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ABSTRACT 

 

Objective: The COVID-19 pandemic generated a massive amount of clinical 

data, which potentially holds yet undiscovered answers related to COVID-19 

morbidity, mortality, long term effects, and therapeutic solutions. The objective of 

this study was to generate insights on COVID-19 mortality-associated factors and 

identify potential new therapeutic options for COVID-19 patients by employing 

artificial intelligence analytics on real-world data. 

 

Methods: A Bayesian statistics-based artificial intelligence data analytics tool 

(bAIcis®) within Interrogative Biology® platform was used for network learning, 

inference causality and hypothesis generation to analyze 16,277 PCR positive 

patients from a database of 279,281 inpatients and outpatients tested for SARS-

CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic 

year in Central Florida. This approach generated causal networks that enabled 

unbiased identification of significant predictors of mortality for specific COVID-19 

patient populations. These findings were validated by logistic regression, 

regression by least absolute shrinkage and selection operator, and 

bootstrapping.  
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Results: We found that in the SARS-CoV-2 PCR positive patient cohort, early 

use of the antiemetic agent ondansetron was associated with increased survival 

in mechanically ventilated patients.  

 

Conclusions: The results demonstrate how real world COVID-19 focused data 

analysis using artificial intelligence can generate valid insights that could possibly 

support clinical decision-making and minimize the future loss of lives and 

resources. 
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INTRODUCTION 

 

Background and significance 

As of September 2021, an estimated 221 million cases of COVID-19 and over 

4.5 million deaths have been reported worldwide [1]. The United States has 

reported the largest proportion of COVID-19 cases estimated at 40 million with 

approximately 650,000 reported deaths [1]. Worldwide efforts are currently 

focused on the implementation of an aggressive vaccination program to control 

the pandemic. Despite the control strategies of limiting COVID-19 infections by 

physical measures (use of masks, isolation, social distancing) and vaccination, 

the emergence of new SARS-CoV-2 variants across the globe, the increased 

incidence of breakthrough infections, especially in the younger population, and 

the evolving understanding of infection cycles and re-emergence provides 

impetus for continued investigation of real-world data (RWD). This investigation 

can generate insights into disease susceptibility and long-term effects, and as 

well can provide potential therapeutic strategies. 

 

The revolution in computational analytics, including the considerable progress 

achieved in the application of artificial intelligence (AI) and machine learning (ML) 
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capabilities, in tandem with access to high-density RWD and clinical evidence, 

provides a suitable environment to generate hypothesis-agnostic insights for the 

management of health and disease. Further, the availability of supercomputers 

and cloud-based high-performance computing capabilities significantly increases 

analytical depth and reduces time required to perform higher order AI/ML 

analytics of large population-based datasets, thus permitting a better 

understanding of disease etiology and facilitating the identification of novel 

information pertinent to disease management. 

AI has been extensively applied to analyze various COVID-19 data, including to 

aid diagnostics and in therapeutic design [2]. In RWD AI, machine learning has 

been used to predict the probability of ARDS based on the clinical characteristics 

of COVID patients [3]. A further study, on 3,194 COVID-19 cases in the Emory 

Healthcare network, assessed whether a COVID-19 patient’s need for 

hospitalization can be predicted at the time of their RT-PCR test using electronic 

medical records data prior to the test [4].   

Although concern has been raised about the use of untested AI programs and 

small data sets in COVID research [5], AI continues to play a major role in 

COVID decision making. Of particular importance in the current pandemic is 

finding causal relationships for disease outcomes, and in this respect, Bayesian 

networks are ideal for taking an event that occurred and predicting the likelihood 

that any one of several possible causes was the main contributing factor. 

Bayesian networks create a network of dependency links among variables of 

interest that enable inference of causality [6]. Such analysis has the benefit of 
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determining which independent variables are directly associated with a clinical 

outcome variable of interest (e.g., death, admission to intensive care unit), and 

which variables are located farther in the chain of causality. A drawback of 

Bayesian networks is that their computational complexity is relatively high, but 

this can be overcome with sufficiently large computational power, as we did in 

our study. 

 

The current study combines a large amount of COVID-19-focused RWD from 

AdventHealth that was analyzed using a Bayesian statistics driven platform on a 

supercomputer at Oak Ridge National Laboratory (ORNL). This collaboration 

allowed us to leverage the data availability and computational capacities in a 

data-driven manner to generate causal network models to identify factors 

associated with disease severity, increased survival and mortality, including 

drugs that have the potential to improve outcomes in COVID-19 patients. We 

used the bAIcis algorithm [7] to develop Bayesian networks based on various 

patient subpopulations and patient features from different time windows, before 

and after COVID-19 diagnosis, in order to identify those variables having a likely 

causal association with mortality. One of our key findings is that mortality has a 

dependency on the use of ondansetron, a widely used anti-emetic medication. 

After examining the interaction of ondansetron use with other variables of interest 

previously found to predict death, we found that the beneficial effect of 

ondansetron on mortality is specifically seen in patients on mechanical ventilator. 
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MATERIALS AND METHODS 

 

Data collection 

AdventHealth, headquartered in Orlando, FL, is one of the largest non-profit 

health care systems in the United States with over 50 hospitals in 12 states, and 

5 million patient encounters annually (including inpatient, outpatient, and 

emergency visits). Early in the SARS-CoV-2 pandemic, AdventHealth 

established the Registry and Biorepository of COVID-19 (RECOVER-19), a 

registry of all patients tested for SARS-CoV-2 within the AdventHealth Enterprise 

(IRBnet # 1590483). The registry comprised raw data extracted from the 

AdventHealth Cerner Electronic Health Records (EHR) system and was made 

available in the Data Lake powered by the Integrated Data for Enterprise 

Analytics (IDEA) platform. The registry collected associated data from inpatients 

and outpatients, structured in 9 data tables, using the approach described in the 

supplemental methods (Supp. Table 1): Patient IDs, COVID-19 encounters, 

Diagnoses, Problems (patient personal medical history starting 2016), 

Procedures related to the COVID-19 visit, Clinical Events, Lab Results, In-house 

Medication Administration Records (MAR), Recorded Home and Prescription 

Discharge medications. To allow for greater user control, the Clinical 

Classifications Software Refined (CCSR) was implemented [8]. This study was 

approved by the AdventHealth Institutional Review Board (#1590483). 
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Cohort selection 

The RECOVER-19 registry, which is continuing to collect data, included 279,281 

inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, 

or PCR methods from January to December 2020. From the 35,504 positive 

patients thus found, we selected for this analysis only the 16,277 found positive 

by PCR, due to higher confidence in this method (Figure 1).  

