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55 Abstract

56

57 Leprosy is a chronic dermato-neurological disease caused by Mycobacterium leprae, an 

58 obligate intracellular bacterium. Timely detection is a challenge in leprosy diagnosis, relying 

59 on clinical examination and trained health professionals. Furthermore, adequate care and 

60 transmission control depend on early and reliable pathogen detection. Here, we describe a 

61 qPCR test for routine diagnosis of leprosy-suspected patients. The reaction simultaneously 

62 amplifies two specific Mycobacterium leprae targets (16S rRNA and RLEP), and the human 

63 18S rRNA gene as internal control. The limit of detection was estimated to be 2.29 copies 

64 of M. leprae genome. Analytical specificity was evaluated using a panel of 20 other skin 

65 pathogenic microorganisms and Mycobacteria, showing no cross-reactivity. Intra- and inter-

66 operator Cp variation was evaluated using dilution curves of M. leprae DNA or a synthetic 

67 gene, and no significant difference was observed between three operators in two different 

68 laboratories. The multiplex assay was evaluated using 97 patient samples with clinical and 

69 histopathological leprosy confirmation, displaying high diagnostic sensitivity (91%) and 

70 specificity (100%). Validation tests in an independent panel of 50 samples confirmed 

71 sensitivity and specificity of 97% and 98%, respectively. Importantly, assay performance 

72 remained stable for at least five months.  Our results show that the newly developed 

73 multiplex qPCR effectively and specifically detects M. leprae DNA in skin samples, 

74 contributing to an efficient diagnosis that expedites the appropriate treatment.

75

76

77
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79 Author Summary

80

81 Leprosy is a chronic dermato-neurological disease caused by Mycobacterium leprae, an 

82 obligate intracellular bacterium. Disease diagnosis is currently performed on skin 

83 examinations for clinical signs, bacilli staining in skin smears and invasive skin biopsies. 

84 However, the spectrum of clinical manifestations and the low bacterial load can hinder 

85 accurate diagnosis, which is critical for providing proper intervention and adequate care as 

86 well as for establishing transmission control. Quantitative PCR (qPCR) methods for 

87 detecting bacterial DNA are more sensitive and could aid in differentially diagnosing leprosy 

88 from other dermatological conditions. In this work, we present a new multiplex qPCR that 

89 detects two bacterial genes for the diagnosis and a human gene as an internal reaction 

90 control. The new qPCR, developed using GMP-grade reagents, is highly sensitive, specific, 

91 reproducible, and stable. The results presented here are the basis of a novel and robust tool 

92 with potential to increase the accuracy of leprosy diagnosis in routine or reference 

93 laboratories.

94

95 Keywords

96 leprosy; diagnostic; qPCR; good manufacturing practices; validation; neglected tropical 

97 diseases; Mycobacterium leprae; internal control
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99 Introduction

100

101 Leprosy is a neglected infectious disease that still represents a public health issue (1) with 

102 more the 200,000 cases every year worldwide. Diagnosis is generally late and, although a 

103 specific and effective treatment is available, it is likely that transmission occurs before the 

104 patient is diagnosed and adequately treated, thus contributing to sustained transmission. 

105 The high number of young patients (under 15 years old) and patients with disabilities due to 

106 advanced stage of the disease, confirms this hypothesis (1).  Furthermore, clinical forms 

107 vary to a great extent, from localized (tuberculoid) to disseminated (lepromatous) forms, 

108 making diagnosis difficult. Evidence suggests that early diagnosis could prevent 

109 transmission and help epidemiological control (2).

110 Methods such as bacterial load detection by microscopy and histopathological examination 

111 have been the main complementary tools for the diagnosis of leprosy (2–4). Classical 

112 bacteriological methods cannot confirm leprosy since M. leprae does not grow in vitro. In 

113 addition, there is no reliable marker to estimate the risk of disease progression (5,6). In this 

114 regard, the sequencing of M. leprae genome (7) was a milestone towards the improvement 

115 of direct M. leprae detection, leading not only to better characterization of genomic targets 

116 unique to M. leprae strains but also to an extensive comparison of different mycobacteria. 

117 At the time of the first sequences became available, the polymerase chain reaction (PCR) 

118 technique was laborious and very expensive, averting its universal application. However, as 

119 PCR was further developed, it became more affordable, versatile and reliable, with fully 

120 automated systems becoming commercially available from different companies (8–10). For 

121 tuberculosis, routine tests using PCR are reducing the turnaround time, allowing same day 

122 treatment initialization, which might impact resistance prevalence (11–13). Cost-effective 
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123 nucleic acid detection assays are relatively widespread, but assays for some neglected 

124 diseases are still missing. In leprosy, the situation is even more difficult due to reduced and 

125 late investments directed to diagnostic tests (14). 

