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 2

Abstract 48 

Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy 49 

and accelerated waning immunity have been reported in this age group. To elucidate age-50 

related differences in immunogenicity, we analysed human cellular, serological and salivary 51 

SARS-CoV-2 spike glycoprotein-specific immune responses to BNT162b2 COVID-19 52 

vaccine in old (69-92 years) and middle-aged (24-57 years) vaccinees compared to natural 53 

infection (COVID-19 convalescents, 21-55 years). Serological humoral responses to 54 

vaccination exceeded those of convalescents but salivary anti-spike subunit 1 (S1) IgA and 55 

neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-56 

existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and 57 

neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 58 

cross-reactive CD4+ T cells as predictor of an efficient COVID-19 vaccine-induced humoral 59 

immune response in old individuals. 60 
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 3

Introduction 74 

Global efforts have been mounted to develop efficient vaccines against coronavirus disease 75 

2019 (COVID-19) (1). As severe COVID-19 mainly affects older individuals, many 76 

vaccination campaigns have prioritized the elderly population (2). However, vaccination 77 

efficacy is known to be decreased in this age group, particularly for primary vaccination (3). 78 

For COVID-19 vaccination - given the distinct homology of certain antigen target regions of 79 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to human common cold 80 

coronaviruses (HCoV) - one possible explanation could be an age-related reduced number of 81 

pre-existing cross-reactive CD4+ T cells in old individuals (4, 5). To assess the 82 

immunogenicity of the COVID-19 vaccine in this particularly vulnerable age group and 83 

identify possible relations to pre-existing SARS-CoV-2-specific cross-reactivities, we 84 

examined systemic cellular and serological and salivary humoral SARS-CoV-2-specific 85 

immunity during the course of COVID-19 vaccination with BNT162b2 mRNA vaccine 86 

(Tozinameran™, Comirnaty™) in old and comorbid nursing home residents (n=18; mean age 87 

83±6) and their middle-aged caregivers (n=14; mean age 47±10) at baseline (prior to first 88 

vaccination), at day 28 (d28, 7 days after second vaccination) and at day 49 (d49, 28 days 89 

after second vaccination). For comparison with naturally acquired immunity, we additionally 90 

analysed COVID-19 convalescents (of comparable age to the middle-aged cohort; mean age 91 

36±11) after mild natural SARS-CoV-2 infection at ~d28 (n=10), ~d49 (n=16) or ~d94 92 

(n=11) after symptom onset. 93 

 94 
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 4

Materials and Methods  100 

Participants and ethics  101 

The study was approved by the ethics committee of Charité – Universitätsmedizin Berlin 102 

(EA/152/20) and was conducted in accordance with the World Medical Association’s 103 

Declaration of Helsinki of 1964 and its later amendments. A written informed consent was 104 

obtained from all participants. The 39 participants (22 nursing home residents (old vaccinees), 105 

17 caregivers (middle-aged vaccinees), all Caucasian) analysed for this study were 106 

recruited at three different nursing homes in Berlin between September and November 2020 107 

and were available for follow-up visits 28 days and 49 days after their first COVID-19 108 

vaccination in January and February 2021 (Table I). Furthermore, we collected saliva and 109 

blood samples of a total of 36 COVID-19 convalescents with mild disease course (World 110 

Health Organisation criteria for COVID-19 II) at ~28 (n=10), ~49 (n=16) or ~94 days (n=11) 111 

post symptom onset. Baseline data of vaccinees and data of convalescents had been collected 112 

and partially analysed as part of the Charité Corona Cross (CCC) study (4). Visits included 113 

nasopharyngeal swabs, blood and saliva sampling at all time points. None of the participants 114 

took immunomodulating medication or reported immunocompromising comorbidities. 4 older 115 

and 3 middle-aged donors with signs of previous SARS-CoV-2 infection (either positive anti-116 

S1 IgG levels or a S-I T cell stimulation index > 3.0 at baseline) were excluded from analysis.  117 

 118 

SARS-CoV-2 RT-PCR  119 

Nasopharyngeal swabs were suspended in 4.3 ml Cobas PCR Media. RNA was extracted 120 

using the MagNA Pure 96 system (Roche). The viral RNA extraction was performed using 121 

200 µl swab dilution eluted in 100 µl of extraction buffer. SARS-CoV-2 detection was based 122 

on two genomic targets (E- and N gene, TIB Molbiol) using 5 µl of the RNA eluate. 123 