 

Endpoint definitions 

COVID-19 outcome variables (endpoints) derived in this project were: mortality, 

mechanical ventilation initiation (“being placed on a ventilator”), hospital 

admission (“being admitted to inpatient setting”), ICU admission (“being admitted 

to the ICU”), and length of stay (LOS).  Specific definitions for endpoints can be 

found in the supplemental methods.   

  

Alignment of patient journeys 

To enable Bayesian network inference, patients were aligned along their COVID-

19 disease journey and features were defined in eleven time bins in relation to 

the time of COVID-19 positive PCR specimen collection. The time windows 

utilized in feature generation were: > 12, 9 - 12, 6 - 9, 3 - 6, 1 - 3, and < 1 months 

prior to the time of COVID-19 positive PCR test sample collection and < 7, 7 - 14, 

14 - 21, 21 - 28, and > 28 days after the time of COVID-19 positive PCR test 

sample collection (Figure 2). Using these time bins, features were derived from 

all data tables. 
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Bayesian network learning and hypotheses generation 

BERG’s Bayesian AI analytics (bAIcis®) learning was employed to generate 

hypotheses of factors related to mortality. This unbiased approach yielded 19 

networks representing the entire patient population as well as patient 

subpopulations (e.g., patients of similar age or ethnicity) (Table 1). Bayesian 

analytics is useful in generation of causal networks, in which nodes represent the 

analyzed features and edges the causal relationships, and where an 

upstream/parent node drives changes in downstream/child nodes. In this context, 

bAIcis® allows the pre-definition of causal hierarchies, so variables can be 

constrained to not have parent-nodes (constrained as ‘top’) or child-nodes 

(constrained as bottom), such as, for example, the top variable, “Age,” that is not 

driven by any other variable. In this regard, the top and bottom variables were 

selected in alignment with the data structure, and Bayesian networks were 

inferred containing the potential cause-and-effect relationships.  Following 

bAIcis® learning, features related to mortality were identified by the following 

approach. First, subgraphs were extracted from the original bAIcis® networks by 

removing infrequent edges (edges present in the ensemble model with frequency 

≤ 20%), then extracting the nodes connected to the mortality node by 1st, 2nd, or 

3rd degree (Table 1, Column 4). All nodes selected by these criteria were then 

assessed by univariate statistical analysis to have a significant relationship to 

mortality in the respective patient cohort used for network learning. Features with 

p-value ≥ 0.05 by Fisher’s exact test or 0.67 ≥ odds ratio (OR) ≤ 1.5 were 
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considered insignificant and disregarded in further analysis. Multiple testing 

correction was not applied to allow for more features to be included in 

downstream analysis. 
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Table 1. 

Name Number of Patients 

Number of 

Features 

Number of Features 

Connected to Mortality 

Number of Selected 

Significant Predictors 

of Mortality 

     All Patients 16,277 2,386 487 20 

Inpatients 3,082 1,946 227 20 

Inpatients pre-COVID-19+ PCR Test 3,082 678 23 17 

Inpatients post-COVID-19+ PCR Test 3,082 1,285 100 20 

Inpatients age 18 to 39 389 386 7 3 

Inpatients age 40 to 49 391 448 26 10 

Inpatients age 50 to 59 548 604 7 4 

Inpatients age 60 to 69 655 796 32 20 

Inpatients age 70+ 1,099 1,238 32 20 
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Inpatients age < 60 1,328 991 30 19 

Inpatients age 60+ 1,754 1,570 77 20 

Inpatients age < 60 pre-COVID-19+ PCR Test 1,328 259 5 3 

Inpatients age 60+ pre-COVID-19+ PCR Test 1,754 519 9 6 

Inpatients African American Non-Hispanic 600 675 5 3 

Inpatients Hispanic 1,231 1,080 93 20 

Inpatients White Non-Hispanic 898 981 44 20 

Inpatients African American Non-Hispanic pre-

COVID-19+ PCR Test 
600 161 16 3 

Inpatients Hispanic pre-COVID-19+ PCR Test 1,231 279 7 4 
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Computational resources for Bayesian network training 

The deep Bayesian networks for this COVID-19 effort were trained using the 

Andes supercomputer at the Oak Ridge Leadership Computing Facility (OLCF). 

Andes is a 704-node machine with two AMD EPYC 7302 CPUs per node and is 

primarily focused on large-scale scientific discovery via data processing and 

modeling. The BERG bAIcis® software that depends on Apache Mesos was 

ported to run on Andes using Singularity containers. All models were trained with 

32 Andes nodes and 8 Mesos tasks per node. Given the various dataset sizes 

(Table 1), Andes enabled a calculation of the Bayesian models with a median 

runtime of 178 seconds and a maximum runtime of 4.91 hours. 

 

Multivariable regression analysis for assessment of validity of ondansetron 

effect on COVID-19 associated mortality 

A multivariate regression analysis was undertaken to determine the robustness 

of the Bayesian prediction of ondansetron discovery on mortality after adjusting 

for demographics and clinical variables (potential confounders). The following 

groups, comprising 25 variables, were examined using multi-variable regression 

for their ability to predict mortality in a COVID-19 positive patient cohort: 

Demographics (age (approximate), gender, race, and ethnicity), Medications 

(Ondansetron, Azithromycin, Remdesivir, Dexamethasone, Tocilizumab, 

Convalescent plasma), Comorbidities (Diabetes, Chronic obstructive pulmonary 

disease (COPD), Asthma, coronary artery disease (CAD), Heart Failure, 

Neoplastic Disease, Kidney Disease), Laboratory Analytes (C-reactive peptide 
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(CRP), D-dimer, alanine amino transferase (ALT), Ferritin, aspartate 

transaminase (AST), blood urea nitrogen (BUN), Lymphocytes), and ventilator 

status. The de-identified dataset had patient ages structured in bins, such as 18 - 

39, 40 - 49, …, 70+. For the purpose of regression modeling these were 

converted to approximate ages as 35 for the 18 - 39 bin, 45 for the 40 - 49 bin, 

and so on. Out of the 3,082 inpatients, 2,259 had complete observations for the 

variables indicated above. To increase the statistical power, imputation of 

missing values was accomplished by a multiple imputation approach using the 

predictive mean matching method [9], as implemented by the R package mice 

[10]. 

To study the ondansetron-associated effect of the above variables on COVID-19 

mortality, a logistic regression was performed in a generalized linear model for 

the binary outcome of deceased or survived, using the R package glm. 

