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Abstract 1 

Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. 2 

Postmortem human brain tissue enables the investigation of molecular mechanisms of AUD 3 

in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes in 4 

the ventral and dorsal striatum between individuals with AUD and controls, and to integrate 5 

the results with findings from genome- and epigenome-wide association studies 6 

(GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-7 

methylation and gene expression (RNA-seq) data was generated from postmortem brain 8 

samples of 48 individuals with AUD and 51 controls from the ventral striatum (VS) and the 9 

dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes 10 

using DESeq2, performed gene-set enrichment analysis (GSEA), and tested enrichment of 11 

DE genes in results of GWASs using MAGMA. Weighted correlation network analysis 12 

(WGCNA) was performed for DNA-methylation and gene expression data and gene overlap 13 

was tested. Differential gene expression was observed in the dorsal (FDR<0.05), but not the 14 

ventral striatum of AUD cases. In the VS, DE genes at FDR<0.25 were overrepresented in a 15 

recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three 16 

brain regions. GSEA in CN and VS pointed towards cell-structure associated GO-terms and 17 

in PUT towards immune pathways. The WGCNA modules most strongly associated with AUD 18 

showed strong enrichment for immune response and inflammation pathways. Our integrated 19 

analysis of multi-omics data sets provides further evidence for the importance of immune-and 20 

inflammation-related processes in AUD.  21 
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Introduction 22 

Alcohol Use Disorder (AUD) is a major contributor to the global disease burden, with a 23 

prevalence of ~17% among 12-month alcohol users in the US1, 2 and an estimated heritability 24 

of 49%3. Knowledge about the molecular mechanisms can foster understanding of causes and 25 

promote prevention. Recent genome-wide association studies (GWASs) have identified 29 26 

genetic loci associated with Problematic Alcohol Use (PAU), a proxy of AUD4. While GWASs 27 

identify increasing numbers of disease-associated loci, the functional interpretation of many 28 

of these findings remains inconclusive. Analyzing the transcriptome can extend the 29 

understanding of the molecular mechanisms underlying AUD, by identifying associated gene 30 

expression patterns. Findings can in turn be integrated with results from GWASs and 31 

epigenome-wide association studies (EWASs) to identify the pathomechanisms underlying 32 

disease.  33 

Processes in the central nervous system are considered to play a major role in the etiology of 34 

addiction, and the transition from chronic alcohol consumption to AUD5. Therefore, it is of 35 

particular interest to examine molecular changes associated with addiction in brain tissue. So 36 

far, only few studies have been conducted in postmortem human brain tissue to identify 37 

transcriptional changes associated with AUD6-8. These studies mainly focused on the 38 

prefrontal cortex (PFC) one important part of the neurocircuitry of addiction9, 10. The first 39 

transcriptome-wide study in the PFC found DE genes implicated in neuronal processes, such 40 

as myelination, neurogenesis, and neural diseases, as well as cellular processes, such as cell 41 

adhesion and apoptosis11. In Brodmann Area 9 downregulation of calcium signaling pathways 42 

has been observed in individuals with AUD compared to controls12. In the same study, a 43 

weighted gene co-expression analysis (WGCNA) pointed towards modules associated with 44 

AUD case/control status, which were enriched for nicotine and opioid signaling, as well as 45 

immune processes. Another study in the PFC (Brodmann Area 8) showed that co-expression 46 

networks associated with lifetime alcohol consumption were enriched for GWAS signals of 47 

alcohol dependence6.  48 
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Despite the importance of striatal regions in addiction processes, genome-wide human omics 49 

studies of these brain regions are still missing. The striatum is divided into the ventral striatum 50 

(VS), consisting of the nucleus accumbens and olfactory tubercle; and the dorsal striatum, 51 

comprising the caudate nucleus (CN) and putamen (PUT)13. The nucleus accumbens is 52 

involved in mediating motivational processes such as aversion and reward, which play a 53 

significant role in the development and maintenance of substance use disorders (SUD)13. In 54 

addition to regulating motor function, the CN and PUT are involved in cognitive processes 55 

relevant for addiction, such as executive functioning and cognitive control, reinforcement 56 

learning and habit formation14. Analyses of omics data from striatal regions could complement 57 

the knowledge on global molecular changes in the neurocircuitry of addiction in AUD.  58 