Quantification of SARS-CoV-2 copy numbers was achieved using calibration curves with 124 

serial diluted photometrically quantified in-vitro transcribed RNA as described before 125 
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(6). RT-PCR was performed using the LightCycler 480 II (Roche). Vaccinees who tested 126 

positive by RT-PCR in the study period (n=2) were excluded from all analyses. 127 

 128 

Blood sampling, serum preparation and PBMC isolation 129 

Whole blood was collected in lithium heparin tubes for PBMC isolation and SST™II advance 130 

(all Vacutainer®, BD) tubes for serology. SST™II advance tubes were centrifuged at 1000 x 131 

g, 10 min and serum supernatant aliquots frozen at -80 °C until further use. PBMC were 132 

isolated by gradient density centrifugation according to the manufacturer’s instructions 133 

(Leucosep tubes, Greiner; Biocoll, Bio&SELL).  134 

 135 

Ex vivo T cell stimulation and flow cytometry 136 

T cell in vitro stimulation and subsequent flow cytometric assessment of reactive CD4+ T 137 

cells was performed as described in detail previously (4). In brief, freshly isolated PBMC 138 

were stimulated with 11aa overlapping 15-mer PepMixTM SARS-CoV-2 spike glycoprotein 139 

peptide pool 1 or 2 (termed here S-I and S-II; JPT) or remained unstimulated and were 140 

subsequently incubated at 37 °C for 16 h. Surface staining was performed with the following 141 

fluorochrome-conjugated antibodies titrated to their optimal concentrations: CD3-FITC 142 

(REA613, Miltenyi), CD4-VioGreen (REA623, Miltenyi), CD8-VioBlue (REA734, 143 

Miltenyi), CD38-APC (REA671, Miltenyi), HLA-DR-PerCpVio700 (REA805, Miltenyi). 144 

Fixation and permeabilization were performed with eBioscienceTM FoxP3 fixation and 145 

PermBuffer (Invitrogen). Intracellular staining was carried out for 30 min in the dark at room 146 

temperature with 4-1BB-PE (REA765, Miltenyi) and CD40L-PE-Vio770 (REA238, 147 

Miltenyi). All samples were measured on a MACSQuant® Analyzer 16 (Miltenyi) according 148 

to the gating strategy illustrated in Supplemental Fig. 1.  149 

 150 
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 6

Anti-SARS-CoV-2 S1 ELISA in serum and saliva  152 

Anti-SARS-CoV-2 spike glycoprotein subunit 1 (S1) IgG and IgA testing in 153 

sera was performed using a commercially available ELISA kit (Euroimmun) as previously 154 

described (7). Test results for sera were considered positive above an OD ratio (defined as 155 

absorbance difference between control and study sample) of 1.1 according to the 156 

manufacturer. The same ELISA kit was used for anti-SARS-CoV-2 IgA testing in saliva. The 157 

assay was performed with 1:100 diluted serum and 1:10 diluted saliva. Values were capped at 158 

an OD ratio of 10. Positivity thresholds have not yet been determined for saliva. 159 

 160 

Surrogate virus neutralization assay (sVNT)  161 

A competition ELISA-based surrogate virus neutralization assay (sVNT; medac) mimicking 162 

the SARS-CoV-2 receptor (ACE2) binding process was used to identify neutralizing anti-163 

SARS-CoV-2 antibodies in participant serum and saliva (8, 9). The assay was performed with 164 

1:10 diluted serum and 1:5 diluted saliva respectively following the manufacturer’s 165 

instructions. Inhibition activity above 30% was considered positive in serum, no threshold has 166 

been defined for saliva yet.  167 

  168 

Data processing and statistical analysis  169 

Study data were collected and managed using REDCap electronic data capture tools hosted at 170 

Charité
 (10). Flow cytometry data were analysed using FlowJo 10 (BD). Prism 9 171 

(GraphPad) was used for data plotting. For statistical comparisons and correlation analyses, 172 

non-parametric testing (Mann-Whitney U test or Spearman regression including ROUT 173 

outlier tests) were performed. Mann-Whitney U tests were performed between corresponding 174 

timepoints if not indicated differently. Statistical significance was reported as follows: *p 175 

≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Correlation coefficients of Spearman correlations were 176 

reported as r. CD4+ T cell activation was plotted as stimulation index (Stimulation Index), i.e. 177 
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frequency of CD40L+4-1BB+ CD4+ T cells in stimulated samples divided by unstimulated 178 

controls (zero background values were set to a minimum of 0.001).  179 
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 8

Results and Discussion 204 

In this study, we investigated age-related differences in systemic and mucosal immune 205 

responses to COVID-19 mRNA vaccine BNT162b2 and compared to COVID-19 206 

convalescents. First, we analysed anti-S1 IgG and anti-S1 IgA antibody levels and S1 207 

neutralization capacity in serum as well as frequencies of peripheral antigen-reactive CD40L+ 208 

4-1BB+ CD4+ T cells after in vitro stimulation with the N-terminal part (S1, covered by 209 

peptide mix S-I) and the C-terminal part (S2, peptide mix S-II) of the spike glycoprotein (Fig. 210 

1a-e). In middle-aged donors, BNT162b2 vaccination induced a prompt and homogeneous 211 

response of anti-S1 IgG, anti-S1 IgA, S1-specific functional neutralization in serum and 212 

spike-reactive CD4+ T cells. In comparison, we observed significantly lower anti-S1 IgG and 213 

anti-S1 IgA levels and S1 neutralizing capacity in serum at both time points and lower T cell 214 

reactivity to S-I and S-II at ~d49 in COVID-19 convalescents of comparable age after mild 215 

infection, which underlines the strong immunogenicity of BNT162b2 vaccine (Fig. 1a-e). 216 

However, in old vaccinees, particularly humoral vaccination responses were delayed and 217 

more heterogeneously distributed compared to the middle-aged cohort (Fig. 1a-e). For 218 

example, at d28, we did not detect anti-S1 IgG and anti-S1 IgA in five (28%) and eight (44%) 219 

old donors respectively (Fig. 1a and b; Supplemental Fig. 2) whereas all middle-aged donors 220 

exhibited strongly positive anti-S1 IgG levels. At d49, anti-S1 IgG and S1 neutralizing 221 

capacity (including one non-responder) were still significantly lower in the old vaccinees 222 

(Fig. 1a and c). Regarding the cellular response, all middle-aged and 89% (S-I) and 94% (S-223 

II) respectively of the old donors acquired CD4+ T cell reactivity to S-I and S-II at d28. 224 

However, S-II-reactive T cell frequencies increased more homogenously and reached a higher 225 

level in the middle-aged than in the old cohort. At d49, both age groups reached comparable 226 

S-I- and S-II-reactive T cell levels (Fig. 1d-e). Consistently, reduced humoral and cellular 227 

vaccination responses in old individuals have been described for vaccines against influenza, 228 

yellow fever and tetanus as well as for COVID-19 (12-15). 229 
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We have recently demonstrated that, in contrast to the N-terminal part, the C-terminal part of 230 

the spike glycoprotein contains highly conserved domains and triggers CD4+ T cell cross-231 

reactivity to SARS-CoV-2 (11). Pre-existing T cell reactivity to S-II at baseline was 232 

significantly lower in old individuals than in the middle-aged cohort (Fig. 1e; Supplemental 233 

Fig. 3a). Possible explanations for this age-related reduction of cross-reactivity could be 234 

cellular senescence or impaired (oronasal) mucosal immunity (16-18). Remarkably though, in 235 

these old individuals, high levels of S-II-specific, but not S-I-specific, CD4+ T cells at 236 

baseline were associated with higher anti-S1 IgG and consistently with elevated S1 237 

neutralizing capacity in serum at d28 (Fig. 1f-g; Supplemental Fig. 3b). In the light of the 238 

increased risk of the elderly for severe COVID-19 and the current discussions on their need of 239 

booster vaccinations, it is essential to identify and evaluate possible predictors of low 240 

vaccination efficiency particularly in this age group. Several studies have supported the 241 

notion of beneficial effects of pre-exposure SARS-CoV-2 cross-reactivity (4, 19, 20). 242 

However, whether this phenomenon has a direct effect on BNT162b2 immunogenicity in the 243 

elderly was unclear. Our findings here show that increased frequencies of pre-existing S-II-244 

specific CD4+ T cells were associated with the efficiency of anti-S1 IgG and S1 neutralizing 245 

vaccination responses in the elderly. Cross-reactive CD4+ memory T cells expand faster upon 246 

antigen reactivation post-vaccination to aide B cell activation and class-switch and thus mount 247 

a more efficient antibody response.  248 

We additionally investigated the presence of anti-S1 secretory IgA (sIgA) and S1 249 

neutralization capacity in the saliva as a potential correlate of local mucosal protection from 250 