Subsequent analysis focused on fitting the logistic regression model to the 25 

clinical variables (described above), the corresponding 300 (25 x 24/2) 

interaction terms (each equaling the pairwise product of their binary values) and 

the 8 squared terms for the continuous terms, for a total of 333 terms.  Because 

of the inherent limitation of logistic regression in fitting such a model to the 

available data, we used the LASSO (least absolute shrinkage and selection 

operator) regression method (as implemented by the R package glmnet (6), with 

the parameter alpha set to 1) to select those covariates most likely to have non-

zero coefficients. The lambda parameter was optimized with a cross-validation 

approach using the cv.glmnet function. Lambda was set conservatively to a 
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value that is one standard deviation away from the minimum value determined 

from the cross-validation approach. Bootstrapping was performed by sampling 

with replacement of the dataset, while retaining the proportion of deceased to 

survived patients in the bootstrap datasets. 

 

 

RESULTS 

 

Cohort Selection for Discovery of Significant Predictors of COVID-19 

Mortality 

We stratified the RECOVER-19 registry patients based on SARS-CoV-2 Antigen, 

Antibody, and PCR test results, as well as inpatient vs outpatient status (Figure 

1). The corresponding workflow of data processing, analysis for generation of 

causal network and predictive models is described in Figure 2. 

 

Features Associated with Increased COVID-19 Mortality 

The workflow was initiated by reviewing data from 279,281 inpatients and 

outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR 

methods from January to December 2020 in the AdventHealth Central Florida 

Division (CFD) health system. Data collected for those 16,277 PCR tested 

patients that were SARS-CoV-2 positive were utilized for the generation of causal 

networks using bAIcis® analysis network learning and hypothesis generation. We 

generated 19 networks which enabled unbiased identification of significant 
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predictors of mortality at any time for specific patient populations (Table 1, Supp. 

Table 3). These networks included inpatient cohorts of multiple age groups, 

races, and ethnicities, before (pre-COVID) and after (post-COVID) their SARS-

CoV-2 PCR positive test. The “All patients” causal network includes the full 

patient cohort of 16,277 and exhibited 2,386 features, 487 of which were 

connected to mortality, with 20 being significant predictors of mortality. Other 

networks with high numbers of significant features were “Inpatients age 60 to 69”, 

“Inpatients age 70+”, “Inpatients Hispanic”, and “Inpatients White Non-Hispanic”.  

Of the 239 significant mortality features identified in specific patient 

subpopulations, the majority (223/239, were found to be associated with 

increased mortality at any time (Supp. Table 2). Thirteen of the identified 

significant mortality features had more than two factor values (Supp. Table 4). 

As expected, being placed on a ventilator or being admitted in the intensive care 

unit (ICU) was found to be associated with increased mortality consistently 

across 16/19 networks (Supp. Table 3) and 11/19 networks, respectively. 

Similarly, the length of stay was found to be associated with mortality (with longer 

stays associated with higher mortality) across 6/19 networks (Table 1). As 

expected, inpatient medications commonly administered in the ICU setting, such 

as fentanyl, midazolam, and cisatracurium were also found to be associated with 

increased mortality across multiple networks. 

 

Features Associated with Decreased COVID-19 Mortality 
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Three of the 239 significant mortality features were found to be associated with 

decreased mortality (Table 2), two of which referred to the use of ondansetron in 

patients younger than 60 years (Supp. Table 3). Within this patient population, in 

hospital ondansetron treatment either early (< 7 d) or late (> 28 d) after COVID-

19 positive PCR test was found to decrease mortality (p = 0.03, OR = 0.45 and p 

= 0.001, OR = 0.079, respectively) (Figure 3). The third feature associated with 

decreased mortality was the use of ICD-10 code Z20.828 (“Contact with and 

(suspected) exposure to other viral communicable diseases”).  
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Table 2. 

Network Name Feature Name p-value OR 

Inpatients post-COVID-19+ PCR 

Test 

DG_>28d_postCOVID | Z20.828 | Contact with and (suspected) 

exposure to other viral communicable diseases 
2.00E-07 0.16 

Inpatients age < 60 IM_>28d_postCOVID | ondansetron 0.001 0.079 

Inpatients age < 60 IM_upto7d_postCOVID | ondansetron 0.03 0.45 
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Confirmation of Variables Associated with COVID-19 Mortality 

To confirm the association of ondansetron with decreased COVID-19 mortality 

we ran a logistic regression using 25 variables of interest associated with 

mortality, including ondansetron use, in the inpatient cohort. The following 

covariates were significant (Table 3A): Age (approximate patient age; p = 5.0e-

08), Ondansetron (ondansetron use; p = 0.0125), Heart_Failure (p = 0.043), 

Neoplastic_Disease (p = 0.0306), BUN (p = 1.82e-05) and onVentilator 

(ventilator use; p < 2e-16). These results were obtained by using data from 2,259 

patients with complete observations for all covariates used for the analysis. 
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Table 3. 

A.  Original Data (N=2,259) B.  Imputed Data (5 sets of N=3,082) 

 Covariate Estimate SE P-value mean SD P-value 

(Intercept)  -7.690E+00  7.41E-01 < 2E-16 -7.26E+00 4.18E-02 1.57E-29 

DM_age_band_label  5.06E-02  9.28E-03 5.00E-08 4.70E-02 4.18E-04 1.23E-08 

DM_patient_gender  3.22E-01  1.94E-01 9.61E-02 2.43E-01 5.29E-03 1.56E-01 

DM_Race_White  -1.228E-01  1.861e-01  5.09E-01   -1.66E-01 1.60E-02 3.20E-01 

DM_Ethnicity_Hispanic  3.74E-02  1.92E-01 8.46E-01 6.82E-02 4.65E-02 6.98E-01 

Ondansetron  -5.44E-01  2.180e-01  1.25E-02 -6.30E-01 1.08E-02 1.76E-03 

Azithromycin   -1.02E-01  2.000e-01  6.12E-01   -1.59E-01 1.04E-02 3.85E-01 

Remdesivir 4.11E-01  2.11E-01 5.17E-02 4.00E-01 1.32E-02 3.47E-02 

Dexamethasone  -2.42E-01  2.245e-01  2.81E-01   -2.62E-01 8.75E-03 2.18E-01 

Tocilizumab  1.09E-01  2.25E-01 6.28E-01 -3.69E-02 1.24E-02 8.65E-01 

Convalescent_plasma  1.98E-01  2.25E-01 3.80E-01 1.99E-01 6.62E-03 3.49E-01 
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Diabetes 1.06E-02  1.95E-01 9.57E-01 -5.93E-02 6.68E-03 7.34E-01 