126 In the last few years, many studies have been carried out using the PCR technique to detect 

127 M. leprae DNA in clinical specimens. PCR have been used especially under challenging 

128 diagnoses such as equivocal paucibacillary (4,15–18) or monitoring household contacts 

129 (19,20). In this context, several different targets have been described in an attempt to 

130 establish the most sensitive and specific assay (16,20–28). However, most of the PCR 

131 protocols were developed, evaluated, and validated using reagents or tests produced 

132 without good manufacturing practices (GMP). Also, most of the studies enroll only leprosy 

133 patients and do not recruit patients with other common dermatological diseases that are 

134 differential diagnosis to leprosy. Thus, the development and validation of an assay over 

135 different laboratories has become a necessity. 

136 Here, we present the development and validation of a multiplex real-time PCR assay aiming 

137 to standardize the leprosy molecular diagnostic assay. The protocol was designed to 

138 simultaneously detect two M. leprae targets (16SrRNA and RLEP genes), previously used 

139 in several studies (4,16,19,26,29), and one mammalian target (18S rRNA gene), that serves 

140 as reaction control (30). Cross-reactivity was evaluated using DNA from 20 related 

141 mycobacterial and other skin pathogenic species, and no match was found.  The new assay 

142 was validated using 97 skin biopsies and an independent panel enrolling 50 samples 

143 retrieved from patients previously characterized by clinical examination and histopathology, 

144 showed high sensitivity and specificity. The new multiplex PCR was also assessed for 

145 quality control standards and the data indicate that the assay is stable and reproducible. The 

146 results presented here are the basis of a novel and robust tool with potential to increase the 

147 accuracy of leprosy diagnosis in routine or reference laboratories. 
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148 Material and methods  

149

150 Ethics statement

151 The Ethics Committee of the Oswaldo Cruz Foundation approved this study (CAAE: 

152 38053314.2.0000.5248, number: 976.330–10/03/2015). Written informed consent was 

153 obtained from all patients 18 years or older, or from the parents/guardian of patients under 

154 18. 

155

156 Clinical samples

157 Leprosy patients were enrolled from the Leprosy clinic from the Oswaldo Cruz Foundation 

158 in the city of Rio de Janeiro, Brazil. Skin biopsies were collected using a 6-mm punch and 

159 stored in 70% ethanol at -20 ºC until processing.

160 Ninety-seven samples (53 skin biopsies from leprosy patients and 44 skin biopsies from 

161 patients with other skin diseases) were used for qPCR tests. Clinical and demographic 

162 characteristics of all patients are shown in Table 1. 

163

164
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165 Table 1: Clinical and demographic characteristics of the leprosy and other dermatological 

166 disease cases

Characteristics Types 1st panel 2nd panel

ODD 

group

ODD 

group  
Leprosy 

group (n=53)
 (n=44)

Leprosy 

group 

(n=35)  (n=15)

Gender Male 32 13 25 3

 Female 21 31 10 12

      

Age 1-15 2 3 3 1

 16-30 8 7 5 2

 31-45 14 6 11 2

 46-60 20 19 9 9

 >60 9 9 7 1

      

WHO classification PB 18 NA 8 NA

 MB 35 NA 27 NA

      

Clinical form I 6 NA 0 NA

 TT 1 NA 3 NA

 BT 11 NA 5 NA

 BB 5 NA 6 NA
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 BL 3 NA 7 NA

 LL 27 NA 14 NA

      

Bacterial load   0 23 38 8 15

 0-2 6 0 2 0

 2-4 11 0 13 0

 4-6 13 0 12 0

167 Other Dermatological Disease (ODD). Operational classifications [paucibacillary (PB) or multibacillary (MB)]. 

168 PB individuals were classified as Tuberculoid (TT), Borderline tuberculoid (BT), Indeterminate (I) and Pure 

169 Neural (PN). MB individuals were classified as Borderline–borderline (BB), Borderline lepromatous (BL) or 

170 Lepromatous (LL). NA: Not Applicable.

171

172 Leprosy patients were defined according to the clinical, bacteriological, and 

173 histopathological Ridley-Jopling (R&J) classification and the operational classification in 

174 multibacillary (MB) or paucibacillary (PB) forms according to the WHO (31). Leprosy or other 

175 dermatological diseases (ODD) patients were treated according to their respective condition. 

176 Leprosy paucibacillary (PB) or multibacillary (MB) patients were treated according to the 

177 Ministry of Health recommendations, while ODD patients were treated accordingly for each 

178 specific disease.

