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Abstract 23 
Complex polymicrobial communities inhabit the lungs of individuals with cystic fibrosis (CF) and 24 
contribute to the decline in lung function. However, the severity of lung disease and its progression 25 
in CF patients are highly variable and imperfectly predicted by host clinical factors at baseline, 26 
CFTR mutations in the host genome, or sputum polymicrobial community variation. The 27 
opportunistic pathogen Pseudomonas aeruginosa (Pa) dominates airway infections in the majority 28 
of CF adults. Here we hypothesized that genetic variation within Pa populations would be 29 
predictive of lung disease severity. To quantify Pa genetic variation within whole CF sputum 30 
samples, we used deep amplicon sequencing on a newly developed custom Ion AmpliSeq panel of 31 
209 Pa genes previously associated with the host pathoadaptation and pathogenesis of CF 32 
infection. We trained machine learning models using Pa single nucleotide variants (SNVs), 33 
clinical and microbiome diversity data to classify lung disease severity at the time of sputum 34 
sampling, and to predict future lung function decline over five years in a cohort of 54 adult CF 35 
patients with chronic Pa infection. The models using Pa SNVs alone classified baseline lung 36 
disease with good sensitivity and specificity, with an area under the receiver operating 37 
characteristic curve (AUROC) of 0.87. While the models were less predictive of future lung 38 
function decline, they still achieved an AUROC of 0.74. The addition of clinical data to the models, 39 
but not microbiome community data, yielded modest improvements (baseline lung function: 40 
AUROC=0.92; lung function decline: AUROC=0.79), highlighting the predictive value of the 41 
AmpliSeq data. Together, our work provides a proof-of-principle that Pa genetic variation in 42 
sputum is strongly associated with baseline lung disease, moderately predicts future lung function 43 
decline, and provides insight into the pathobiology of Pa's effect on CF. 44 
 45 

Importance 46 

Cystic fibrosis (CF) is among the most common, life-limiting inherited disorder, caused by 47 
mutations in the CF transmembrane conductance regulator (CFTR) gene. CF causes progressive 48 
damage to the lungs, the major cause of morbidity and mortality in CF patients. However, the rate 49 
of lung function decline is highly variable across CF patients, and cannot be fully explained using 50 
existing biomarkers in the human genome or patient co-morbidities. Pseudomonas aeruginosa 51 
(Pa) is known to evolve and adapt within chronic CF infections. We hypothesized that within-52 
patient Pa diversity could affect lung disease severity. In a CF cohort study, we demonstrate the 53 
utility of machine learning tools for predictive modeling of baseline lung function and subsequent 54 
decline in CF patients using deep within-patient Pa amplicon sequencing. Our findings show the 55 
potential of these models to identify high-risk CF patients based on Pa diversity within the lung.  56 
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Introduction 57 

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF 58 

transmembrane conductance regulator (CFTR) gene and is the most common lethal Mendelian 59 

disease in populations with European ancestry (Welsh, Ramsey et al. 2001). The resulting lung 60 

disease is the major cause of morbidity and mortality in CF patients, with lung failure the most 61 

common cause of death (Turcios 2020). However, the rate of disease progression and lung function 62 

decline is highly variable across CF populations, and cannot be fully explained by variations in 63 

CFTR alleles or other modifier genes (Shanthikumar, Neeland et al. 2019). 64 

 65 

While CF airway infections are polymicrobial and microbiome diversity has been associated with 66 

lung disease severity in many studies such as (Cox, Allgaier et al. 2010, van der Gast, Flight, Smith 67 

et al. 2015, Zhao, Schloss et al. 2012, Coburn, Wang et al. 2015, Cuthbertson, Walker et al. 2020), 68 

Pseudomonas aeruginosa (Pa) is recovered in the majority of adult CF patients and often 69 

dominates the CF airway microbiome once established as a chronic infection (Goddard, Staudinger 70 

et al. 2012, Zhao, Schloss et al. 2012). Infection with Pa in early life is widely recognized to be 71 

associated with a greater decline in lung function and mortality (Kosorok, Zeng et al. 2001, 72 

Emerson, Rosenfeld et al. 2002, Fothergill, Walshaw et al. 2012). Notably, Pa airway infections 73 

can persist even with highly effective CFTR-correcting treatment (Hisert, Heltshe et al. 2017, 74 

Harris, Wagner et al. 2020). 75 

 76 

Over the course of chronic infection in the CF lung, Pa undergoes genetic diversification, selection 77 

and adaptive evolution, resulting in a genetically and phenotypically diverse population of 78 

clonally-related Pa within each patient (Tümmler 2006, Smith, Buckley et al. 2006, Bragonzi, 79 