COPD 1.88E-01  2.54E-01 4.60E-01 3.30E-01 6.98E-03 1.36E-01 

Asthma 7.44E-02  3.02E-01 8.05E-01 -4.99E-02 1.10E-02 8.59E-01 

CAD  2.82E-01  2.19E-01 1.98E-01 2.60E-01 4.34E-03 1.90E-01 

Heart_Failure  4.35E-01  2.15E-01 4.31E-02 4.74E-01 1.17E-02 1.38E-02 

Neoplastic_Disease    -9.06E-01  4.190e-01  3.06E-02 -7.59E-01 1.92E-02 4.06E-02 

Kidney_Disease   -1.41E-01  2.237e-01  5.29E-01 -1.97E-02 1.08E-02 9.22E-01 

CRP  1.02E-03  9.17E-04 2.65E-01 1.10E-03 1.25E-04 1.92E-01 

D-dimer 3.42E-02  1.97E-02 8.20E-02 4.35E-02 6.04E-03 1.29E-02 

ALT  -2.48E-03  2.105e-03  2.39E-01 -2.01E-03 1.09E-04 2.72E-01 

Ferritin 4.70E-05  2.50E-05 6.02E-02 4.93E-05 4.33E-06 2.06E-02 

AST  1.49E-03  1.43E-03 2.98E-01 1.50E-03 6.14E-05 2.37E-01 

BUN  1.87E-02  4.37E-03 1.82E-05   1.76E-02 1.14E-04 3.35E-06 

Lymphocytes  -1.08E-01  1.271e-01  3.94E-01 -1.56E-01 5.45E-03 1.81E-01 
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onVentilator 2.81E+00  2.107e-01  < 2E-16 2.83E+00 1.41E-02 5.52E-50 
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Next, the effect of increasing the size of our dataset by imputing data for 

variables with missing values was examined. This was accomplished using the 

predictive mean matching method, which selects a small number of complete 

observations most similar to and most likely representative of missing values, 

and randomly replaces the missing values.  Following this approach, five imputed 

datasets were generated and input to the logistic regression described 

previously. Using the five variants of the larger dataset with imputed data yielded 

greater statistical power in demonstrating association between the above-

mentioned variables and death (Table 3B) [e.g., Age (p = 1.23E-08), 

Ondansetron (p = 1.76E-03), Heart_Failure (p = 1.38E-02), Neoplastic_Disease 

(p = 4.06E-02), BUN (p=3.35E-06) and onVentilator (p = 5.52E-50)]. With more 

observations present, additional variables reached significance: Remdesivir (p = 

3.47E-02), D-dimer (p = 1.29E-02), and Ferritin (p = 2.06E-02). The coefficients’ 

sign indicates that increased age, remdesivir use, heart failure, D-dimer, ferritin, 

BUN, and being on ventilator are each, independently positively associated with 

mortality, while ondansetron use and neoplastic disease are each negatively 

associated with mortality. A descriptive statistic of the ondansetron-treated vs. 

non-treated cohort is presented in Supp. Table 5. 

 

Ondansetron use in mechanically ventilated patients is associated with 

decreased mortality after adjusting for interactions 

Because the covariates identified by our model are known to interact with each 

other, efforts were focused on further analysis to fit a more complex model that 
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included all possible interaction terms.  In addition to the 25 main terms, 300 

pairwise terms and 7 square terms for the continuous terms (lab values and age) 

were included. The logistic regression was unable to fit this large number of 

potential variables to the data. This necessitated the use of a data regularization 

approach. Essentially, the model is penalized against including many covariates 

and this results in an optimal solution that is unique. 

We used the Elastic Net regression method, a combination of the LASSO and 

ridge regression methods to validate previous findings related to mortality within 

30 days of COVID-19 positive PCR test [11]. Optimization of the alpha and 

lambda parameters demonstrated that setting alpha = 1 minimizes the error of 

the fit for all lambda values. The alpha parameter determines the relative 

contribution of LASSO and ridge regression penalties to Elastic Net, so setting 

alpha = 1 simplified Elastic Net regression to LASSO regression. The optimal 

lambda value was selected by a cross-validation approach as provided by the R 

package glmnet. Using five versions of the dataset with imputed data resulted in 

the generation of five models (Table 4). The covariates Age, Heart_Failure, D-

dimer, Ferritin, BUN and onVentilator were identified by LASSO in all five 

versions of the imputed dataset; all with positive coefficients, indicative that they 

associated with increased mortality at 30 days. The covariate Ondansetron was 

selected in two of the five datasets, with negative coefficients, again confirming 

the potential reduction in mortality at 30 days (i.e., survival benefit). LASSO 

identified additional covariates that were observed only once out of the five 

datasets, the interaction term Ondansetron:onVentilator (with a negative 
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coefficient) being one of them. These results suggested that the stochastic 

aspects of the data imputation and model fitting results in minor variability in the 

composition of the final model. 
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Table 4. 

 

Imputed dataset version # 

Covar 1 2 3 4 5 

(Intercept) -4.70E+00 -4.78E+00 -4.39E+00 -4.77E+00 -5.51E+00 

Age 1.62E-02 1.90E-02 1.43E-02 1.89E-02 2.74E-02 

Ondansetron -7.97E-02 

   

-1.95E-01 

Heart Failure 1.73E-01 1.01E-01 2.47E-02 1.03E-01 2.35E-01 

Ddimer 1.29E-02 3.97E-03 4.67E-03 6.57E-03 2.84E-02 

Ferritin 1.56E-05 1.03E-05 7.56E-06 1.23E-05 2.10E-05 

BUN 1.39E-02 1.36E-02 1.26E-02 1.35E-02 1.45E-02 

onVentilator 2.09E+00 2.53E+00 2.46E+00 2.52E+00 2.63E+00 

Remdesivir 

    

3.87E-03 

CAD 

    

5.77E-02 

CRP 

    

8.50E-05 

Age:Remdesivir 1.14E-03 

    Age:Ferritin 2.99E-07 

    Age:BUN 1.94E-04 

    Age:onVentilator 1.19E-02 

    Gender:Ddimer 1.12E-02 

    Gender:onVentilator 2.02E-01 
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Ondansetron:onVentilator -8.09E-02 

    COPD:BUN 1.47E-03 

    COPD:onVentilator 1.42E-01 

    CAD:AST 7.32E-05 

    CAD:BUN 1.10E-03 

    Heart_Failure:CRP 1.06E-03 

    Heart_Failure:Ddimer 1.21E-02 

    Heart_Failure:BUN 6.76E-04 

    CRP:BUN 6.12E-06 
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To delineate further the basis of the observed variability of the LASSO regression 

model, and to generate confidence intervals for the generated coefficients, 10 

versions of the dataset with imputed values were generated, and each of them in 

turn was used to generate a population of 1,000 datasets with similar underlying 

distributions, by the bootstrap method. We ensured that each bootstrap sample 

was balanced in terms of proportion of patient mortality. The 10,000 samples 

were each analyzed by LASSO regression. The results are summarized in Table 

5, which lists the percentage of the 10,000 bootstrap samples for the top 

covariates selected by LASSO, their median coefficient values, as well as their 

95% and 99% confidence intervals. 
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Table 5. 