In a recent EWAS of AUD in postmortem brain tissue, we identified differentially methylated 59 

CpG-sites and regions in the ventral and dorsal striatum15. Previous studies have shown the 60 

utility of integrating epigenetic and transcriptomic data in postmortem brain tissue of SUDs 61 

using weighted correlation network analysis (WGCNA)16. WGCNA clusters genes or CpG-62 

sites into co-expressed or co-methylated modules based on correlation matrices. By relating 63 

modules to each other, WGCNA can be used for data integration, providing more insights than 64 

descriptive overlap. For example, whereas a descriptive comparison of histone H3 lysine 4 65 

trimethylation (H3K4me3) and mRNA expression in individuals with AUD and cocaine use 66 

disorder revealed no consistent overlap between H3K4me3 trimethylation and gene 67 

expression17, a network analysis identified overlapping modules pointing towards co-68 

expressed genes associated with H3K4me3 trimethylation6. Modules associated with AUD 69 

were enriched for CNS functions, such as synaptic transmission and regulation of 70 

neurogenesis6. WGCNA has also been used for integrating epigenetic and transcriptomic data 71 

and investigating their association with opioid use disorder (OUD) in postmortem human brain, 72 

identifying immune-related transcriptional regulation to be enriched in co-expressed and co-73 

methylated modules18. 74 

The aim of the present study was to investigate differential gene expression associated with 75 

AUD status in the ventral and dorsal striatum, relate these to GWAS findings, and to integrate 76 
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the findings with DNA-methylation data using a network approach (WGCNA) in order to 77 

identify functionally relevant molecular mechanisms in AUD. 78 

Materials and Methods 79 

Samples 80 

Postmortem human brain tissue from CN, PUT and VS of a total of 48 individuals with AUD 81 

and 51 control individuals (68% male) was obtained from the New South Wales Tissue 82 

Resource Centre at the University of Sydney. The Ethics Committee II of the University of 83 

Heidelberg approved the study (reference number 2021-681). After quality control (QC), the 84 

total sample sizes for each brain region were NCN = 71, NPUT = 77 and NVS = 63. Phenotypic 85 

information was assessed by next-of-kin interviews. Inclusion criteria for this study were: 86 

age>18 years, Western European Ancestry, no history of severe psychiatric or 87 

neurodevelopmental disorders, or SUDs other than AUD and nicotine use disorder or smoking. 88 

AUD was defined as meeting DSM-IV criteria for alcohol dependence and consuming 80g of 89 

alcohol a day or more (control group: <20g/day). Descriptive information can be found in Table 90 

1 and Supplementary Table S1.  91 

RNA extraction and -sequencing 92 

RNA was extracted from frozen tissue according to the manufacturer´s protocol using the 93 

Qiagen RNeasy microKit (Qiagen, Hilden, Germany). The RNA Integrity Number (RIN) of all 94 

samples was determined using a TapeStation 4200 (Agilent, Santa Clara, CA). RIN values of 95 

273 samples were larger than 5.5, for which libraries were prepared using the TruSeq 96 

Stranded Total RNA Library Prep Kit (Illumina, San Diego, CA). RNA sequencing was 97 

performed on the NovaSeq 6000 (Illumina) at the Life & Brain Center in Bonn, Germany with 98 

read lengths of 2x100bp and a sequencing depth of 62.5 M read pairs per sample on average. 99 

Technical replicates were sequenced for all but four samples.  100 
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DNA extraction and Methylation Profiling 101 

DNA extraction, methylation profiling, and QC was performed as described in Zillich et al.15. 102 

In brief, DNA was extracted using the DNeasy extraction kit (Qiagen, Hilden, Germany); the 103 

Illumina HumanMethylation EPIC BeadChip and the Illumina HiScan array scanning system 104 