179

180 Replication Study

181 To validate the conditions and analysis parameters established with the clinical samples 

182 from Oswaldo Cruz’s Leprosy Clinic, we tested a distinct collection of 50 skin biopsy samples 

183 that were also obtained by the Leprosy Clinic. The second set of samples was sent to the 

184 Global Health Institute, École Polytechnique Fédérale de Lausanne, Switerzland, where 
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185 DNA samples was extracted and was blindly characterized by conventional PCR according 

186 to a previously published protocol (32). The extracted DNA was then sent back to the 

187 Leprosy Clinic at Oswaldo Cruz Foundation, where it was blindly analyzed with the qPCR 

188 developed in the present study. After both PCR analyses were performed, blinding was 

189 removed and the results were compared. Of these 50 samples, fifteen samples were from 

190 patients with other skin diseases, 27 patients MB leprosy and eight from PB leprosy. The 

191 group presented a 1.27:1 ratio of males to females. The mean age was 44.8 (+/− 17.72 SD), 

192 and the range was 8-77. Details on the clinical characteristics are shown in supplementary 

193 table 1. 

194

195 Mycobacterial isolates samples

196 M. leprae Thai-53 purified from athymic BALB/c (nu/nu) mouse footpads was kindly 

197 provided by Dr. Patricia Rosa at the Lauro de Souza Lima Institute, Bauru, São Paulo, Brazil. 

198 Purified DNA from M. leprae was used as positive control and in analytical sensitivity studies.

199 DNA from 21 mycobacterial samples were used for the analytical specificity study. L. 

200 amazonensis and L. braziliensis was kindly provided by Dr Elisa Cupolillo by the Laboratório 

201 de Pesquisa em Leishmaniose (IOC- Fiocruz) and M. avium, M. gordonae, M. manteni, M. 

202 africanum subtype I, M. africanum subtype II, M. bovis, M. bovis (BCG), M. canettii, M. 

203 fortuitum, M. gordonae, M. intracellulare, M. kansasii, M. microti, M. pinnipedii, M. simiae, 

204 and M. tuberculosis were kindly provided by Dr. Phillip Suffys  at Laboratório de Biologia 

205 Molecular Aplicada a Micobactérias (IOC-Fiocruz).

206

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.21264517doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264517
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

207 Synthetic DNA 

208 The synthetic DNA (gBlock®) was purchased from Integrated DNA Technologies (IDT) and 

209 consists of a double-stranded DNA containing the sequences of the three genomic targets 

210 (RLEP, 16S, and 18S) (S1 Appendix). The lyophilized DNA was reconstituted to 10 ng/μL 

211 (corresponding to 1.83 x 109 copies per reaction) in TE pH 8.0, following the supplier’s 

212 protocol.

213

214 DNA extraction

215 DNA extraction from the biopsies was carried out using DNeasy Blood and Tissue® 

216 extraction kit (Qiagen, Germany). The total extracted DNA was quantified with NanoDrop® 

217 (Thermo-Fisher Scientific, Waltham, MA, USA) and stored at -20 °C. M. leprae DNA from 

218 nude mice footpad was purified using TRIzol reagent (Life Technologies, Carlsbad, 

219 California) following the manufacturers’ instructions, as previously described (3). DNA used 

220 in the replication study were extracted using QIAmp UCP Pathogen Mini kit (Qiagen GmbH, 

221 Hilden, Germany).

222

223 Standard curve and 95% limit of detection (LoD95%) assessment

224 The standard curve was used for determination of the limit of detection and assay stability. 

225 A series of 10-fold dilutions was prepared from either M. leprae or synthetic DNA, using DNA 

226 purified from human blood obtained from healthy donors as matrix. The dilution series used 

227 for the standard curve and the LoD95% determination spans concentrations from 500 

228 ag/reaction to 5 ng/reaction of purified M. leprae DNA, and 1.83 to 1.83 x 107 copies/reaction 

229 (equivalent to 0.5 ag/reaction and 5 pg/reaction, respectively) of synthetic DNA.

230
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231 Quantitative PCR (real-time PCR assays)

232 A multiplex real-time qPCR assay targeting simultaneously two M. leprae regions and an 

233 internal reference human sequence was developed. The primers and hydrolysis probes 

234 were designed to detect regions from RLEP and 16S rRNA genes (29) from M. leprae, and 

235 the human 18S rRNA (30) (Table 2). Reactions were performed on an ABI7500 Standard 

236 instrument (Thermo-Fisher Scientific, Waltham, MA, USA), using Multiplex PCR Mastermix 

237 (IBMP/Fiocruz PR, Curitiba, Brazil). For each reaction, 5 μL of DNA solution was added for 

238 a 25 μL final volume. Reaction mixtures were prepared in triplicates and amplified at 95 °C 

239 for 10 min, and 45 cycles of 95 °C for 15 sec and 60 °C for 1 min. All reactions included a 

240 positive control (mouse foot-pad M. leprae DNA and/or high-bacterial load lepromatous 

241 leprosy patient purified DNA), and water as a non-template control (NTC; PCR reaction 

242 without any template DNA).

243

244 Table 2: Sequences, concentration, and fluorophores of the oligonucleotides contained in 

245 the multiplex qPCR assay.