 

Coefficient 

Name 

Percent 

selected Median CI 99% CI 95%  

(Intercept) 100 -5.10E+00 (-6.03, -3.92) (-6.31, -3.57) 

Tocilizumab:onVentilator 56.3 -5.00E-01 (-1.59, -0.0213) (-1.94, -4.06e-03) 

Gender:Neoplastic_Disease 61.7 -4.87E-01 (-1.69, -0.0274) (-2.1, -4.98e-03) 

Ondansetron:onVentilator 74.4 -3.65E-01 (-1.14, -0.0201) (-1.38, -4.51e-03) 

Age:Ferritin 55.3 3.47E-07 (2.60e-09, 1.22e-06) (2.06e-08, 9.57e-07) 

CRP:BUN 68 2.80E-05 (2.03e-07, 1.17e-04) (1.42e-06, 9.15e-05) 

Age^2 99.1 2.68E-04 (3.25e-05, 5.00e-04) (7.95e-05, 4.42e-04) 

DM_age_band_label:Remdesivir 75.9 3.67E-03 (3.75e-05, 1.68e-02) (2.36e-04, 1.29e-02) 

BUN 52.9 7.39E-03 (2.95e-05, 2.23e-02) (2.27e-04, 1.84e-02) 
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Gender:Ddimer 60.6 2.37E-02 (1.70e-04, 8.38e-02) (1.09e-03, 6.79e-02) 

Gender:onVentilator 61.4 2.30E-01 (1.34e-03, 9.10e-01) (9.56e-03, 7.19e-01) 

COPD:onVentilator 51.3 2.64E-01 (-1.36e-01, 1.25e+00) (7.95e-03, 9.44e-01) 

Ondansetron:Convalescent_plasma 52.9 4.56E-01 (2.94e-03, 1.69e+00) (2.33e-02, 1.34e+00) 

onVentilator 99.8 2.54E+00 (4.73e-01, 3.76e+00) (1.07e+00, 3.41e+00) 

 

 

 

 

 

 

 

 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted O

ctober 15, 2021. 
; 

https://doi.org/10.1101/2021.10.05.21264578
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.10.05.21264578


32 

 

The LASSO regression results on the bootstrap samples show BUN and 

onVentilator identified as main (linear) terms, while the remaining covariates are 

interaction terms. Age is a quadratic (squared) term, indicating that mortality 

increases curvilinearly with age. The most frequently identified covariates are 

onVentilator and Age^2 and both are positively associated with mortality at 30 

days. The interaction term Ondansetron:onVentilator is identified in 74.4% of the 

bootstrap sample and is negatively associated with mortality.  None of the 95% 

confidence intervals, and except for COPD:onVentilator, none of the 99% 

confidence intervals of the coefficients include zero, suggesting that these 

coefficients are stable in their sign despite the variability in the sample sets. 

From the regression analysis we conducted on the bootstrapped samples of the 

dataset, the median value of the regression coefficient for mechanically 

ventilated patients treated with ondansetron was -0.365. This means that when 

this interaction term has a value of 1, the odds of death are multiplied by e(-0.365)  

= 0.694. 

 

 

DISCUSSION 

 

The goal of this study, representing a multi-institutional collaborative effort of 

collecting, structuring, and analyzing RWD through AI analytics, was to generate 

insights on COVID-19 mortality-associated factors and identify potential new 

therapeutic options for COVID-19 patients. The study involved two stage data 
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analytics: the primary discovery phase, involving Bayesian statistics-based 

analysis to generate causal networks of all patients to identify significant factors 

influencing mortality in the COVID-19 positive cohort (Table 1), from 12 months 

pre- to 28 days post PCR-based COVID-19 diagnosis; this was followed by 

confirmatory tests of the main findings on imputed and bootstrapped data, from 

multivariable regression analysis to LASSO logistic regression. The Bayesian 

network findings were based on the analysis of demographic, clinical, and 

laboratory data from 16,277 PCR confirmed COVID-19 patients representing a 

subset of the 279,281 patients in the RECOVER-19 registry; the confirmatory 

logistic regression analyses were performed on data from the 3,082 hospitalized 

patients. 

We identified ondansetron as the main factor associated with improved survival 

in mechanically ventilated COVID-19 patients. An initial unbiased search for 

predictors of mortality at any time and within any patient population found 

ondansetron as the only medication associated with decreased mortality (Table 

2). This association was initially identified within a specific inpatient population (< 

60 years old) and when ondansetron was administered at disparate times (up to 

7 days and > 28 days post COVID-19 diagnosis). Regarding the timing of 

administration, of the 737 patients who received ondansetron at any time during 

the first 30 days, the majority (84%) received it within the first week post SARS-

CoV-2 positive PCR test. Patients who received ondansetron in the first week 

post PCR test had improved survival compared with patients who did not (p < 

0.0001) (Figure 4). Multivariable logistic regression by LASSO showed significant 
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effects for age and ondansetron use on mortality within 30 days, but not an 

Age:Ondansetron interaction effect, meaning that the ondansetron effect applies 

to all age groups equally. However, it is the interaction term 

Ondansetron:onVentilator that is primarily selected by LASSO as a covariate of 

non-zero coefficient, rather than the main term Ondansetron. This indicates that 

the beneficial effect of ondansetron is seen only in patients on ventilator. This key 

finding complements a study by Bayat et. al. that reported a reduction in 30-day 

all-cause mortality for all inpatients (including ICU) with early administration of 

ondansetron after admission [12]. 