(Illumina, San Diego, CA) were used to determine DNA-methylation levels. We used an 105 

updated and customized version of the CPACOR pipeline to extract beta values from raw 106 

intensities19. Criteria for the removal of samples and probes can be found in Zillich et al.15. In 107 

the present analyses, DNA methylation data was included from all subjects from whom gene 108 

expression data was available after QC. 109 

Statistical Analyses 110 

All analyses apart from QC and read mapping were performed using R version 3.6.120. An 111 

overview of the analysis workflow can be found in Figure 1. The Benjamini-Hochberg (FDR)21 112 

procedure was used to correct for multiple testing. Differentially expressed genes were 113 

considered statistically significant at FDR<0.05. All downstream analyses were performed 114 

using genes significantly differentially expressed at FDR<0.25. 115 

Mapping and Quantification  116 

Sequencing quality was determined using FastQC22 and 24 samples (11 cases and 13 117 

controls) were excluded due to insufficient sequencing quality (e.g. strong overrepresentation 118 

of sequences, GC distribution). Raw reads were mapped to the human genome (hg38) using 119 

HISAT2 (v.2.1.0)23. Quantification was performed with the featureCounts function of the 120 

Rsubread package (v.2.0.1)24, with hg38 annotation. 121 

Differential Gene Expression Analysis 122 

Differential gene expression was determined using DESeq2 (v.1.26.0)25. Minimal pre-filtering 123 

was applied, removing genes with normalized counts <10 for more than two samples. 124 
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Technical replicates were merged prior to differential expression analysis using the 125 

collapseReplicates function as implemented in DESeq2. For the differential gene expression 126 

analysis, we included age, sex, RIN, pH-value of the brain, and postmortem interval (PMI) as 127 

covariates, because of their known influence on gene expression26-28. To assess residual bias 128 

after adjustment for covariates, we generated Q-Q plots and calculated genomic inflation 129 

factors (Supplementary Figure 1). We further conducted a variance partition analysis using 130 

the variancePartition() function of the corresponding R package29, which confirmed the 131 

covariates. Results of this analysis can be found in Supplementary Figure 2. Results were 132 

filtered for differentially expressed (DE) genes with an absolute log2 fold change larger than 133 

0.02. Volcano plots displaying up- and downregulation of genes for each brain region are 134 

shown in Supplementary Figure 3.  135 

Gene-Set Enrichment Analysis 136 

Gene-set enrichment analysis was performed using the R package fgsea (v.1.12.0)30, for 137 

which DE genes were ranked according to p-value. Enrichment analysis was performed for 138 

Gene-Ontology (GO) terms31 and Hallmark gene sets32 and the results were adjusted using 139 

FDR correction.  140 

Cell Type Enrichment Analysis 141 

To identify cell type specific expression signatures, we performed cell type enrichment 142 

analysis using DE genes (FDR<0.25) from the three brain regions. As a reference gene set 143 

for brain cell types, we used the “top ranked cell type-enriched genes based on human data” 144 

as provided by McKenzie, Wang 33. These contain the 1000 most enriched genes in a cell type 145 

and cover astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes. Using the 146 

R package GeneOverlap (v.1.22.0)34 , we assessed the overlap of AUD-status associated DE 147 

genes with markers from the different cell populations. Results were adjusted for multiple 148 

testing using the Benjamini-Hochberg method as implemented in GeneOverlap.  149 
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Differential Methylation Analysis 150 

Effect sizes and p values for CpG sites were used from the EWAS results as presented in the 151 

original publication15. In brief, the EWAS model was based on methylation M-values as the 152 

dependent variable and AUD status as the predictor. As covariates, sex, age, postmortem 153 

interval (PMI), pH-value, estimated smoking, standardized neuronal cell count, and the first 154 

ten principal components of the EPIC array internal control probes were included. 155 

WGCNA 156 

Weighted correlation network analyses (WGCNA, v.1.70-3)16 were performed to identify 157 

modules of co-expressed genes and co-methylated CpG-sites. We assessed the relationship 158 

of these modules with AUD case/control status and tested the overlap between associated 159 

modules. WGCNA clusters the input matrix according to a dynamic tree cutting algorithm, 160 

using a soft power threshold that approximates the criterion of scale-free topology 161 

(Rsigned
2>0.80). Resulting soft power thresholds for expression networks were 6 for CN, 5 for 162 

PUT, and 14 for VS; for methylation networks, all power thresholds were 2.  163 

To identify methylation networks associated with gene expression, beta values from 164 

normalized intensities of all samples from which gene expression data were available were 165 

filtered for promoter-associated CpG-sites based on the manufacturer’s manifest (Illumina, 166 