Paroni et al. 2009, Mowat, Paterson et al. 2011, Folkesson, Jelsbak et al. 2012, Marvig, Sommer 80 

et al. 2015). How this pathoadaptation affects the clinical course of CF lung disease remains poorly 81 

understood. We therefore focused on examining the association between Pa genetic variation and 82 

the severity and progression of lung disease in CF patients with chronic Pa infections. We 83 

hypothesized that the within-host genetic variation in Pa populations during chronic CF lung 84 

infections are associated with baseline lung function and subsequent progression (i.e. decline in 85 

lung function), as measured by spirometry.  86 
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Within-host mutations can significantly affect the virulence of Pa and host responses to Pa, 87 

(Marvig, Johansen et al. 2013, Marvig, Sommer et al. 2015, Williams, Evans et al. 2015, 88 

Klockgether, Cramer et al. 2018, Dettman and Kassen 2021). Previous studies have examined the 89 

genetic variation of Pa across cohorts of CF patients by performing whole-genome sequencing 90 

(WGS) of one or few Pa clones isolated from CF sputum samples – an approach that fails to 91 

capture the polyclonal nature of Pa in the CF lung and is subject to profound sampling bias. While 92 

shotgun metagenomic analysis of CF sputum is increasingly used for microbiome analyses 93 

(Nelson, Pope et al. 2019, Whelan, Waddell et al. 2020, Lim et al. 2014,), the overwhelming 94 

abundance of host derived DNA in samples continues to hamper the ability to resolve within 95 

species genetic variation. To overcome these challenges, here we applied a custom-made amplicon 96 

sequencing (AmpliSeq) panel of 209 genes in the Pa genome previously known to be involved in 97 

the pathoadaptation and pathogenesis of CF infections (Supplementary Data 1). The Ion AmpliSeq 98 

platform was selected because it provides a means for quantitative and sensitive measurement of 99 

single nucleotide variant (SNV) frequencies within the Pa population, directly from CF sputum 100 

without the need to culture and sequence hundreds of isolates per individual sample.  101 

 102 

We then used several machine learning (ML) approaches to classify lung disease severity (at the 103 

time of sample collection) and to predict future disease progression (over five years) based on the 104 

SNV frequency data from a cohort of 54 adult CF patients with chronic Pa infection. ML has been 105 

successfully applied to predict phenotypes from genotype data in other model systems (Dias and 106 

Torkamani 2019). ML models can explicitly include the interactions and correlations between 107 

features (in our case, SNVs), which is particularly common in bacterial population structures in 108 

which SNVs are often genetically linked on the same clonal genomic background (Lees, Mai et al. 109 

2020).  110 

 111 

Our study provides proof-of-principle evidence that the population of Pa in CF sputum includes 112 

bacterial genetic biomarkers that are associated with lung disease status and could serve to identify 113 

individuals at increased risk of future lung function decline. Additionally, this work identified 114 

genetic variation in Pa genes that merit further investigation for their potential roles in the 115 

pathogenesis of CF lung disease.  116 
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Results 117 

We studied a previously described and well-characterized cohort of young adult CF patients aged 118 

18 to 22 with chronic Pa infection (Acosta, Heirali et al. 2018). Using Pa SNV frequencies 119 

quantified by AmpliSeq in patient sputum, we sought to predict two measures of lung disease 120 

severity: (1) baseline lung function (FEVp score) at the time of sputum sample collection, 121 

classified as severe or mild, and (2) relative lung function decline in the following five years, 122 

classified as rapid or non-rapid. After filtering for AmpliSeq sequencing quality, we excluded 10 123 

patients with low coverage of Pa, leaving 54 patients for further analysis (Methods). The clinical 124 

and demographic characteristics of the final cohort are summarized in Table 1, and the excluded 125 

patients were not apparent outliers in their clinical profiles (data not shown). From the filtered 126 

sequence data we identified SNVs within the 209 genes represented in the AmpliSeq panel, and 127 

estimated the frequency of each SNV within each patient sputum sample. In total across the 54 128 

patient samples, we identified 7,867 synonymous and 4,452 non-synonymous SNVs 129 

(Supplementary Data 2). All variants were used for population stratification analysis and only non-130 

synonymous SNVs were used for training ML models.  131 

 132 

Stratification in the Pa population 133 

We first quantified the extent of Pa population stratification, which can be problematic if there are 134 

genetic structures (e.g. clonally-related clusters or strains) that can be confounded with the lung 135 

disease outcomes of interest. If a particular genetic cluster or lineage is associated with worsened 136 

lung disease, it then becomes difficult to pinpoint the most likely SNVs associated with the disease 137 

outcome because all mutations (whether related to disease or not) in a cluster are correlated. We 138 

know a priori based on pulsed-field gel electrophoresis (PFGE) typing that our dataset contains a 139 

highly prevalent lineage of Pa (called Prairie Epidemic Strain or PES; sequence type (ST)-192; 140 

Table 1) suspected to be associated with disproportionate lung disease (Somayaji, Lam et al. 141 