Ondansetron is a selective 5-HT3 serotonin-receptor antagonist with known 

effects against nausea and vomiting through both central and peripheral 

mechanisms [13]. It has been postulated that SARS-CoV-2 might have an 

indirect effect on enteroendocrine cells (EEC), triggering the release of 

neuroactive agents such as the emesis inducing serotonin [14]. Most studies 

showed that patients with COVID-19 have higher plasma serotonin levels and 

this correlates with increased IL-6 [15, 16], while others concluded they have 

decreased serotonin levels [17]. Considering serotonin’s role in regulating innate 

and adaptive immune responses [18], the observed beneficial effect of 

ondansetron might be due to the modulation of serotonin levels or could also be 

linked with a direct effect on the immune system [19] or on known COVID-19 

comorbidities, such liver and kidney disease or complications, such as 

thrombosis [20-22]. There are also data suggesting that serotonin receptor 
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signaling influences cellular activities that regulate entry of diverse virus families 

[23]. 

It is interesting to note that while we do not find convalescent plasma to be a 

significant predictor of death, patients on ondansetron and convalescent plasma 

were more likely to die (Table 5), suggesting a complex interaction between 

ondansetron, ventilator use, and convalescent plasma.  It is now known that 

high-titer convalescent plasma does not improve COVID-19 survival or clinical 

outcomes when used in both inpatients [24, 25] and high-risk outpatients [26] and 

when a beneficial effect on the risk of death was observed it was not maintained 

for patients who had received mechanical ventilation [27]. As, early in the 

pandemic, convalescent plasma was usually reserved for patients with more 

severe COVID-19 pneumonia, this observed association might be explained by 

this confounding bias and not by a potential detrimental effect of convalescent 

plasma. 

In our cohort, tocilizumab had a similar effect on mortality as ondansetron for 

mechanically ventilated patients, in line with published evidence from large, 

randomized control studies [28, 29].  

Although being male is associated with COVID-19 mortality, we find that in the 

context of neoplastic disease this is reversed. Our results show a negative 

association between the interaction term Gender:Neoplastic_Disease and 

mortality. This may be due to an indirect ondansetron effect, since this is often 

prescribed to cancer patients undergoing chemotherapy, radiation therapy, and 

surgery. So, while being male is positively associated with COVID-19 mortality, in 
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cancer patients this may be modulated by ondansetron use. Also, the association 

of COVID-19 mortality with cancer is not straightforward. The COVID-19 mortality 

of cancer patients depends on the type of their cancer, with the main mortality 

drivers being age, gender, comorbidities, and hematological cancers [30-32].  

In the present study, besides ondansetron and tocilizumab, other covariates 

interacting with ventilator use indicate that males on ventilator and patients with 

chronic obstructive pulmonary disease (COPD) on ventilator are more likely to 

die. The former of these two findings agrees with Nicholson et al., who showed 

that male COVID-19 patients on ventilator have a higher mortality rate than 

females (after correcting for co-morbidities) [33]. COPD is also an already 

established comorbidity associated with increased odds of hospitalization and 

death in COVID-19 patients [34, 35]. 

Looking at interactions between other covariates, we found that the CRP and 

BUN dyad, laboratory biomarkers that are found in prognostic models for COVID-

19 mortality, are also associated with mortality in our cohort [36, 37]. Similarly, 

the previously observed mortality link of interacting factors ferritin and age [38] as 

well as higher D-dimer levels in males were also confirmed by our analyses [39]. 

The association between mortality with a combination of age and age-squared 

agrees with a previous finding that infection fatality ratio has a log-linear increase 

by age among individuals older than 30 years [40].  

Although an FDA-approved drug for COVID-19, remdesivir was not found to 

increase survival in large, randomized control trials [41-43]. We find that age and 

remdesivir use interact to increase mortality. This has not been reported 
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previously and may suggest that we see a similar confounding bias with 

convalescent plasma, since remdesivir was reserved for more severe patients 

earlier on. 

Diagnostic code Z20.828 (“Contact with and (suspected) exposure to other viral 

communicable diseases”) was one of the 3 features with a significant relationship 

with decreased mortality in our analysis. This code was used in 2020 when a 

clinician suspected exposure to SARS-CoV-2 without a test result available. In 

the RECOVER-19 registry, out of the approximately 200,000 unique patients 

seen with this diagnostic code in 2020, about 16,000 were found to be positive. 

We might see this mortality benefit because the SARS-CoV-2 positive patients 

with the Z20.828 code might have had a less severe form of COVID-19 (higher 

ambiguity without a positive test) or arrived earlier in the course of the disease 

and were designated patients under investigation (PUI), benefiting from early 

precautions. Generally, the patients admitted with a severe form of COVID-19 

would have received another more definitive diagnostic code. 

 

 

CONCLUSION 

 

To our knowledge, we are the first to use Bayesian network analysis of clinical 

data to report disease outcomes in COVID-19 patients. Using high-performance 

computing driven Bayesian AI, we report here a negative association between 

mortality and ondansetron treatment for mechanically ventilated patients, as well 
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as confirming the beneficial effects of tocilizumab and validating some of the 

already established factors associated with COVID-19 increased mortality, such 

as higher BUN, CRP, ferritin, and D-dimer levels. These results confirm the 

validity of our approach and the hypothesis-generating potential of the bAIcis® 

platform. Currently there are no controlled trials examining the effect of 

ondansetron in COVID-19 patients. Our findings suggest that this FDA approved 

drug should be investigated for its potential effectiveness against COVID-19. 
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FIGURE LEGEND 

  

Figure 1. The RECOVER-19 registry included 279,281 inpatients and outpatients tested 

for SARS-CoV-2 infection by antigen, antibody, or PCR methods from January to 

December 2020. 16,277 PCR positive patients were selected for this analysis. 

Figure 2.  Overview of the data processing workflow. 

Figure 3. An illustrative example of the analysis approach. Left: A visualization of the 

bAIcis network learned from the age < 60 population admitted to the inpatient setting (n 

= 1,328). Right: Subgraph of the “Inpatients age < 60” bAIcis ® network illustrating the 

linkage between ondansetron use and mortality. Ondansetron use within the first week 

and after 28 days post-COVID-19 positive PCR test was significantly associated with 

decreased mortality (highlighted nodes). Abbreviations: CV_, COVID Visit; DG_, 

Diagnosis; EP_, Endpoints; IM_, In-house medication; LB_, Lab Results; PC_, 

Procedures, VS_, Vital Signs; CRP, C-reactive protein. 