Target Sequences
Final 

concentration
Fluorophore

16SrRNA Forward: 5´-GCATGTCTTGTGGTGGAAAGC- 3´

Reverse: 5´-CACCCCACCAACAAGCTGAT- 3´

Probe: 5´-CATCCTGCACCGCA-3´

0.5 µM

0.5 µM

0.2 µM

FAM

RLEP Forward: 5´-GCAGCAGTATCGTGTTAGTGAA-3´

Reverse: 5´-CGCTAGAAGGTTGCCGTAT-3´

Probe: 5´CGCCGACGGCCGGATCATCGA-3´

0.2 µM

0.2 µM

0.1 µM

VIC

18s RNA Forward: 5´-

GAAACTGCGAATGGCTCATTAAATCA- 3´

0.06 µM

0.06 µM

CY5
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Reverse: 5´-CCCGTCGGCATGTATTAGCTCT-3´

Probe: 5´GGAGCGAGCGACCAAAGGAACCA-3´

0.03 µM

246

247

248 Stability

249 The stability of the new multiplex qPCR was evaluated the synthetic DNA template diluted 

250 in TE to the concentrations of approximately 2 x 108, 2 x 107, 2 x 106, 2 x 106, 2 x 105, 2 x 

251 104, 2 x 103, 2 x 102, 2 x 101, 10, 5, and 2.5 copies per reaction.

252 All reagents (oligomix 25X and qPCR mix) were maintained in independent aliquots at -20 

253 °C at the Leprosy Laboratory (Fiocruz-RJ). Tests with the dilution series described above 

254 were repeated weekly for the first month, and then once a month for five months.

255

256 Data Analyses and Statistics

257 Qualitative (diagnostic sensitivity and specificity, accuracy) and quantitative (intra- and inter-

258 laboratory repeatability and reproducibility, analytical sensitivity and specificity) validation 

259 tests were performed. The 95% limit of detection (LoD95%) was calculated by fitting a Probit 

260 model to the estimated detection probabilities. Data were processed and analyzed using 

261 customized scripts for R version 3.5.1 (downloaded from http://www.Rproject.org/).
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263 Results

264

265 Analytical performance 

266 Primers and hydrolysis probes designed to target 16S rRNA and RLEP sequences of M. 

267 leprae were tested in multiplexed reactions to concomitantly detect the human 18S rRNA 

268 sequence. Optimal fluorescence thresholds were chosen based on the common practice 

269 that it should be positioned on the lower half of the fluorescence accumulation curves plot 

270 from the 10-fold dilutions, crossing most if not all fluorescence signals on the exponential 

271 segment of the curve on a logarithmic scale (figure 1). Therefore, after setting the baseline 

272 to the automatic function, fluorescence threshold values chosen for determining Cp 

273 (Crossing point) values for each target were set to intercept the positive controls and avoid 

274 the negative ones, being established as follows: 0.2 for RLEP, 0.15 for 16S rRNA, and 0.16 

275 for 18S rRNA. 

276

277
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278 Fig 1. Standard curves of the amplification of 16SrRNA and RLEP targets in M. leprae 

279 DNA and in a synthetic construct. Panels A and C show the calibration curves obtained 

280 using M. leprae DNA, diluted in total DNA extracted from M. leprae-negative whole blood. 

281 Continuous lines show the linear range and the dashed lines are extrapolations towards the 

282 non-linear range. Efficiencies calculated from the linear ranges were 99.2% for 16SrRNA 

283 and 102.2% for RLEP, and r2 were 0.9968 and 0.9987, respectively. Panels B and D show 

284 the calibration curves obtained using a synthetic gene containing one copy of each target 

285 per molecule, diluted in total DNA extracted from M. leprae-negative whole blood. The 

286 efficiencies were 94.9% for 16SrRNA and 93% for RLEP, and r2 were 0.9874 and 0.9926, 

287 respectively.

288

289 The analytical 95% limit of detection (LoD95%) was determined from a series of tests in which 

290 DNA extracted from M. leprae was diluted from 5 ng to 100 ag/reaction. Figure 2 shows the 

291 fitted Probit models and the obtained LoD95% for 16S rRNA and RLEP, which were 

292 experimentally determined as approximately 450 fg of DNA (ca. 126 M. leprae genomes) for 

293 the 16SrRNA gene and about 4.60 fg of DNA (ca. 1.3 M. leprae genomes) for the RLEP 

294 gene. 

295
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296

297 Fig 2. Analytical 95% limit of detection (LoD95%) for 16SrRNA and RLEP in multiplexed 

298 qPCR. Mycobacterium leprae DNA was diluted in DNA extracted from whole blood from 

299 healthy donors and tested from 5 ng to 0.5 fg/reaction. Probability of detection was 

300 calculated for 16S and RLEP (tom and bottom panels, respectively) from nine independent 

301 experiments, and a Probit model was fit to the data (black lines). The grey ribbon around 

302 the model fit indicates the 95% CI on the predicted probability. Dotted lines indicate the 
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303 interpolation to determine the concentration at a 95% probability. The calculated LoD95% is 

304 displayed on each plot in femtograms of DNA/reaction. 