San Diego, CA). The resulting 105 796 CpG-sites were used as input. 167 

For the RNA-seq data, count matrices were normalized using the DESeq2 function 168 

normalizeCounts and variance stability transformation was applied.  169 

Networks were constructed using following settings: minimum module size=30, 170 

mergeCutHeight=0.25, maxBlockSize=36 000. In WGCNA, modules are labeled using colors. 171 

In the results section modules are labeled according to type of data, brain region, and color 172 

assigned in the analysis, e.g. “e-VS-pink” for module “pink” from the WGCNA analysis of gene 173 

expression data in the ventral striatum. For each module, its eigengene was calculated and 174 

correlated with AUD status. Association of modules with AUD status and covariates is shown 175 

in Supplementary Figure 4. For modules associated with AUD status, we performed 176 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2021.10.04.21264523doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264523
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

enrichment analysis using the GOenrichmentAnalysis function implemented in the WGCNA 177 

package for expression data and the R package missMethyl (v.1.20.4)35 for methylation 178 

modules. Further, we extracted hub genes of AUD associated WGCNA expression modules 179 

by calculating the product of module membership and gene significance for each gene of a 180 

module. Based on this score, the 10% of highest ranking genes were defined as module hub 181 

genes. To investigate the biological relevance of hub genes, protein-protein interaction 182 

networks were generated using the Search Tool for the Retrieval of Interacting Genes/Proteins 183 

(STRING, v.11.5)36. Graphical representation of gene networks was restricted to high 184 

confidence interactions (interaction score threshold 0.7).  185 

Expression and Methylation Data Integration  186 

To identify genes both DE and differentially methylated, we analyzed the overlap of DE genes 187 

(FDR<0.25) with the results of an EWAS (p<0.001) in the same sample15. We prioritized CpG-188 

sites based on their functional relevance in gene expression regulation. Thus, promoter-189 

associated CpG-sites were used in the analysis.  190 

At the module level, gene-set overlap tests were performed using the R package GeneOverlap 191 

(v.1.22.0)34. Here, Fisher's exact test is used to identify significant overlap. For each brain 192 

region, the overlap of the AUD-associated co-expression and co-methylation modules was 193 

tested.   194 

GWAS Enrichment Analysis 195 

We analyzed enrichment of DE genes with an FDR<0.25, and genes in AUD-associated 196 

WGCNA modules in GWAS summary statistics using Multi-marker Analysis of GenoMic 197 

Annotation (MAGMA, v.1.08b)37. We performed GWAS enrichment analysis for several SUDs, 198 

such as alcohol use disorder and problematic alcohol use4, cannabis use disorder38, and a 199 

recent GWAS comparing individuals with opioid use disorder with unexposed controls39. 200 

Bonferroni correction (n=4 tests per gene set) of p values was applied to adjust for multiple 201 

testing.  202 
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Results 203 

Differential Gene Expression 204 

Gene expression analysis of postmortem brain tissue from AUD cases and controls revealed 205 

DE genes at FDR<0.05 in both dorsal striatal regions. In the caudate nucleus, 49 DE genes 206 

were identified at FDR<0.05 (39 up- and 10 downregulated). Tubulin Tyrosine Ligase Like 4 207 

(TTLL4, log2FC=0.11, p=2.3*10-8) and GATA Binding Protein 2 (GATA2, log2FC=-0.27, 208 

p=8.6*10-7) were the most significantly upregulated and downregulated genes, respectively. 209 

Top up- and downregulated genes in the putamen were found to be Transcription Elongation 210 

Factor A Like 2 (TCEAL2, log2FC=0.09, p=5.8*10-5) and Desmin (DES, log2FC=-0.86, 211 

p=2.6*10-6), the latter being the only significant gene after correction for multiple testing. Nine 212 

genes were downregulated in both dorsal striatal regions, with HLA-DOB having the highest 213 

log2FC in both regions. In the ventral striatum, no DE genes were detected at FDR<0.05. The 214 

most significant differential gene expression in the ventral striatum was observed for Ankyrin 215 

Repeat And Ubiquitin Domain Containing 1 (ANKUB1) which was upregulated in AUD cases 216 

(log2FC=1.35, p=5.8*10-5). In the VS of AUD cases Caseinolytic Mitochondrial Matrix 217 