2017). We confirmed this by hierarchical clustering of the Pa AmpliSeq data (n=12,319 SNVs, 142 

including both synonymous and non-synonymous variants), which revealed two apparent genetic 143 

clusters (Fig. 1a), one of which was strongly associated with the PES lineage (Fisher exact test, 144 

odds ratio=168.0, P = 1.1e-09; Fig. 1b). The observed Pa genetic clusters are also weakly 145 

associated with the birth cohort (Chi square test, P = 0.0095) which is likely due to unequal 146 

prevalence of PES across birth cohorts (Supplementary table S1). No other clinical factor was 147 
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significantly associated with either genetic cluster (Fig. 1b). Importantly, neither cluster is 148 

correlated with either baseline lung function (Fisher exact test, p-value: 0.81) or lung function 149 

decline (Fisher exact test, p-value: 0.51) (Fig. 1b), indicating that these outcomes are unlikely to 150 

be confounded by Pa population stratification, and finer-grained predictive modeling is warranted. 151 

We also noted that lung disease progression over 5 years (lung function decline) is not significantly 152 

correlated with baseline lung function at sample collection (Fig. 1a). 153 

 154 

 155 
 156 

Figure 1. The Pa population is stratified into two genetic clusters, neither of which is associated with 157 
baseline lung function (FEVp) or lung function decline. 158 

(A)  Heatmap showing correlations in SNV frequencies between pairs of sputum samples. Strong 159 
correlations are yellow; weak correlations in blue. Rows and columns (samples) are ordered by 160 
hierarchical clustering. Distribution of baseline lung function measured by FEVp score (27 Severe 161 
and 27 Mild individuals), lung function decline (23 Rapid and 31 Non-rapid individuals) and PFGE 162 
typing (25 PES and 29 Unique) are presented on the y axis. Baseline lung function and lung function 163 
decline over five years are not significantly correlated (Pearson R2 score=-0.19, p-value=0.22).  164 

(B)  P-values for the association between clinical data and genetic clusters are determined by t-test for 165 
numerical data and chi-square test for categorical data (Methods). Only the association between 166 
PFGE type (PES or non-PES) is significantly associated with the genetic clusters in panel A (P < 167 
0.0045 after Bonferroni correction for multiple tests). 168 
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Genetic and clinical features associated with baseline lung function and lung function decline in CF 169 

patients  170 

A common challenge in predicting outcomes from sequence data is the sparsity of the data, that is, 171 

relatively few available samples compared to the large number of genetic markers (called 172 

“features” in ML context). To address this problem, feature selection has been used to remove 173 

non-informative features (i.e., SNVs and clinical factors) and focus only on the most predictive 174 

ones (Mobegi, Cremers et al. 2017, Recker, Laabei et al. 2017, Méric, Mageiros et al. 2018, 175 

Macesic, Don’t Walk et al. 2020). We used an ensemble gradient boosting technique for feature 176 

selection (Methods). Out of 4,452 non-synonymous SNVs and eleven clinical factors considered, 177 

our model selected only 34 SNVs (hereafter called predictor SNVs) and three clinical factors (age, 178 

BMI and Pa abundance) that account for 99% of the cumulative feature importance (Fig. 2). This 179 

means that a minimal set of SNVs and clinical factors provides 99% of the information used in 180 

predicting baseline lung function at the time of sampling (Fig. 2a). An equivalent analysis for lung 181 

function decline after five years identified 33 predictor SNVs and the same three clinical factors 182 

that contributed to 99% of the cumulative feature importance (Fig. 2b). For both baseline lung 183 

function and future lung function decline, the phenotype is not simply predicted based on the 184 

presence/absence of each SNV, but rather on more subtle information about SNV allele 185 

frequencies within patients. In other words, predictive SNVs occur at a range of frequencies, rather 186 

than being clustered mainly around 0 or 1 (Supplementary fig. 1).  187 

 188 
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Figure 2. Pa genes and clinical factors selected as top predictive features of baseline lung function 190 
and lung function decline. Normalized importance of genomic and clinical data that contribute to 99% 191 
cumulative relative importance for prediction of (A) baseline lung function at time of sample collection and 192 
(B) risk of 5-year progression (lung function decline). On the y-axis, gene identifiers (locus tag|chromosome 193 
location based on PES genome) are color-coded based on their functional classification and named genes 194 
are shown on the right, when available. 195 

 196 

The three selected clinical factors associated with both baseline lung function and lung function 197 

decline are body mass index (BMI), Pa relative abundance (from 16S rRNA gene amplicon 198 

sequence data from a previous study of the same cohort; (Acosta, Heirali et al. 2018), and age (Fig. 199 

2). Multiple studies have shown an association between poor lung function and low BMI (Snell, 200 