Figure 4. Kaplan-Meier curve showing 30-day survival rates of hospitalized patients who 

received (blue) or did not receive (red) ondansetron in the first week post SARS-CoV-2 

positive PCR test. Patients who received ondansetron had improved 30-day survival 

compared with patients who did not (p < 0.0001). 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.05.21264578doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.05.21264578


40 

 

 

 

TABLE LEGENDS 

  

Table 2. BERG’s Bayesian AI analytics (bAIcis®) generated 19 networks which enabled 
unbiased identification of significant predictors of mortality for specific patient 
populations. 

Table 2. Features with significant relationship to decreased mortality. Abbreviations: 
DG_, Diagnosis; IM_, In-house medication 

Table 3. Coefficients of logistic regression fitted to original data (panel A) and to five 
versions of imputed data (panel B). Coefficients with mean p < 0.05 in both original and 
imputed data sets are bolded. Coefficients with mean p < 0.05 only in one dataset are 
italicized. Negative sign means association with decreased mortality. 

Table 4. Covariates and their coefficients selected by LASSO (least absolute shrinkage 
and selection operator) regression on 5 versions of the datasets with imputed data. 
Negative sign means association with decreased mortality (bold). Abbreviations: Age, 
approximate age of patient (one of 35, 45, … , 75); AST, aspartate transaminase level; 
BUN, blood urea nitrogen level; CAD, coronary artery disease; COPD, Chronic 
obstructive pulmonary disease; CRP, C-reactive protein; (:) indicates interaction 
between two covariates. 

Table 5. Covariates selected by logistic LASSO (least absolute shrinkage and selection 
operator) regressions in greater than 50% of 1000 bootstrap permutations of 10 versions 
of the imputed dataset. Covariates are sorted by the median value of their coefficients, 
along with their 95% and 99% confidence intervals (CI). Negative median sign means 
association with decreased mortality (bold). Age, (approximate age (one of 35, 45, …, 
75); Abbreviations: BUN, blood urea nitrogen level; COPD, Chronic obstructive 
pulmonary disease; CRP, C-reactive protein; (:) indicates interaction between two 
covariates. 
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SUPPLEMENTAL METHODS 

Data Sources 

The AdventHealth big data platform is a Dedicated Cloudera Distribution Big 

Data cluster housed on site in Oracle Big Data Appliance (BDA). This BDA 

houses the IDEA platform, which has a Data Lake and an Enterprise Data 

Warehouse. The Data Lake is catalogued by source system and additional 

subject area specific conformed repositories are interconnected with Enterprise 

level dimensional data. This architecture contains near real time data (4 to 5 

second latency) feeds from over 1,000 source data tables. A Kafka footprint is 

also in place to support near real time data streaming. Based on the various 

source systems the feed timing can be near real time, daily, weekly, monthly, 

quarterly or on demand. There is a wide variety of data sources feeding this 

repository but some of the larger footprints are near real time CERNER EHR 

data, Athena EHR Data Warehouse feed Version 17.1, Population Health Claims 

data, and Patient Experience. The Data Lake is not only capable of ingesting 

traditional data, but it also supports semi-structured and unstructured data, 

including FHIR data.  

The COVID-19 data analytics effort is supported by the AdventHealth IDEA 

scalable distributed data platform. Briefly, raw data from the EHR systems are 
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ingested into the Data Lake. No modeling is done at this stage, but only minimal 

data processing such as merging EHR data from all geographical domains and 

conforming date/time elements to a common local time-zone. This allows multiple 

use cases for research, providing an almost real-time understanding of the size 

and distribution of the COVID-19 patient cohort across all 53 AdventHealth 

hospitals. A shared curated data set specific to COVID-19 was created to 

centralize the collection effort of key subject areas to include patient, encounters, 

and clinical data. 

The Clinical Classifications Software Refined (CCSR) is a publicly available 

taxonomy created and maintained by the Agency for Healthcare Research and 

Quality which aggregates International Classification of Diseases, 10th Revision, 

Clinical Modification/Procedure Coding System (ICD-10-CM/PCS) codes into 

clinically meaningful categories. 

A COVID-19 positive PCR test was defined as a lab result in which (1) 

PCR_order_flag = 1, (2) result_positive_flag = 1, and (3) 

nomenclature_short_string was explanatory for SARS-CoV-2 testing. 

Patients were defined as deceased if having deceased_flag = 1 in the patients 

table, or if having had an encounter with discharge_disposition = “Expired – 20.” 

Being placed on a ventilator was defined as having a procedure with 

ccs_catg_dsc = “Respiratory intubation and mechanical ventilation” that occurred 

at the time of PCR sample specimen collection or later. Similarly, being admitted 

to Inpatient care was defined as having an encounter with enctr_type_class = 

“Inpatient” at the time of PCR sample specimen collection or later. A patient was 
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defined as having been admitted to the ICU if a patient had a lab test occurring at 

the time of PCR sample collection or later with (1) nomenclature_short_string = 

“Admitted to ICU for condition” and (2) result_value = “YES.” 

LOS was defined using the following criteria: First, a COVID-19 positive 

encounters was defined as an encounter in which enc_c19pos = 1. Next, these 

COVID-19 positive encounters were considered valid for LOS calculation if the 

discharge_dttm was specified. If a patient had one or more valid COVID-19 

positive encounters, LOS was taken to be the sum of LOS values for each valid 

COVID-19 positive encounter. By contrast, patients who had only invalid COVID-

19 positive encounters (i.e., COVID-19 positive encounters are listed, but all 

encounters have unspecified discharge_dttm) had LOS defined as not available. 

Finally, any patient who had no COVID-19 positive encounters (valid or invalid) 

had LOS defined as zero. 

Feature derivation 

Diagnosis features within each time bin were defined as the presence or absence 

of diagnoses extracted from the diagnosis table. Any patient with a listed ICD10 

code (icd10_cm_cd) at a time (active_status_dt_tm) within a defined time bin 

was set to TRUE for this diagnosis feature in this time window, whereas this 

corresponding diagnosis feature was set to FALSE for all other patients in this 

time window. Infrequently occurring diagnosis features were aggregated using 

the icd library using R package version 4.0.9. (https://jackwasey.github.io/icd/). 

Patients who were discharged before the beginning of a particular time window 

had all diagnosis features for this time window assigned as missing.  
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Similarly, problem features within each time bin were defined as the presence or 

absence of problems extracted from the Problems table. First, only active entries 

in the problems table (life_cycle_status = Active) were used for feature 

extraction. Next, any patient with a listed SNOMED code (snomed_ct_code) at a 

time (beg_effective_dt_tm) within a defined time bin was set to TRUE for this 

problem feature, while this problem feature was set to FALSE for all other 

patients in this time window. Finally, patients who were discharged before the 

beginning of a particular time window had all problem features for this time 

window assigned as missing.  