Peptidase Chaperone Subunit B (CLPB, log2FC=-0.11, p=5.2*10-6) was the most significantly 218 

downregulated gene.  219 

None of the DE genes at FDR<0.05 overlapped between multiple brain regions. Therefore, 220 

the less conservative significance threshold of FDR<0.25, which was also used for 221 

downstream analyses, was applied to compare the overlap of DE genes. At FDR<0.25 the 222 

cardiomyopathy associated 5 (CMYA5) gene showed an upregulation in both caudate nucleus 223 

and putamen. ARHGEF15 (Rho Guanine Nucleotide Exchange Factor 15) was upregulated in 224 

all three brain regions at FDR<0.25. The Top 5 DE genes from each brain region are listed in 225 

Table 2; complete summary statistics are listed in Supplementary Table S2 (CN), S3 (PUT), 226 

and S4 (VS). Overlap between DE genes in the different brain regions is shown in Figure 2A.  227 
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Gene-set Enrichment Analysis 228 

Pathway analysis using a pre-ranked enrichment analysis revealed significant enrichment of 229 

dorsal striatum DE genes for several GO terms and Hallmark gene-sets. Genes in the CN 230 

were found to be related to cilia- and microtubule-associated GO-terms, while none of the 231 

Hallmark gene-sets was significantly enriched. GO-term and Hallmark gene-set analysis in 232 

PUT samples showed enrichment for immune processes, such as “acute inflammatory 233 

response to antigenic stimuli” (pFDR=0.006) and “adaptive immune response” (pFDR =0.006). In 234 

the VS the most significantly enriched GO-terms were also related to cilia and microtubules, 235 

as well as antigen processing. All GO-terms and Hallmark gene-set with FDR <0.10 are listed 236 

in Supplementary Tables S5 (CN), S6 (PUT), and S7 (VS). 237 

Cell Type Enrichment Analysis 238 

In the CN, upregulated DE genes were significantly enriched for astrocytic markers (pFDR 239 

=7*10-6), whereas an enrichment for endothelial cell marker genes was detected among 240 

downregulated genes (pFDR =2*10-7). No significant cell-type enrichment of DE genes was 241 

found in the putamen and the ventral striatum. GeneOverlap heatmap visualizations for the 242 

three brain regions are displayed in Supplementary Figure 5. 243 

WGCNA 244 

Expression 245 

In the CN, 21 modules with a median size of 352 genes (range: 64-7 259) were identified. 246 

Module “e-CN-magenta”, consisting of 328 genes, showed the strongest positive association 247 

with AUD status (r=0.42, p=2.89*10-4). In the PUT, of the 25 modules (median size 249 genes, 248 

range: 33-5 381) identified, module “e-PUT-black” was most strongly correlated with AUD with 249 

a positive direction of effect (r=0.41, p=2.31*10-4). For expression data from the ventral 250 

striatum, 16 modules with a median size of 429 genes (range: 35-9 708) were identified; 251 
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module “e-VS-pink” had the strongest positive association with AUD (r=0.41, p=0.009). 252 

Interestingly, in a GO-term analysis the three AUD associated modules were all enriched for 253 

immune processes, such as “defense response” and “inflammation response”. Gene network 254 

representation of hub genes in modules “e-CN-magenta”, “e-VS-pink”, and “e-PUT-black” 255 

revealed the signal transducer and activator of transcription 3 (STAT3) gene as a conserved 256 

hub node in all three brain regions (Figure 2D-2F). There was also a wide overlap of the genes 257 

in the three modules: 174 (22.54%) were partially shared between all three modules 258 

corresponding to the three brain regions, while another 21.76% were shared between at least 259 

two modules (Figure 2B). A gene network analysis of the 174 shared genes between regions 260 

identified STAT3, TP53, ICAM1, MYC, and NFKBIA as the top 5 hub nodes of the network. A 261 

visualization of the network is depicted in Figure 3.  262 

Methylation 263 

In the CN, WGCNA resulted in 36 modules with a median size of 346 CpG-sites (range: 66-264 

41 423). Module “m-CN-red”, consisting of 2 117 CpG-sites, showed the strongest association 265 

with AUD case control status (r=-0.27, p=0.021). This module was most highly enriched for 266 

the biological processes “cell activation” (p=1.52*10-5) and “leukocyte activation” (p=2.09*10-267 

5). In PUT 177 modules were identified (median size=57 CpG-sites, range: 30-42 248). Module 268 