305

306 The developed multiplex reaction was evaluated against a collection of microorganisms to 

307 assess the specificity of the primers and probes under these conditions. The selection 

308 included several mycobacteria, as well as a few other pathogens associated with skin 

309 diseases such Leishmania (figure 3). We only considered any species as cross-reactive if 

310 all the technical replicates displayed amplification for at least one of the targets which was 

311 not the case for any of the species tested. Most positive amplifications observed correspond 

312 to RLEP, which was detected in two out of three replicates in M. fortuitum and M. kyroniense. 

313 Even though some reactions presented 16S rRNA signals above the threshold, these 

314 amplifications are very uncharacteristic and are easily distinguishable from a proper 

315 amplification when compared with the positive control with 500 fg/reaction of M. leprae.

316

317

318 Fig 3. Analytical specificity for the 16SrRNA and RLEP multiplexed reactions. 

319 Extracted DNA from the indicated microorganisms (5 ng/µL each) were used in the 
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320 multiplexed reactions performed in technical triplicates in two independent experiments. 

321 Results are compared to the amplification plot for 100 fg M. leprae DNA/µL (top-left panel). 

322 Amplification profiles are shown for each target, and each line corresponds to one individual 

323 well. The dotted lines indicate the threshold for RLEP (which is the highest of the two M. 

324 leprae targets, at 0.2).

325

326 Repeatability and reproducibility 

327 Three independent operators performed three replicate runs each, in consecutive days, and 

328 evaluated the repeatability and reproducibility of the multiplex reactions. For each replicate, 

329 a new dilution series for the synthetic gene was prepared from a concentrated aliquot to be 

330 used as template. Table 3 shows the relative deviations observed within and between 

331 operators, respectively. The data shows that all intra-operator replicates were remarkably 

332 reproducible, with only one point (Op. 1, 16S, 1.83 x 102) displaying a relative standard 

333 deviation (rRSD%) above 5%, but still well below 10%. The inter-operator variability was 

334 also very low, and the largest variation was observed for the 16S target. Nonetheless, the 

335 rRSD% was between 1.38 and 11.57 across the dilution range, which shows an excellent 

336 reproducibility for a quantitative test (see also supplementary table 2). 

337

338
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339 Table 3. Precision measurement for repeatibility and reproductibility.

 Precision
Precision

Intra-operator (repeatibility)
Inter-operator 

(reproductibility)

Operator 1 Operator 2 Operator 3  
 

Synthetic gene 

copies/reaction

Cp 

mean
SD rRSD%

Cp 

mean
SD rRSD%

Cp 

mean
SD rRSD%

Cp 

mean
SD rRSD%

1.83E+00 37.41 0.60 1.61 37.15 0.24 0.65 38.14 0.36 0.95 37.57 0.52 1.38

1.83E+01 33.83 0.08 0.25 34.84 0.16 0.45 35.67 0.08 0.23 34.78 0.92 2.65

1.83E+02 32.85 2.58 7.84 31.65 0.11 0.35 32.79 0.27 0.82 32.43 0.68 2.09

1.83E+03 27.96 0.03 0.10 27.97 0.06 0.21 29.66 0.08 0.28 28.53 0.98 3.43

1.83E+04 24.21 0.16 0.65 24.36 0.10 0.42 26.17 0.04 0.15 24.91 1.09 4.38

1.83E+05 20.60 0.59 2.88 20.99 0.06 0.31 21.66 0.83 3.83 21.08 0.53 2.53

1.83E+06 16.96 0.19 1.14 17.09 0.79 4.63 17.97 0.32 1.79 17.34 0.55 3.15

16S

1.83E+07 12.27 0.31 2.49 11.95 0.10 0.86 14.69 0.15 1.01 12.97 1.50 11.57

1.83E+00 36.21 0.55 1.51 37.76 0.71 1.89 37.34 0.14 0.37 37.10 0.80 2.16

1.83E+01 34.90 1.09 3.13 36.18 0.09 0.25 34.84 0.15 0.43 35.30 0.75 2.14

1.83E+02 33.92 0.55 1.62 32.73 0.05 0.16 31.57 0.29 0.92 32.74 1.17 3.58

1.83E+03 30.22 0.02 0.06 29.20 0.07 0.23 28.25 0.05 0.19 29.22 0.99 3.37

1.83E+04 26.40 0.23 0.87 25.60 0.06 0.23 24.87 0.04 0.17 25.62 0.76 2.98

1.83E+05 22.36 0.61 2.75 22.05 0.01 0.05 20.35 0.90 4.42 21.59 1.08 5.01

1.83E+06 18.48 0.24 1.31 18.10 0.86 4.74 16.82 0.35 2.06 17.80 0.87 4.87

RLEP

1.83E+07 13.86 0.29 2.06 13.03 0.11 0.86 13.49 0.12 0.90 13.46 0.41 3.08

340

341 The accuracy of the determinations performed by the multiplex real-time qPCR assay was 

342 also estimated using the synthetic DNA. To evaluate the intra- and inter-repeatability (or 

343 intermediate precision) for operators, we calculated the arithmetic mean, standard deviation, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.21264517doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264517
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

344 and relative standard deviation percentage of three independent experiments. It is 

345 noteworthy that the detection of the human target 18S rRNA does follow the same dilution 

346 trend for the other targets because the synthetic template was not diluted in human DNA. 