In-house medication features and home medication features for each time bin 

were derived from the InHouse Medications and Home Medications tables, 

respectively. For in-house medication features, a value of TRUE was assigned if 

a patient received an in-house medication (med_name) at a time 

(start_date_time) within a specified time bin; otherwise, a value of FALSE was 

assigned. Notably, in-house medications with name “premix diluent” were 

excluded from in-house medication feature generation. Similarly, for home 

medication features, a value of TRUE was assigned if a patient was prescribed a 

medication (ordered_drug) at a time (req_start_dttm) within a specified time bin, 

else a value of FALSE was assigned for patients who didn’t receive this 

medication within this time bin. Patients who were discharged before the 

beginning of a particular time window had all in-house medication and home 

medication features for this time window assigned as missing.  
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Procedure features for each time bin were derived from the Procedures table in a 

similar approach to the diagnosis features. For procedure features, a value of 

TRUE was assigned if a patient underwent a procedure (icd10_pcs_cd) within a 

time window of interest (active_status_dt_tm), while patients who did not were 

assigned a value of FALSE. Infrequent procedure features were aggregated 

using the icd library. Patients who were discharged before the beginning of a 

particular time window had all procedure features for this time window assigned 

as missing.  

Lab value features for each time bin were derived from the Lab Results table. 

First, any entries in the Lab Results table with undefined numeric values 

(result_value_numeric) or normalcy listed as “No Flag” were excluded. Next, 

exploratory data analysis found that lab results with unspecified normalcy were in 

the normal range, thus lab results with unspecified normalcy were considered 

normal.  Lab value features were then defined corresponding to each lab test 

LOINC code (loinc) with description (nomenclature_short_string) measured for a 

given patient within a time window of interest (lab_order_date), with features 

values taken to be the lab value normalcy (Normal, Abnormal, High, Low, or 

Critical). If a particular lab value was measured more than once for a given 

patient in a time window of interest, the lab values measured on the nearest date 

to the date of COVID-19+ PCR specimen collection were used. If multiple tests 

were reported on this date, the lab result feature was defined as the most severe 

lab result measured, according to a ranking of Critical > High > Low. Finally, 
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patients who did not have recorded lab values in this time window had their lab 

value features assigned as missing.  

In a similar manner, vital status features for each time bins were derived from the 

Clinical Events table. First, any entries in the Clinical Events table with normalcy 

set to “No Flag” were excluded. Additionally, entries with value zero 

(result_val_numeric) and unspecified normalcy were excluded. As had been 

shown with Lab values, exploratory data analysis found that entries with 

unspecified normalcy were within the normal range, therefore entries with 

unspecified normalcy were considered normal. Vital status features were then 

defined corresponding to each event code (event_cd) and event description 

(event_desc) measured for a given patient within a time window of interest 

(valid_from_dt_tm), with feature values taken to be the vital sign normalcy 

(Normal, Abnormal, High, or Low). To reduce the number of feature levels, 

entries with normalcy outside the test bounds (<LLOW and >HHI) were 

considered LOW and HI, respectively. Vital sign measurements that were listed 

more than once for a given patient in a time window of interest, were summarized 

by using the vital sign measured on the nearest date to the date of COVID-19 

positive PCR specimen collection. If multiple vital signs were reported on this 

date, the vital sign feature was defined as the most severe vital sign result 

measured, according to a ranking of HI > LOW > ABN. Finally, as with the 

derivation of lab test features, patients who did not have recorded vital sign 

values in this time window had their vital sign features assigned as missing. 

Elastic Net regression method 
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Optimization of the alpha and lambda parameters demonstrated that setting 

alpha = 1 minimizes the error of the fit for all lambda values. The alpha 

parameter determines the relative contribution of LASSO and ridge regression 

penalties to Elastic Net, so setting alpha = 1 simplified Elastic Net regression to 

LASSO regression. The optimal lambda value was selected by a cross-validation 

approach as provided by the R package glmnet. 

Bootstrapping 

To delineate further the basis of the observed variability of the LASSO regression 

model, and to generate confidence intervals for the generated coefficients, 10 

versions of the dataset with imputed values was generated, and each of them in 

turn was used to generate a population of 1000 datasets with similar underlying 

distributions, by the bootstrap method. We ensured that each bootstrap sample 

was balanced in terms of the number of patient-specific mortality. The 10,000 

samples were each analyzed by LASSO regression. 
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SUPPLEMENTAL TABLE LEGEND 

 

Supplemental Table 1. Registry and Biorepository of COVID-19 for AdventHealth 

(RECOVER-19) data tables. Abbreviations: SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; COVID-19, coronavirus disease 2019; ICD-10-CM, 

International Classification of Diseases, Tenth Revision, Clinical Modification; SNOMED-

CT, Systematized Nomenclature of Medicine Clinical Terms; PCS, Procedure; LOINC, 

Logical Observation Identifiers Names and Codes.      

Supplemental Table 2. Features with significant relationship to increased mortality. 
Abbreviations: CV_, COVID Visit; DG_, Diagnosis; EP_, Endpoints; IM_, In-house 
medication; LB_, Lab Results; PC_, Procedures, VS_, Vital Signs 

Supplemental Table 3. Significant predictors of mortality in 19 networks generated by 
BERG’s Bayesian AI analytics (bAIcis®) learning 

Supplemental Table 4. Relationship between LOS and mortality. Note that p-values 

were computed using t-test. EP_, endpoints. 

Supplemental Table 5. Descriptive statistic of ondansetron treated vs. non treated 

patients. 
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Clinical Data
• ~280K patients

Data Processing
• Population selection
• Feature engineering
• Quality-based filtering

Graph Analysis
• Subgraph extraction
• Node ranking

Statistical Modelling Validation
• Binomial Generalized Linear Model
• LASSO regression
• Bootstrapping

• 11,000 CPUs
• Network learning (n = 19)
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p < 0.0001

80.0%

85.0%

90.0%

95.0%

100.0%

0 10 20 30
Survival Time in Days

Su
rv

iva
l (

%
)

Strata + +Did Not Use Ondansetron in Wk1 post−COVID+ Used Ondansetron in Wk1 post−COVID+

2464 1832 1176 902

618 467 326 259Used Ondansetron in Wk1 post−COVID+

Did Not Use Ondansetron in Wk1 post−COVID+

0 10 20 30
Survival Time in Days

St
ra

ta

Number at risk

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.05.21264578doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.05.21264578