“m-PUT-plum” consisted of 70 CpG-sites and was significantly associated with AUD 269 

case/control status (r=-0.29, p=0.023) and enriched for the biological processes “positive 270 

regulation of I-κB kinase/NF-κB signaling” (p=0.002) and “regulation of I-κB kinase/NF-κB 271 

signaling” (p=0.005). WGCNA in the VS methylation data resulted in 85 modules (median 272 

size=178 CpG-sites, range: 35-30 370). The module with the strongest association with AUD 273 

was “m-VS-lavender” (r=-0.29, p=0.023), which consisted of 117 CpG-sites and was enriched 274 

for the molecular function “natural killer cell lectin-like receptor binding” (p=3.43*10-4) and the 275 

biological process “susceptibility to natural killer cell mediated cytotoxicity” (p=3.65*10-4). The 276 

top 10 enriched GO-terms for all AUD-associated modules can be found in Supplementary 277 

Tables S8-S10. 278 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2021.10.04.21264523doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264523
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Expression and Methylation Data Integration 279 

In the CN, 12 genes showed both differential methylation and differential gene expression. DE 280 

statistics, EWAS summary statistics and functional annotation for these genes are provided in 281 

Supplementary Table S11. No overlap was observed in the VS and PUT. At the module-level, 282 

co-expression module “e-CN-magenta” showed significant overlap with the methylation 283 

modules “m-CN-red” (p=0.003) and “m-CN-midnightblue” (p=0.014) (Figure 2C), while 284 

expression module “e-CN-purple” did not show significant overlap with the methylation 285 

modules in CN. Of the 3 AUD-associated expression modules in the VS, only “e-VS-salmon” 286 

showed significant overlap with the methylation module “m-VS-turquoise” (p=0.003), but not 287 

“m-VS-lavender”. No overlap was observed for gene expression and DNA-methylation in PUT.  288 

 289 

GWAS Enrichment Analysis of DE Genes and WGCNA modules 290 

In the VS, but not in the dorsal striatum, we observed enrichment of DE genes in the GWAS 291 

signal of PAU (p=0.045). In the putamen DE genes were enriched for GWAS signal from a 292 

study comparing individuals with OUD to unexposed controls (p=0.025). None of the DE genes 293 

in any of the brain regions showed enrichment for signals from a GWAS of Cannabis Use 294 

Disorder or AUD.  295 

From the WGCNA modules showing the strongest association with AUD, only module e-VS-296 

pink showed significant enrichment for GWAS signals of CUD (p=0.043). None of the findings 297 

remained statistically significant after multiple testing correction. Results from the respective 298 

analyses are depicted in Supplementary Figure 6 and enrichment p values as well as the 299 

number of overlapping genes are displayed in Supplementary Table S12.  300 
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Discussion 301 

In the present study, we identified DE genes, co-expression networks, and pathways 302 

associated with AUD in the dorsal and ventral striatum. The results were integrated with DNA-303 

methylation data and results from GWASs of SUDs.  304 

We discovered that one gene (ARHGEF15) was consistently upregulated in all investigated 305 

brain regions of AUD cases compared to controls. ARHGEF15 encodes a specific guanine 306 

nucleotide exchange factor for the activation of Ras homolog family member A (RhoA), a 307 

GTPase, which has been linked to higher blood pressure and hypertension over the 308 

Rho/ROCK signaling cascade40. It is postulated that the Rho Guanine Nucleotide Exchange 309 

Factor 15 negatively regulates excitatory synapse development by suppressing the synapse-310 

promoting activity of EPHB241. EPHB2 deficiency has been linked to depression-like behaviors 311 

and memory impairments in animal studies42. In line with this, genetic variation within 312 

ARHGEF15 has been associated with hematocrit, red blood cell count, and hemoglobin 313 

concentration43, but also with psychiatric traits, such as neuroticism and worries44 as well as 314 

bipolar disorder45. 315 

Among the genes that were downregulated in both dorsal striatal regions, HLA-DOB displayed 316 

the highest fold change. HLAs of the Major Histocompatibility Class II are an essential part of 317 

the acquired immune system presenting antigens to T-lymphocytes (for review: Howell, Carter 318 