Bennetts et al. 1998, Cystic Fibrosis Foundation 2006, Kumru, Emiralioğlu et al. 2018), high 201 

abundance of Pa (Cox, Allgaier et al. 2010) and age (Zhao, Hao et al. 2020, Cox, Allgaier et al. 202 

2010). As expected, Pa relative abundance also showed a strong negative correlation with Shannon 203 

and Simpson microbiome diversity indices (Supplementary fig. 2), indicating that Pa abundance 204 

can be considered as a proxy for lung microbiome diversity in our dataset. However, Shannon and 205 

Simpson diversity indices were not selected as predictive features in our model, consistent with a 206 

previous work (Acosta et al. 2018; Zhao, Hao et al. 2020). This suggests that, even if low 207 

microbiome diversity indices are associated with CF disease progression, the low diversity is likely 208 

driven by the dominance of key pathogens such as Pa. By identifying previously known clinical 209 

determinants of the lung function in CF patients, these results provide validation for the ensemble 210 

gradient boosting approach to feature selection. 211 

 212 

To interpret the possible roles of Pa SNVs in CF lung disease, we classified the known or predicted 213 

function of genes containing predictor SNVs (hereafter called predictor genes) into functional 214 

categories manually curated based on existing literature. The predictor SNVs with the highest 215 

weighted importance for both baseline lung function and future lung function decline outcomes 216 

are located within genes that play a role in seven functional categories (Table 2). The distribution 217 

of predictor genes is generally similar to the distribution of gene functions included in the 218 

AmpliSeq panel (Supplementary fig. 3). However, the predictor genes for baseline lung function 219 

are enriched in iron transport and metabolism (13.4% in baseline lung function predictor genes vs. 220 

1.4% in the AmpliSeq panel, P = 0.00018; Supplementary fig. 3). The genes encoding the ferric 221 

enterobactin receptor (PirA) and the ferrichrome receptor (FiuA) respectively account for 8.9% 222 
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and 3.7% of the total normalized importance for baseline lung function (Fig. 2a), and pirA contains 223 

multiple predictor SNVs (Fig. 3a). In contrast, the predictor genes for lung function decline are 224 

enriched in stress/metabolism (33.6 % in lung function decline predictor genes vs. 13.4% in the 225 

AmpliSeq panel, P = 0.002; Supplementary fig. 3). Notably, the hypothetical protein PA1874 226 

accounts for 16.9% of the total normalized importance for lung function decline prediction and 227 

includes 7 out of 33 predictor SNVs (Fig. 2b, Fig. 3b), as well as two predictor SNVs for baseline 228 

lung function (Fig. 3a). This hypothetical protein has also been shown to play a role in resistance 229 

of Pa to multiple antibiotics (Zhang and Mah 2008). The PA4937 gene, which encodes an RNase 230 

R exoribonuclease involved in stress/metabolism, is also a predictor of both baseline lung function 231 

and subsequent lung function decline, with multiple predictor SNVs (Fig. 2a, Fig. 3a). The two 232 

genes PA0861 (rbda) and PA4601 (morA), which encode regulators of genes involved in the 233 

bacterial cell wall, LPS, capsule, motility and attachment, are also among the important predictor 234 

genes for both baseline lung function and lung function decline (Fig. 2). 235 

 236 
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 237 
 238 

Figure 3. Genomic locations and importance of genes containing predictor SNVs. 239 
(A) Genes containing SNVs predictive of baseline lung function.  240 
(B) Genes containing SNVs predictive of lung function decline. Genes including multiple SNVs are 241 

shown with arrows.  242 

 243 

  244 
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Predicting lung disease severity and progression in individuals with CF using genetic and clinical factors 245 

Having identified Pa SNVs predictive of disease outcomes, we evaluated their predictive 246 

performance using the area under receiver operating characteristic (AUROC) curve and other 247 

standard metrics (Methods). A genetic programming algorithm identified logistic regression as the 248 

best predictive model for both baseline lung function and lung function decline. To confirm this 249 

result, we compared the performance of logistic regression with three other common ML 250 

algorithms including support vector machines (SVM), random forests, and extreme gradient 251 

boosting (XGBoost). It should be noted that while we used an ensemble LGBM model (Methods) 252 

for feature selection, we did not use it for predictive modeling to avoid overfitting (i.e. to confirm 253 

that our feature selection method is not biased toward selecting features that could be used only by 254 

one specific ML model). Logistic regression had the best predictive performance for both 255 

phenotypes (Table 3, Fig. 4). Specifically, cross-validation (Methods) showed that logistic 256 

regression was the most accurate and precise model for both baseline lung function, with an 257 

average AUROC score of 0.87 (95% CI, 0.84-0.90), and for lung function decline, with a score of 258 

0.74 (95% CI: 0.71-0.78; Table 3, Supplementary table 2). Linear logistic regression is a simple 259 

classification model that makes it reasonably robust against overfitting (Kuhn and Johnson 2013). 260 