SARS-CoV-2 infection. We assume that the presence of S1-specific antibodies and S1 251 

neutralizing capacity in the saliva may contribute to protection against SARS-CoV-2 infection 252 

and reduce local replication (21, 22).  At d28 following vaccination, anti-S1 sIgA levels 253 

increased above their age groups’ maximum pre-vaccination level in all middle-aged (0.45 254 

OD ratio) but only 60% of the old donors (0.31 OD ratio; Fig. 2a). Consistently, an increase 255 
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in S1 neutralizing activity in saliva was detected in most vaccinees at d28 (Fig. 2b).  This 256 

response, however, was transient and anti-S1 sIgA and salivary S1 neutralization dropped to 257 

pre-vaccination levels in all vaccinees within four weeks (d49) after the second vaccination 258 

(Fig. 2a and b). There was no correlation between anti-S1 sIgA or salivary S1 neutralizing 259 

capacity and pre-existing cross-reactive CD4+ T cells (Fig. 2c and d). Intriguingly, compared 260 

to aged-matched middle-aged vaccinees, COVID-19 convalescents exhibited significantly 261 

higher anti-S1 sIgA levels and S1 neutralizing capacity in the saliva at ~d49 after symptom 262 

onset (Fig. 2a and b). Unlike salivary S1 neutralizing capacity, anti-S1 sIgA remained 263 

significantly increased in convalescents at ~d94 indicating that anti-S1 sIgA does not 264 

correspond to neutralizing activity following infection at later time points. However, we 265 

found a correlation between anti-S1 sIgA levels and salivary S1 neutralization in 266 

convalescents at ~d28 and at ~d49, which was not observed in vaccinees (Supplemental Fig. 267 

4). This suggests that neutralizing capacity in the saliva following vaccination may not only 268 

rely on anti-S1 sIgA but possibly anti-S1 IgG, which is consistent with reports on detectable 269 

anti-S1 IgG in the saliva of vaccinated individuals (23). In COVID-19 convalescents, anti-S1 270 

sIgA secretion in salivary glands (and salivary S1 neutralizing activity) is likely induced by 271 

locally primed B and T cells in nasopharyngeal lymph nodes and/or tonsils (24). This is 272 

underlined by an increase in salivary neutralization capacity and sIgA in convalescents from 273 

d28 to d49 after infection (Fig. 2a and b) and may indicate generation of tissue-resident 274 

plasma cells after mucosal priming. In contrast, the more transient presence of anti-S1 sIgA in 275 

the saliva of vaccinated individuals could be the result of transfusion of serum-derived anti-S1 276 

IgA through the endothelium into the oral mucosa (25). Currently, vaccines for intranasal 277 

application are in development, which may fill the gap in mucosal immunity observed here 278 

(26). 279 

Taken together, our findings indicate that the presence of anti-S1 sIgA and S1 neutralizing 280 

capacity in the saliva after vaccination is of shorter duration and lower magnitude than after 281 
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natural infection highlighting the need to determine the role of mucosal immunity, e.g., in the 282 

form of sIgA in saliva, for evaluation of SARS-CoV-2 immunity and its transmission. 283 

Furthermore, we demonstrate that BNT162b2 induces strong immune responses in middle-284 

aged as well as most old and comorbid individuals. However, for some old individuals, the 285 

serological response to vaccination is hampered and may leave these individuals at higher risk 286 

of infection and severe disease courses, thus promoting recommendations for regular immune 287 

status check-ups and further vaccination boosts. Importantly, we show here that pre-existing 288 

SARS-CoV-2 spike glycoprotein cross-reactive memory T cells are associated with 289 

vaccination efficiency in the elderly and may generally contribute to the high responsiveness 290 

to COVID-19 vaccines. 291 

  292 
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Abbreviations 430 

COVID-19, coronavirus disease 2019  431 

d28, day 28 after first vaccination 432 

d49, day 49 after first vaccination 433 

~d28, around day 28 after COVID-19 symptom onset 434 

~d49, around day 49 after COVID-19 symptom onset 435 

~d94, around day 94 after COVID-19 symptom onset 436 

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2  437 

sIgA, secretory IgA  438 

sVNT, surrogate virus neutralization assay  439 

S1, SARS-CoV-2 spike glycoprotein subunit 1  440 

S-I, peptide mix representing the SARS-CoV-2 spike glycoprotein N-terminal part  441 