46). The most significantly downregulated gene in the VS is CLPB, a mitochondrial chaperone, 319 

which has been associated with progressive brain atrophy47 and with the cellular response to 320 

alcohol-induced stress48. In a recent GWAS, CLPB was associated with the amount of alcohol 321 

consumed on a typical day (p=9.67*10-5, N=116 163)49.  322 

DE genes in the ventral striatum were enriched for GWAS signals of PAU, but not AUD. This 323 

could be a result of the larger sample size of the PAU GWAS, but also point towards 324 

differences in genetic variation as responsible for differential expression. 325 

Our results from the pathway and network analyses further underline immune-related effects 326 

of chronic alcohol exposure; the pathway and network modules most strongly associated with 327 
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AUD case-control status were also enriched for immune system and inflammation processes. 328 

This was observed for all three brain regions, and both in expression and methylation data, 329 

providing further evidence for the important role of immune processes in AUD. 330 

Gene networks derived from WGCNA hub genes similarly revealed genes related to 331 

inflammatory processes as strongly connected network nodes. Here, STAT3 represents a 332 

conserved network hub node in all three brain regions. STAT3 is a member of the JAK/STAT 333 

pathway and acts as a transcription factor upon activation by cytokines, hormones and growth 334 

factors50. Interestingly, a recent study assessing expression signatures of alcohol withdrawal 335 

in rats discovered a very similar gene network in the hippocampus with STAT3 as a hub node 336 

surrounded by a network of downstream targets51. The authors also discovered increased 337 

levels of STAT3 and its neuroinflammation-related target genes in postmortem brain tissue of 338 

subjects with AUD. Activation of the STAT3 gene network was found to be primarily restricted 339 

to astrocytes. This supports the results of the cell type enrichment analyses, where enrichment 340 

of astrocytic expression signatures was detected for upregulated DE genes in the CN.  341 

These results strongly reflect the well-described effect of chronic alcohol exposure on different 342 

aspects of the innate and acquired immune systems52. Chronic alcohol exposure accelerates 343 

the inflammatory response and reduces anti-inflammatory cytokines52. An activated immune 344 

response in response to chronic alcohol exposure has been shown on the cell level53, as well 345 

as on the transcription53, and protein levels54, 55. In a previous EWAS, we found strong 346 

enrichment of immune processes in differentially methylated CpG-sites associated with 347 

alcohol withdrawal56. Neuroinflammation has been repeatedly associated with AUD and both 348 

the glutamate excitotoxicity and the production of acetaldehyde, key processes in AUD 349 

metabolism, have been suggested to produce an inflammatory response in the brain57. On a 350 

phenotypic level, there is also widespread overlap between symptoms of inflammation and of 351 

SUDs, such as anhedonia, depression, and decreased cognitive functioning58. In addition, in 352 

candidate gene studies in postmortem human PFC, hippocampus, and orbitofrontal cortex, 353 

increased mRNA levels of HMGB1, which encodes a proinflammatory cytokine and toll-like 354 

receptor genes have been associated with alcohol consumption in AUD cases, providing 355 
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evidence for chronic neuroinflammation in response to alcohol59-61. Notably, there is an overlap 356 

of findings not only on the single-gene level but also on the level of pathways and 357 

networks/modules. This overlap underlines that alcohol consumption has common biological 358 

effects in different brain regions, i.e., most prominently, effects on immune and inflammation 359 

processes.  360 

Several limitations apply to our study. First, we cannot distinguish between effects being a 361 

consequence of chronic alcohol consumption or addiction. Second, although we corrected for 362 

PMI, which can influence tissue quality as a confounding factor, it cannot be ruled out that 363 

other characteristics not easily accounted for, such as cause of death, or blood alcohol level 364 

for which the majority of individuals have missing data, influenced gene expression. Third, 365 

although the sample size is comparatively large for postmortem brain studies in the addiction 366 

field, the small number of differentially expressed genes is likely attributable to limited power. 367 