347 In summary, for both M. leprae targets we observed that all points showed excellent 

348 reproducibility and repeatability. As expected, detection of the human target 18SrRNA loses 

349 reproducibility as it becomes scarce in the reaction due to the dilution factor. It is noteworthy 

350 that there is no variation in the detection of the human target 18S rRNA when M. leprae DNA 

351 was present in the synthetic control molecule, i.e., in a 1:1 ratio, supporting the notion that 

352 the multiplexed reactions do not interfere with each other (data not shown). 

353

354 Stability 

355 Storage stability was assessed by performing monthly evaluations of reactions with different 

356 concentrations of the synthetic DNA molecule for 5 months. Most of the data points tested 

357 varied below the established limit of three standard deviations above the average of all time 

358 points. Figure 4 shows the Cp obtained for the three evaluated targets (16SrRNA, RLEP, 

359 and 18SrRNA) in representative concentrations for brevity, over a 5-month period. The test 

360 remained reliable for the entire range of concentrations tested.

361
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362

363 Fig 4. Stability of the reactions over five months using synthetic DNA as a template. 

364 Each panel shows the Cp values obtained for each target (lines of panels) and for each 

365 template concentration (columns of panels) over time. Points represent one technical 

366 replicate. Black horizontal lines indicate the upper tolerance limit defined as three standard 

367 deviations above the mean Cp for each template concentration.

368

369 Diagnostic performance 

370 The implemented setup involved the interrogation of two target sequences from M. leprae 

371 to classify clinical samples correctly while mitigating possible false positives. To evaluate 

372 the diagnostic performance, we first established optimal parameters for the analysis, 

373 considering possible cross-reactions that may occur in the laboratory routine. Figure 5 

374 shows the receiver operating characteristic (ROC) curves for a subset of the best-performing 

375 combinations of cutoff values for 16SrRNA and RLEP. Data for the full range of Cp cutoffs 

376 combinations are listed in the supplementary table 3. 

377
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378

379 Fig 5. Diagnostic performance of the new multiplex qPCR. Different combinations of 

380 cutoff values for 16SrRNA (panels) and RLEP (color scale) were tested on a patient panel 

381 (n = 97). For each combination of cutoff values, the sensitivity and specificity were calculated 

382 and plotted as ROC curves. Here, only Cp cutoff values for 16SrRNA between 35 and 36.5 

383 are shown. The combinations resulting in a specificity of 1 and the highest sensitivity for 

384 each condition are annotated.

385

386 Based on these results, the best combination of cutoff values (35.5 for 16SrRNA and 34.5 

387 for RLEP) showed a sensitivity of 91% and specificity of 100%. These parameters were 

388 used to establish the decision algorithm presented in Table 4.

389

390
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391 Table 4. Decision algorithm for classification of samples based on the data obtained with 

392 the new multiplex qPCR.

Results Classification

18SrRNA negative Extraction failure (repeat extraction)

18SrRNA Cp between 13 and 32 Valid reaction (proceed with classification)

RLEP < 34.5 and 16S < 35.5 M. leprae detected

RLEP < 34.5 and 16S ≥ 35.5 Equivocal (mark patient for new sample 

collection and testing)

RLEP ≥ 34.5 M. leprae undetected

393

394 Next, the molecular diagnosis obtained using the new multiplex PCR, was compared to the 

395 clinical diagnosis of each sample (Figure 6 and supplementary table 4). Results show that 

396 the qPCR reaction and classification algorithm correctly characterized 48 of the 53 samples 

397 previously described as "Leprosy" by the clinical outcome. Of the 5 misclassified samples, 

398 one was classified as negative for M. leprae and four were in the “equivocal” quadrant. The 

399 Bacterial load for the 5 misclassified samples were 0.

400
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401

402 Fig 6. Distribution of Cp values obtained for the training panel. Each point represents a 

403 different sample (mean Cps of a technical duplicate). Filled circles represent leprosy samples 

404 and open dots represent negative samples, as defined by the clinical assessment. Points 

405 aligned to the top and right margins indicate samples in which 16SrRNA or RLEP, 

406 respectively, were not detected within 45 cycles. Bacterial load is show as a color gradient 

407 (samples for which bacterial load information was not available are filled in grey). Dotted red 

408 lines indicate the cutoff values from Table 3. Equivocal or misclassified samples are 

409 annotated with the operational classification (false negatives) or with the diagnosis for clinic-

410 negative samples.