S-II, peptide mix representing the SARS-CoV-2 spike glycoprotein C-terminal part mix  442 

 443 
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 446 

 447 

 448 

 449 

 450 

Figure Legends 451 

 452 

Fig. 1: Serological antibody responses, neutralizing capacity and CD4+ T cell reactivity 453 

to S-I and S-II. a and b, anti-S1 serum IgG (a) and IgA (b) OD ratios in the old (red dots) 454 

and middle-aged (white) vaccinees at BL, d28 and d49 and in COVID-19 convalescents 455 

(blue) at ~d28 or ~d49. c, quantification of SARS-CoV-2 receptor (ACE2) binding inhibition 456 

in serum in percent in the old and middle-aged vaccinees at BL, d28 and d49 and in COVID-457 

19 convalescents at ~d28 or ~d49. d and e, Stimulation Indices of S-I (d) and S-II (e) peptide 458 

pool-specific CD40L+ 4-1BB+ CD4+ T cells in the old and middle-aged vaccinees at baseline 459 

(BL), d28 and d49 and in COVID-19 convalescents at ~d28 or ~d49.  f and g, anti-S1 serum 460 

IgG OD ratios (f) and inhibition in serum (g) in the old and middle-aged vaccinees at d28 461 

grouped according to S-II-specific CD4+ T cell reactivity at BL (Stimulation Index > 1.5). 462 

Positivity thresholds: antibody OD ratio (dotted lines) > 1.1; neutralizing capacity (dotted 463 

lines) > 30%; CD4+ T cells Stimulation Index (dotdash lines) > 1.5 (positive, above 464 

background) and (dashed lines) > 3.0 (certainly positive; 6). Grey lines connect follow-up 465 

samples. p ≤ 0.05 = *, p ≤ 0.01=**, p ≤ 0.001=***, p ≤ 0.0001=**** according to the Mann-466 

Whitney U test. 467 

 468 

Fig. 2: Salivary immune responses.   469 

a, anti-S1 saliva sIgA OD ratios in the old (red dots) and middle-aged (white) vaccinees at 470 

BL, d28 and d49 and in COVID-19 convalescents (blue) at ~d28, ~d49 or ~d94. b, 471 
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quantification of SARS-CoV-2 receptor (ACE2) binding inhibition in saliva in percent in the 472 

old and middle-aged vaccinees at BL, d28 and d49 and in COVID-19 convalescents at ~d28, 473 

~d49 or ~d94. c and d, anti-S1 saliva sIgA OD ratios (c) and inhibition in saliva (d) in the old 474 

and middle-aged vaccinees at d28 grouped according to S-II-specific CD4+ T cell reactivity at 475 

BL (Stimulation Index > 1.5). Salivary anti-S1 sIgA and ACE2 binding inhibition are 476 

displayed as means of up to three saliva samples on consecutive days (one per day for three 477 

days). Grey lines connect follow-up samples. ns = non-significant, p ≤ 0.05 = *, p ≤ 0.01=**, 478 

p ≤ 0.001=*** according to the Mann-Whitney U-test.  479 
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 523 
 524 
 525 
 526 
Tables 527 

Table I. Donor characteristics.  528 

Cohort Number 

(#) 

Sex 

(female) 

Mean age in 

years [SD] 

Mean # of days between 

symptom onset and testing [SD] 

Vaccinated 

elderly 

18 11 82.56 [5.82]   

Vaccinated 

middle-aged 

14 13 * 47.36 

[10.10] **** 

 

COVID-19 

convalescents 

(unvaccinated) 

~d28 after 

symptom onset 

10 6 33.8 [10.32] 27.2 [5.01]  

COVID-19 

convalescents 

(unvaccinated) 

~d49 after 

symptom onset 

16 12 34.94 [11.53] 49.19 [6.45] 

COVID-19 11 6 39.40 [10.67] 93.90 [9.02] 
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convalescents 

(unvaccinated) 

~d94 after 

symptom onset 

SD = standard deviation. Significance of statistical differences in demographic parameters      529 

between middle-aged and elderly vaccinees is displayed by *, **, ***, ****.  530 

 531 
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