Lastly, analyzing bulk tissue does not adequately reflect the diversity of cell types across 368 

different brain regions and future studies on single-cell level are needed to investigate cell-369 

type specific transcriptional changes associated with AUD. 370 

It has to be noted that besides DNA methylation, epigenetic mechanisms such as histone and 371 

chromatin modifications, or microRNA expression profiles can influence gene expression and 372 

are especially important in addiction research62. Future studies should therefore expand the 373 

epigenetic profiling of AUD to include these mechanisms.  374 

In summary, the present study provides further evidence from multi-omics data sets for the 375 

importance of immune-and inflammation-related processes in AUD. Notably, drugs that 376 

reduce neuroinflammation to reduce drinking, such as phosphodiesterases, may be promising 377 

approaches for novel treatment options for AUD. Recently published randomized controlled 378 

trials suggest that a phosphodiesterase inhibitor reduces heavy drinking whereas an antibiotic 379 

compound was not effective63, 64. A deeper understanding of the underlying mechanisms will 380 

enhance the discovery of drug targets and drive forward the development of precision 381 

medicine within in this field.  382 
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Figure Legends 

Figure 1. Analysis workflow of the present study. 

 

Figure 2. Venn Diagrams of gene overlap of A) DE genes at FDR < 0.25 in caudate nucleus 

(CN), putamen (PUT), and ventral striatum (VS), B) genes forming WGCNA expression-

modules showing the strongest association with AUD status for CN, PUT, and VS, C) genes 

forming WGCNA expression-module “e-CN-magenta” and those forming the methylation-

modules “m-CN-red” and “m-CN-midnightblue”. Network plots depicting the WGCNA gene 

expression modules showing the strongest association with AUD: D) module magenta from 

caudate nucleus, E) module black from putamen and F) module pink from ventral striatum. 

 

Figure 3. Network plot of genes, co-expressed between the WGCNA modules e-CN-magenta, 

e-PUT-black and e-VS-pink. 
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Tables 

Table 1. 
  

 

Descriptive statistics of demographic data. 
 

 

Characteristic Cases Controls p 

N 48 51  

Age, years 55.58 (10.62) 57 (10.64) 0.51 

Sex (M/F) 31/17 37/14  

pH-value 6.53 (0.26) 6.65 (0.25) 0.026* 

PMI (hours) 37.07 (15.79) 30.7 (15.57) 0.047* 

Blood Alcohol level (N) 7 0  

Blood Alcohol Level (g/100ml) 0.21 (0.21)   

Smoking (yes/%) 32 (66.7%) 12 (23.5%) <0.001* 

Samples per Brain Region   

Caudate Nucleus 36 37  

Putamen 35 42  

Ventral Striatum 31 32  

Data are presented as count (n/n; n (%)) or mean (±SD), PMI: post-mortem interval, pH: 

pH-value of the brain, p: p-value of t-Test/Chi-squared test comparing cases and controls. 

*significant difference between cases and controls  
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Table 2. 

Entrez Gene ID Gene Name baseMean log2(FC) lfcSE Stat P-Value FDR 

Caudate Nucleus 

9654 TTLL4 1125.89 0.11 0.02 5.59 2.33*10-8 0.0005 

2624 GATA2 51.17 -0.27 0.05 -4.92 8.58*10-7 0.0091 

25904 CNOT10 695.68 0.06 0.01 4.84 1.27*10-6 0.0091 

222256 CDHR3 1483.68 0.19 0.04 4.75 1.99*10-6 0.0106 
375611 SLC26A5 63.80 0.28 0.06 4.62 3.81*10-6 0.0163 

Putamen 

1674 DES 22.06 -0.86 0.18 -4.70 2.64*10-6 0.0486 

2050 EPHB4 118.04 -0.19 0.05 -4.19 2.78*10-5 0.0939 

9144 SYNGR2 499.84 -0.20 0.05 -4.19 2.76*10-5 0.0939 

55741 EDEM2 348.56 -0.07 0.02 -4.23 2.30*10-5 0.0939 

84245 MRI1 662.19 -0.13 0.03 -4.13 3.57*10-5 0.0939 

Ventral Striatum 

81570 CLPB 1188.85 -0.11 0.02 -4.56 5.16*10-6 0.0653 

22899 ARHGEF15 54.23 -0.26 0.06 -4.49 7.04*10-6 0.0653 

55584 CHRNA9 5.58 -1.17 0.26 -4.44 9.14*10-6 0.0653 

100463488 MTRNR2L10 4.91 -2.07 0.50 -4.16 3.23*10-5 0.1730 

389161 ANKUB1 30.26 1.35 0.34 4.02 5.79*10-5 0.2480 

Top 5 differentially expressed genes in caudate nucleus, putamen and ventral striatum. 
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