuσC,uσD,uQ

− + ρvσC,vσD,vIn
ρuσC,uσD,uQ

− + ρvσC,vσD,vIn σ2
D,uQ

− + σ2
D,vIn

]
.

Given the fixed effects, we can compute the marginal covariances between cases and deaths,
marginalising over the random effects:

Cov(Ci, Dj) = CovbCi ,bDj

[
E(Ci | bCi ),E(Dj | bDj )

]
+ EbCi ,bDj

[
Cov(Ci, Dj | bCi , bDj )

]
= EC

i exp(βC
0 + xiβ

C)ED
j exp(βD

0 + xjβ
D)CovbCi ,bDj

[
exp(bCi ), exp(bDj )

]
= EC

i E
D
j exp(βC

0 + xiβ
C) exp(βD

0 + xjβ
D)

× exp

(
1

2
[Σb,ii + Σb,(n+j)(n+j)]

)[
exp(Σb,i(n+j))− 1

]
= E(Ci)E(Dj)

[
exp(Σb,i(n+j))− 1

]
,

with marginal expectation for the cases E(Ci) = EC
i exp(βC

0 +xiβ
C + 1/2[σ2

C,u[Q−]ii +σ2
C,v])

and for the deaths E(Dj) = ED
j exp(βD

0 + xjβ
D + 1/2[σ2

D,u[Q−]jj + σ2
D,v]). Hence, inside a

particular area i, for i = j, we have

Cov(Ci, Di) = E(Ci)E(Di)
[
exp(ρuσC,uσD,u[Q−]ii + ρvσC,vσD,v)− 1

]
.

Across areas, if i and j are not neighbouring areas, then Cov(Ci, Dj) = 0 and if i ∼ j, we
obtain

Cov(Ci, Di) = E(Ci)E(Di)
[
exp(ρuσC,uσD,u[Q−]ij)− 1

]
.

19

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 11, 2021. ; https://doi.org/10.1101/2021.10.06.21264645doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.06.21264645
http://creativecommons.org/licenses/by/4.0/


Appendix B. Additional results from the analysis of cases and deaths due to
COVID-19 in Montreal

The maps of the covariates after adjusting for the spatial confounding are shown in Figure
B.6. Figure B.7 shows the posterior summaries for the intra-borough correlation between the
cases and deaths, as estimated by the IID, CAR, BYM, CAR+, and BYM+ models. Figures
B.8, B.9, B.10 and B.11 plot the posterior means for the correlations between boroughs. The
posterior means for the relative risks from each model are mapped in Figure B.12.

−1.5 −0.5 0.5
Log beds

−0.02 0.00 0.03
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Figure B.6: Maps of the three covariates included in the models after adjusting for spatial confounding
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Figure B.7: Posterior summaries for the intra-borough correlation between cases and deaths for each of the
IID, CAR, BYM, CAR+, and BYM+ models
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Figure B.8: Posterior means of the correlation between deaths and cases inside and between the borough
for the CAR model
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Figure B.9: Posterior means of the correlation between deaths and cases inside and between the borough
for the BYM model
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Figure B.10: Posterior means of the correlation between deaths and cases inside and between the borough
for the CAR+ model
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Figure B.11: Posterior means of the correlation between deaths and cases inside and between the borough
for the BYM+ model
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Figure B.12: Maps of the posterior means for the relative risks estimated from the six models for the cases
and deaths. Rows 1 & 2: Simple, CAR and IID models; Rows 3 & 4: BYM, CAR+, and BYM+ models.
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Appendix C. Nimble codes

The Nimble codes used to perform the analyses presented in this paper are listed below.

Listing 1: Nimble code for the joint model with independent latent effects (IID)

1 IID Code <− nimbleCode({
2 for(i in 1:N){
3 # Likelihood
4 cases[i] ˜ dpois(exp(b[i,1]))
5 lambda cases[i] <− exp(b[i,1])
6 censored[i] ˜ dinterval(deaths[i], c[i,])
7 deaths[i] ˜ dpois(exp(b[i,2]))
8 lambda deaths[i] <− exp(b[i,2])
9

10 # Priors
11 mean b[i,1] <− log(E cases[i]) + beta0 cases + inprod(X[i,1:p], beta cases[1:p])
12 mean b[i,2] <− log(E deaths[i]) + beta0 deaths + inprod(X[i,1:p], beta deaths[1:p])
13

14 b[i,1:2] ˜ dmnorm(mean=mean b[i,1:2], cholesky=Chol Sigma b[1:2,1:2], prec param=0)
15 b cases[i] <− b[i,1] − mean b[i,1]
16 b deaths[i] <− b[i,2] − mean b[i,2]
17 }
18

19 Sigma b[1,1] <− sigma b casesˆ2
20 Sigma b[1,2] <− rho∗sigma b cases∗sigma b deaths
21 Sigma b[2,1] <− rho∗sigma b cases∗sigma b deaths
22 Sigma b[2,2] <− sigma b deathsˆ2
23 Chol Sigma b[1:2,1:2] <− chol(Sigma b[1:2,1:2])
24

25 beta0 cases ˜ dnorm(0, sd=10)
26 beta0 deaths ˜ dnorm(0, sd=10)
27 for(k in 1:p){
28 beta cases[k] ˜ dnorm(0, sd=10)
29 beta deaths[k] ˜ dnorm(0, sd=10)
30 }
31 sigma b cases ˜ T(dt(0,1,1),0,)
32 sigma b deaths ˜ T(dt(0,1,1),0,)
33 rho ˜ dunif(−1,1)
34 })