The second-best method was SVM, also a linear model (Supplementary table 2). Across all 261 

models, the baseline lung function phenotype was more accurately predicted than lung function 262 

decline, consistent with predictions becoming more uncertain further into the future (Table 3, 263 

Supplementary table 2). Importantly, all models could predict both phenotypes significantly 264 

better than expected by chance (compared to a permutation test using data with shuffled outcome 265 

labels; Fig. 4a, c, Supplementary fig. 4). 266 

 267 
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 268 
Figure 4. Predictive models of baseline lung function and lung function decline perform significantly 269 
better than expected by chance. 270 

(A) Classification score of baseline lung function using logistic regression (green dashed line) is 271 
significantly higher than expected based on permuted data (mean shown in black dashed line). 272 

(B) Average AUROC scores of different ML models to predict baseline lung function, compared to 273 
chance (permuted sample labels). Shading indicates the 95% confidence interval. 274 

(C) Classification score of lung function decline using logistic regression compared to permuted data. 275 
(D) Average AUROC scores for lung function decline prediction.  276 

 277 

Clinical factors have been traditionally used to predict lung disease progression in CF patients 278 

(Alaa and van der Schaar 2018). We therefore assessed if integrating clinical factors could improve 279 

upon the predictions based on Pa AmpliSeq data alone. The three clinical factors (BMI, Pa 280 

abundance and age) identified by our feature selection approach are previously recognized as 281 

factors affecting lung function in CF patients. Including these three clinical factors in our 282 

predictive models led to modest (~5% increase in AUROC) performance increases for both 283 

baseline lung function and lung function decline outcomes across the four ML models (Table 4, 284 

Supplementary table 2). We conclude that, while these clinical factors are useful, most of the 285 

predictive power comes from the Pa genetic data. 286 
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 287 

Lack of generalizability is one of the main limiting factors for the translation of prediction models 288 

into clinically useful diagnostics. Machine learning models often have low generalizability (i.e. 289 

“overfit") in scenarios where the model performs well on the dataset used to train the model, but 290 

fails to achieve similar prediction accuracy on new data. We plotted learning curves to assess how 291 

logistic regression predictions improved by training on more data (Raschka 2018). We found that 292 

the performance difference between training and testing data decreases as sample size increases 293 

(Supplementary Figure 5). There were no major differences in prediction accuracy of training 294 

and testing datasets (Supplementary Figure 5) which suggests the model does not suffer from 295 

significant overfitting. We also noted that cross validation scores for both baseline lung function 296 

and lung function decline models continued to increase for the testing dataset as more data was 297 

used for model training (Supplementary Figure 5) which suggests the model could be further 298 

improved with more data.  299 

 300 

Discussion 301 

Considering the critical role of Pa in CF-related morbidity and mortality, here we established a 302 

link between Pa genetic diversity and lung disease severity in a cohort of CF young adults with 303 

chronic Pa infections. Despite a modest sample size, our study provides a proof of principle 304 

demonstrating the utility of ML models for predictive modeling of lung function severity and 305 

decline in CF patients using bacterial genetic and clinical data. Although our models do not appear 306 

to be severely overfit, fully validating their predictive performance will require independent 307 

cohorts. We also identified potential genetic biomarkers associated with lung disease severity. 308 

Overall, our findings provide evidence that ML models can identify CF individuals at high-risk 309 

for poor Pa infection outcomes using Pa genetic data. 310 

 311 

Our work is based on a subset of samples from a previously described cohort study that identified 312 

dominance of Pa in the sputum microbiome (and the resulting reduction of community diversity) 313 

as a predictor of lung function decline in a cohort of young CF adults (Acosta, Heirali et al. 2018). 314 

Here we focused on a subset of patients with a lung microbiome dominated by Pa. While these 315 

patients are already at increased risk of lung disease, we found that the severity of disease at the 316 
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time of sampling and five years into the future could be predicted based on genetic variation within 317 

the infecting Pa population. Even within this patient cohort in which Pa was present, we replicated 318 

the finding that Pa relative abundance is associated with disease severity and progression – 319 

although it is a less important biomarker than many SNVs within the Pa genome. This suggests 320 

that genetic variation in dominant pathogens can significantly complement and improve upon 321 

predictions of disease status based on the microbiome. Along these lines, another recent study 322 

showed that the Pa genomic data can predict pathogenicity in mouse models (Pincus, Ozer et al. 323 

2020).  324 

 325 

We recognize that, in addition to variation in the host genome, the polymicrobial community 326 

inhabiting the CF lung has been identified as an important modifier of disease progression. 327 

Numerous studies of the lung microbiome have shown an association between decreasing 328 

microbial community diversity and worsening lung function (Cox, Allgaier et al. 2010, van der 329 