411
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412 None of the 44 samples characterized as "Other skin diseases" were classified as M. leprae-

413 positive by our reaction and decision algorithm. Thirty-eight of these samples were classified 

414 as "Negative" and 6 as “equivocal”.

415

416 Assay validation

417 Conditions established with the training cohort were tested on an independent set of 

418 samples, which were previously characterized using a distinct qPCR method described in 

419 Girma et al. (32). The comparison between the original classification and the new results is 

420 shown in figure 7 and supplementary table 1. We tested 50 samples, of which 34 were 

421 previously characterized as positive and 16 as negative. 

422

423
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424 Fig 7. Validation of parameters on a in an independent panel. Previously characterized 

425 validation samples were subjected to the new qPCR described in the present study. Each 

426 point represents a different sample. Filled circles represent leprosy samples and open dots 

427 represent negative samples, as defined by Girma et al. Points aligned to the top and right 

428 margins indicate samples in which 16SrRNA or RLEP, respectively, were not detected within 

429 45 cycles. Bacterial load is show as a color gradient (samples for which bacterial load 

430 information was not available are filled in grey). Dotted red lines indicate the cutoff values 

431 from Table 3.

432

433 The 50 samples were classified according to our algorithm, resulting in 33 correctly classified 

434 as positive and 11 correctly classified as negative. Of the four samples classified as 

435 equivocal, two were negative for the reference method and one was positive according to 

436 Girma et al (32). The sensitivity, specificity and accuracy calculated for this sample set were 

437 97.1%, 100% and 98%, respectively.
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438 Discussion

439

440 Leprosy is a chronic infectious disease presenting great diversity of clinical forms with 

441 distinct immunological and histopathological features. Leprosy can be tuberculoid, which is 

442 a localized form exhibiting few or no bacteria, or lepromatous, which is a systemic form with 

443 high loads of mycobacteria. Among the tuberculoid patients, there is a range of skin 

444 granulomatous diseases phenotypically comparable to leprosy (5). 

445 The use of PCR for leprosy diagnosis has been extensively tested (4,16,33–44). However, 

446 limitations towards the experimental designs for some published studies were identified. We 

447 observed that most studies: (i) test only samples from leprosy patients, creating difficulties 

448 in determining some diagnostic parameters such as specificity; (ii) were performed on small 

449 sample sizes; and (iii) do not have independent validation on the same assay or an 

450 evaluation of the same protocol in different centers. Furthermore, no studies have used 

451 reagents produced under good manufacturing practices (GMP), a set of guidelines that allow 

452 for traceability and batch-to-batch reproducibility of characteristics such as physical 

453 parameters and performance of the reagents (45). 

454 In this study, we solved some of these issues by (i) developing and validating an assay 

455 based on the two most tested targets in the literature with better accuracy so far (7,8,41,46), 

456 (ii) following guidelines for validation of diagnostic tests (45,47,48), and (iii) using GMP grade 

457 reagents. We were also able to include a reaction for the detection of human 18S gene in 

458 the sample, to assess the quality of DNA extraction and reagents performance in the same 

459 reaction as the M. leprae determination occurs.

460 RLEP and 16SrRNA are the most frequent markers used in leprosy studies, displaying PCR 

461 sensitivity values up to 80% for each target. However, it is important to note that the 
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462 sensitivity of targets varied between sample types, clinical settings, and also between 

463 studies of the same authors (8,9). Tatipally et al. (9) showed that using more than one 

464 marker in a multiplex format of conventional endpoint PCR yields significantly higher PCR 

465 positivity. 

466 In the currently study, a multiplex qPCR assay simultaneously amplifies two specific 

467 Mycobacterium leprae targets (16SrRNA and RLEP), and the mammalian 18SrRNA gene 

468 as internal reaction control. The assay validation comprised analytical performance, 

469 diagnostic sensitivity and specificity, as well as reproducibility and repeatability. 

470 Development of multiplex qPCR assays provides a greater challenge than designing 

471 singleplex assays because it often requires extensive optimization as primer-dimers and 

472 non-specific interactions may interfere with amplification of the desired targets. Additionally, 

473 it is important that the amplification of two or more targets does not preferentially amplify 

474 one of the targets (49,50). Combining multiple primers and probes did not affect the 

475 efficiency of the triplex qPCR in comparison to the corresponding singleplex reactions used 

476 in Martinez et al. (16), who evaluated the independent detection of 16S and RLEP using the 

477 same primers and probes and obtained 0.91 and 0.51 for sensitivity and 0.73 and 1 for 

478 specificity, respectively. Barbieri et al. (4) also used the same 16S target to evaluate 

479 paucibacillary leprosy samples and obtained 0.57 for sensitivity and 0.91 for specificity. 