Listing 2: Nimble code for the joint model with spatial latent effects (CAR)

1 CAR Code <− nimbleCode({
2 for(i in 1:N){
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3 # Likelihood
4 cases[i] ˜ dpois(lambda cases[i])
5 lambda cases[i] <− exp(log(E cases[i]) + beta0 cases + inprod(X[i,1:p], beta cases[1:p])
6 + s[i,1])
7 censored[i] ˜ dinterval(deaths[i], c[i,])
8 deaths[i] ˜ dpois(lambda deaths[i])
9 lambda deaths[i] <− exp(log(E deaths[i]) + beta0 deaths

10 + inprod(X[i,1:p], beta deaths[1:p]) + s[i,2])
11

12 s[i,1:2] <− Achol[1:2,1:2] %∗% u[i, 1:2]
13 s cases[i] <− s[i,1]
14 s deaths[i] <− s[i,2]
15 }
16

17 # Priors
18 beta0 cases ˜ dnorm(0, sd=10)
19 beta0 deaths ˜ dnorm(0, sd=10)
20

21 u[1:N,1] ˜ dcar normal(adj[1:L], weights[1:L], num[1:N], 1, zero mean=1)
22 u[1:N,2] ˜ dcar normal(adj[1:L], weights[1:L], num[1:N], 1, zero mean=1)
23

24 Sigma b[1,1] <− sigma b casesˆ2
25 Sigma b[1,2] <− rho∗sigma b cases∗sigma b deaths
26 Sigma b[2,1] <− rho∗sigma b cases∗sigma b deaths
27 Sigma b[2,2] <− sigma b deathsˆ2
28 Achol[1:2,1:2] <− t(chol(Sigma b[1:2,1:2]))
29

30 sigma b cases ˜ T(dt(0,1,1),0,)
31 sigma b deaths ˜ T(dt(0,1,1),0,)
32 rho ˜ dunif(−1,1)
33

34 for(k in 1:p){
35 beta cases[k] ˜ dnorm(0, sd=10)
36 beta deaths[k] ˜ dnorm(0, sd=10)
37 }
38 })

Listing 3: Nimble code for the joint model with spatial and independent latent effects (BYM)

1 BYM Code <− nimbleCode({
2 for(i in 1:N){
3 # Likelihood
4 cases[i] ˜ dpois(exp(theta[i,1] + s[i,1]))
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5 lambda cases[i] <− exp(theta[i,1] + s[i,1])
6 censored[i] ˜ dinterval(deaths[i], c[i,])
7 deaths[i] ˜ dpois(exp(theta[i,2] + s[i,2]))
8 lambda deaths[i] <− exp(theta[i,2] + s[i,2])
9

10 s[i,1:2] <− Achol[1:2,1:2] %∗% u[i, 1:2]
11 s cases[i] <− s[i,1]
12 s deaths[i] <− s[i,2]
13

14 mean theta[i,1] <− log(E cases[i]) + beta0 cases + inprod(X[i,1:p], beta cases[1:p])
15 mean theta[i,2] <− log(E deaths[i]) + beta0 deaths + inprod(X[i,1:p], beta deaths[1:p])
16 theta[i,1:2] ˜ dmnorm(mean theta[i,1:2], cholesky=Chol Sigma theta[1:2,1:2])
17 theta cases[i] <− theta[i,1] − mean theta[i,1]
18 theta deaths[i] <− theta[i,2] − mean theta[i,2]
19 }
20

21 # Priors
22 beta0 cases ˜ dnorm(0, sd=10)
23 beta0 deaths ˜ dnorm(0, sd=10)
24

25 u[1:N,1] ˜ dcar normal(adj[1:L], weights[1:L], num[1:N], 1, zero mean=1)
26 u[1:N,2] ˜ dcar normal(adj[1:L], weights[1:L], num[1:N], 1, zero mean=1)
27

28 Sigma s[1,1] <− sigma s casesˆ2
29 Sigma s[1,2] <− rho s∗sigma s cases∗sigma s deaths
30 Sigma s[2,1] <− rho s∗sigma s cases∗sigma s deaths
31 Sigma s[2,2] <− sigma s deathsˆ2
32 Achol[1:2,1:2] <− t(chol(Sigma s[1:2,1:2]))
33

34 sigma s cases ˜ T(dt(0,1,1),0,)
35 sigma s deaths ˜ T(dt(0,1,1),0,)
36 rho s ˜ dunif(−1,1)
37

38 Sigma theta[1,1] <− sigma theta casesˆ2
39 Sigma theta[1,2] <− rho theta∗sigma theta cases∗sigma theta deaths
40 Sigma theta[2,1] <− rho theta∗sigma theta cases∗sigma theta deaths
41 Sigma theta[2,2] <− sigma s deathsˆ2
42 Chol Sigma theta[1:2,1:2] <− chol(Sigma theta[1:2,1:2])
43

44 sigma theta cases ˜ T(dt(0,1,1),0,)
45 sigma theta deaths ˜ T(dt(0,1,1),0,)
46 rho theta ˜ dunif(−1,1)
47
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48 for(k in 1:p){
49 beta cases[k] ˜ dnorm(0, sd=10)
50 beta deaths[k] ˜ dnorm(0, sd=10)
51 }
52 })
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