Gast, Flight, Smith et al. 2015, Zhao, Schloss et al. 2012, Coburn, Wang et al. 2015, Cuthbertson, 330 

Walker et al. 2020), as well as progression to end-stage lung disease (Acosta, Heirali et al. 2018). 331 

However, microbiome diversity may have limited predictive value as there is high interpersonal 332 

variability in lung microbiomes (Cuthbertson, Walker et al. 2020), and a large number of adult CF 333 

individuals have microbiomes dominated by pathogens such as Pa. Zhao, Hao et al. (2020) also 334 

recently showed that microbiome composition data does not improve machine learning (ML) 335 

prediction performance compared with using only clinical factors. Our results suggest that genetic 336 

diversity within key pathogens like Pa could complement or even supersede microbiome 337 

community diversity for predicting clinical outcomes in specific patient subsets. 338 

 339 

Limitations of our study include a relatively small sample size of patients (N=54) from a single 340 

cohort, and a relatively small number of targeted genes (N=209) included in the AmpliSeq panel. 341 

As such, we consider our work a proof of concept that could be improved upon in larger cohorts 342 

and by including more loci in the Pa genome. Indeed, learning curves showed that predictive 343 

accuracy is likely to improve with more samples. Although we performed cross-validation by 344 

subsampling our 54 patients for model training and testing, the model should ideally be tested on 345 

a completely independent cohort to assess its real-world predictive value. Despite these limitations, 346 

the models made significantly better predictions than expected by chance. As expected, predicting 347 
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lung function decline five years into the future proved more challenging than doing so at the time 348 

of sampling. Still, our results provide a key first step toward clinical diagnostics of patients most 349 

at risk of lung function decline. 350 

 351 

As with any genotype-phenotype association method, our approach does not fully guarantee causal 352 

relationships, and rather provides candidate genes for further experimental testing. Our study is 353 

further complicated by the fact that the phenotypes of interest (i.e., baseline lung function and 354 

future lung function decline) are complex host phenotypes, while the genotype data comes from 355 

only Pa. It is therefore unclear to what extent Pa SNVs play a causal role in lung function decline, 356 

or merely serve as useful biomarkers. Regardless, we were able to pinpoint SNVs in several genes 357 

of interest. This was feasible because the strong population stratification of Pa into PES and non-358 

PES lineages was fortunately not associated with the disease outcomes of interest. This allowed 359 

us to identify SNVs in several genes that provided independent biomarkers of disease. 360 

 361 

Several candidate genes containing SNVs predictive of disease status and progression were 362 

identified as targets for further investigation. We note that genes in the AmpliSeq panel were 363 

selected a priori for their known involvement in virulence, disease progression, or within-patient 364 

evolution. However, it was not known a priori which, if any, of these genes would contains SNVs 365 

predictive of lung function or decline. For example, we found that baseline lung function predictor 366 

SNVs are enriched in genes involved in iron transport and metabolism. The AmpliSeq panel only 367 

included three iron-related genes, of which two (pirA and fiuA) contained SNVs associated with 368 

baseline lung function. Updated AmpliSeq panels or whole-genome sequencing, along with 369 

targeted experimental studies, could be used to test the hypothesis that variation in these genes 370 

plays a role in disease progression. Multiple studies have shown competition for iron to be key for 371 

the survival and virulence of many of the pathogens that reside in the CF lung, including Pa 372 

(Bouvier 2016, Firoz, Haris et al. 2021). We also found that SNVs predictive of lung function 373 

decline are enriched in genes involved in stress/metabolism. Notably, the gene PA1874 includes 374 

seven predictor SNVs comprising 16.9% of total feature importance for lung function decline, and 375 

two predictor SNVs for baseline lung function prediction, suggesting its general importance in 376 

disease severity and progression in CF patients. PA1874 encodes a multidrug efflux pump 377 

involved in biofilm-dependent resistance to antibiotics including tobramycin, gentamicin, and 378 
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ciprofloxacin (Zhang and Mah 2008; Poudyal and Sauer 2018), and could be a potentially 379 

promising biomarker of CF disease severity, which merits further investigation.  380 

 381 

Among the set of clinical factors studied, BMI, Pa abundance, and age were identified as important 382 

predictors of both baseline lung function and lung function decline. These are all known risk 383 

factors for CF disease severity and progression (Acosta et al. 2018, Snell, Bennetts et al. 1998, 384 

Kumru, Emiralioğlu et al. 2018, Cox, Allgaier et al. 2010, Zhao, Hao et al. 2020). By including 385 

these features in our prediction models, we noted a moderate increase across all the measured 386 

metrics relative to using only AmpliSeq data. These results are in line with previous studies 387 

showing the improvement of ML-based phenotype prediction by adding relevant clinical data 388 