480 Here, we evaluated a panel with 53 leprosy and 44 non-leprosy patient samples, and later 

481 a different sample panel (50 patient samples) and achieved high sensitivity (> 90%) and 

482 specificity (100%) for both panels tested.

483 However, we understand that the small number of paucibacillary (PB) individuals in our 

484 study is a limitation. In fact, the greatest importance of using qPCR as a complementary 

485 diagnosis is precisely for PB samples. Generally, PB patients exhibit low (or zero) bacterial 

486 load and a histopathology examination that does not distinguish from the diagnosis of other 
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487 dermatoses. Therefore, these are the cases where clinical evaluation alone might not be 

488 able to determine the diagnosis, and where a qPCR confirmation becomes more important. 

489 However, due to the scarcity of bacterial DNA in these sample, it is known that the detection 

490 of M. leprae in PB patients by real-time PCR is difficult (4).

491 The reactions we developed in this study predict the equivocal classification of early-stage 

492 infections based on the finding from Martinez et al. (16), who showed that RLEP displays 

493 higher sensitivity than 16S whereas the ribosomal gene displays higher specificity. Thus, 

494 samples lacking 16S amplification but with RLEP amplification with a Cp lower than the 

495 threshold are suggested to be re-analyzed.

496 In general, our data (figure 6) show a correlation between BI and Cp values. Biopsies from 

497 patients with higher BI values were deemed positive for bacteria earlier in the amplification 

498 cycle, as seen by the lower Cp values and high copy numbers of bacilli.

499 The “analytical sensitivity” or “limit of detection” of an assay is defined as the ability of the 

500 assay to detect very low concentrations of a given substance in a biological specimen (45). 

501 The result of the limit of detection (LoD95%) determination when tested on a purified M. leprae 

502 sample indicated a higher sensitivity for RLEP (4.6 fg of DNA/reaction, equivalent to 

503 approximately 1.3 M. leprae genomes) versus 16S (450 fg of DNA/reaction, approximately 

504 126 M. leprae genomes). This difference in sensitivity was expected since the 16SrRNA is 

505 a single copy gene (29) and the RLEP presents an average of 36 copies per genome (26). 

506 Applicability in a reference laboratory setting was also considered during the development 

507 of these reactions. Intra and inter-operator variability were low, ensuring consistent results 

508 in routine testing (table 3). Moreover, reagents remained stable for at least five months, 

509 allowing for adequate stock maintenance (figure 4).
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510 Leprosy is a silent disease with a very long incubation time. Currently, transmission can only 

511 be halted if patients obtain early diagnosis. High-risk individuals, which are the patients’ 

512 close contacts, should be traced and treated whenever leprosy is detected. Recently, it has 

513 been suggested that novel policies towards this group of contacts such as immuno- and 

514 chemoprophylaxis are effective to help control the disease burden (15,51,52). These 

515 approaches provide a screening of the high-risk population that, coupled with a 

516 pharmacological or immunological intervention, has been suggested to decrease disease 

517 incidence. 

518 In some situations, clinical diagnosis needs the accuracy support of a laboratory analysis, 

519 and qPCR is a reliable technique to enable diagnostic confirmation (10). Indeed, we 

520 confirmed that the availability of molecular tests can be very helpful in diagnosing patients 

521 during contact monitoring (53). When contacts present a leprosy-like lesion, a positive PCR 

522 resulted in a leprosy diagnosis with 50% sensitivity and 94% specificity (53). Other indirect 

523 methods based on simultaneous detection of host humoral as well as cellular immune 

524 response directed against the bacteria are also promising new diagnostic tools. Recently, 

525 lateral flow assays (LFA), combining detection of mycobacterial components and host 

526 proteins, proved to be specific and sensitive (54–60). The signature detected by this platform 

527 identified 86% of the leprosy patients, with a specificity of 90% (AUC: 0.93, p < 0.0001) (58). 

528 Thus, a multicentric study comparing different available methods such as qPCR and LFA is 

529 still necessary. It is noteworthy that our data showed accuracy, sensitivity, and specificity 

530 values quite similar to LFA.

531 We believe that the diagnosis of tropical and neglected diseases needs molecular-based 

532 methods such as PCR, especially due to the robustness and capillarity of the technique in 

533 clinical analysis laboratories worldwide. Towards that future, we present a real-time 

534 quantitative PCR produced with GMP reagents that adheres to all quality control 
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535 specifications, allowing batch-to-batch performance reproducibility and repeatability, and 

536 that can be used in research and clinical laboratories with reasonable infrastructure in 

537 endemic countries. Finally, we envision the multiplex qPCR assay developed adapted to 

538 more affordable, rapid, point-of-care tests to be used in low-resourced settings, enabling on-

539 site early and specific diagnosis of leprosy, hopefully helping disease control. 

540
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