(MacFadden, Melano et al. 2019, Pincus, Ozer et al. 2020). We note that clinical factors only 389 

modestly improved the performance of the models (~5%), highlighting the rich information and 390 

predictive value of the Pa AmpliSeq data alone. 391 

 392 

In summary, our study demonstrates that SNVs in the Pa genome, assayed with an AmliSeq panel 393 

and identified by ML models, can be powerful predictors of lung disease severity and progression 394 

in CF patients with chronic Pa infections. Even though this disease outcome is affected by multiple 395 

microbial, host genetic and environmental factors, Pa SNVs add complementary predictive value. 396 

With additional genetic and clinical data, our ML model could be further fine-tuned and eventually 397 

used as a biomarker to preemptively identify individuals with CF at high-risk for more aggressive 398 

observation and treatment.  399 

 400 

Materials and methods 401 

Patient selection, sample and clinical data collection  402 

The Calgary biobank includes frozen whole sputum samples prospectively collected from 403 

individuals with CF followed at the Calgary Adult CF clinic from 1998 to 2017, as described 404 

previously (Acosta, Heirali et al. 2018, Acosta, Whelan et al. 2017). A cohort of 104 individuals 405 

between the ages of 18 and 22 with sputum available from the Calgary biobank was previously 406 

characterized (Acosta, Heirali et al. 2018). For this study, we selected from this cohort all 407 

individuals with sputum cultures positive for Pa (64 out of 104 patients). Out of these 64 samples, 408 

54 yielded AmpliSeq data of sufficient depth (>10X average depth of coverage of the targeted 409 
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genes) and were retained for further analysis. Clinical data collected for each patient is outlined in 410 

Tables 1 and S1 and includes age, gender, body mass index, CFTR genotype, birth cohorts, and 411 

microbiology (mucoid phenotype, Pa relative abundance, microbiome diversity indices). The 412 

study was carried out with the approval from the Research Ethics Boards from the University of 413 

Calgary (15-0854) and McGill University Health Centre (15-623).  414 

 415 

As a measure of lung disease severity at the time of sputum collection, we used the spirometric 416 

measure of forced expiratory volume in one second, percent predicted (hereafter referred to as 417 

‘baseline lung function’ and noted FEVp) a standard measure of lung function normalized for age, 418 

height, and self-identified gender and ethnicity. Baseline lung function was categorized as severe 419 

for FEVp < 60%, and mild for FEVp ³ 60%. Long-term lung function decline (hereafter noted as 420 

‘lung function decline’) was measured using the relative rate of FEVp decline (determined by 421 

subject-specific constructed linear regressions over the 5 years following sputum collection as 422 

described in Acosta, Heirali et al. (2018). Lung function decline was categorized as ‘rapid’ when 423 

the 5-year FEVp decline was >5%, and ‘non-rapid’ when less than or equal to 5%.  424 

 425 

Sputum DNA extraction and microbiome analyses 426 

Genomic DNA was extracted from a single biobanked sputum sample per patient as previously 427 

described (Acosta, Heirali et al. 2018), and used as template for 16S rRNA gene amplicon and Ion 428 

AmpliSeq sequencing. The Prairie Epidemic Strain (PES) genotype, a highly prevalent strain in 429 

our study population, was identified by pulse field gel electrophoresis (PFGE) and/or multi-locus 430 

sequence typing (MLST) (Parkins, Glezerson et al. 2014). For microbiome analysis, bacterial 431 

communities in CF sputum and reagent blanks were characterized by amplification and sequencing 432 

the V3-V4 region of the 16S rRNA gene, as previously described (Acosta, Heirali et al. 2018). The 433 

sequencing reads were then processed to identify operational taxonomic units (OTUs) (Acosta, 434 

Whelan et al. 2017). Relative Pa abundance was determined as the proportion of Pseudomonas 435 

reads relative to the total 16S reads.  436 

 437 

Ion AmpliSeq panel design and sequencing 438 

The AmpliSeq panel targeted 209 Pa genes previously implicated in pathogenicity, antimicrobial 439 

resistance and within-host pathoadaptation during chronic infection (Supplementary Data 1). The 440 
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AmpliSeq primer panel (generated by Life Technologies, Carlsbad, CA, U.S.A.) was designed by 441 

the AmpliSeq Custom Services (White Glove, Thermo Fisher Scientific) to provide high 442 

sequencing coverage of the target genes based on the Pa PAO1 genome (NCBI accession number: 443 

GCA_000006765.1), with 100% breadth of coverage for 205 genes and >96% in 4 genes, based 444 

on the tiling of amplicons. Four additional genome assemblies of Pa clinical isolates 445 

(GCF_004375495.1, GCF_004374685.1, GCF_004374275.1 and the PES genome (NCBI 446 

BioProject: PRJNA750451) were also evaluated along with PAO1 for the optimization of primer 447 

design, tiling and pooling to achieve maximal target coverage by the primer panel with minimal 448 

misalignments and homology with the human genome. 449 

AmpliSeq libraries were constructed using the Ion AmpliSeqTM Library kit 2.0 and IonCodeTM 450 

barcode set with the following modifications. SparQ magnetic beads (Quantabio) were used for 451 

purification, and individual libraries were quantified using the Quant-iT™ PicoGreen™ dsDNA 452 

Assay Kit (ThermoFisher). Samples were mixed in equimolar proportions and the pooled library 453 

(200 pM) was loaded on an Ion Chef for template preparation using HiQ reagents. The P1 v3 chips 454 

were sequenced using an Ion Proton sequencer (500 flows) with P1 HiQ sequencing reagents 455 

following manufacturer’s instructions. 456 

AmpliSeq variant calling 457 

The quality of AmpliSeq sequencing was confirmed using TorrentSuite™ software (v.5.2, Thermo 458 

Fisher Scientific Inc.). Raw sequencing reads were trimmed based on per-base phred quality score 459 

cutoff (‘q’ flag) of 18, window size of 1 base pair and minimum remaining sequence length (‘l’ 460 

flag) of 19 using fastq-mcf (v.1.04.636) (Aronesty 2013). Reads were aligned to the PES genome 461 

(CP080405) using BWA MEM (Li, 2013), and the alignments were sorted and indexed using 462 

SAMtools (v.1.9) (Li, Handsaker et al. 2009). Samples with average sequencing depth <= 10X 463 

across the target genes were discarded, leaving 54 samples for further analysis. Single-nucleotide 464 

variants (SNVs) with minimum mapping quality of 20, minimum base quality of 18 and minimum 465 

coverage of 10x were then identified using VarScan 2 (Koboldt, Zhang et al. 2012) and functional 466 

consequences of each SNV were inferred using snpEFF (v.2.4.2) (Cingolani, Platts et al. 2012). 467 

The SNV allele frequencies (ranging from 0 to 1) at each polymorphic site covered by the 468 

AmpliSeq panel were used to generate a SNV frequency matrix, with samples as rows and 469 

nucleotide positions as columns. For baseline lung function (measured based on FEVp score) and 470 
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lung function decline (disease progression) prediction analysis, all synonymous variants were 471 

filtered out and only non-synonymous variants (including nonsense and missense mutations, 472 

frameshift deletions and insertions) were used (Supplementary Data 2). All SNVs (including 473 

synonymous sites) were included for population stratification analyses. 474 

 475 

Bacterial population stratification  476 

Population stratification in Pa was evaluated by calculating pairwise Pearson correlation 477 

coefficients between sputum samples based on the SNV frequency matrix followed by 478 

determination of distinct genome subgroups using hierarchical agglomerative clustering 479 

implemented in SciPy (Virtanen, Gommers et al. 2020) and visualized using the python seaborn 480 

package (Waskom, Botvinnik et al. 2017). This identified two major subclusters of Pa, one of 481 

which was significantly enriched in PES strains. To determine if any clinical factors were 482 

associated with these subclusters, we used t-tests for continuous variables including age, body 483 

mass index (BMI), Shannon and Simpson diversity indices and Pa abundance in the sputum 484 

sample. For binary variables including PFGE typing (PES or not), gender, host CFTR genotype, 485 

death, mucoid presence/absence status, baseline lung function and lung disease progression (lung 486 

function decline), we used a Fisher Exact Test. A Chi-square test was used for the multi-categorical 487 

birth cohort factor.  488 

 489 

Feature selection 490 

In a machine learning context, a feature is defined as an individual measurable characteristic of an 491 

observed phenomenon. In this study, the features considered are Pa genetic variants (SNV 492 

frequencies) identified by the AmpliSeq panel and the clinical factors linked to the study patients 493 

(Supplementary table 1). In order to reduce the high-dimensionality of the dataset (i.e. high ratio 494 

of features to sample size), a feature selection approach was applied using feature-selector v1.0.0 495 

(Koehrsen 2019). Briefly, 50 rounds of a gradient boosting ensemble method implemented in 496 

LightGBM (Ke, Meng et al. 2017) were conducted on the training dataset sampled by a bootstrap 497 

approach (43 samples in training set and 11 in test set in each bootstrap). The feature importance 498 

(i.e. scores assigned to each input feature indicating the relative importance of the feature when 499 

making a prediction) were averaged over the 50 bootstraps. The set of features required to obtain 500 

99% cumulative relative importance were kept to perform prediction analysis and the remaining 501 
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features were discarded. The enrichment of predictor SNVs across functional gene categories 502 

relative to the total genes in the AmpliSeq panel were measured using a Fisher exact test with a 503 

family-wise error rate of 0.05 adjusted for multiple testing using Bonferroni method.  504 

 505 

Training predictive model of lung function  506 

The selected SNVs and clinical features were then used to train independent prediction models for 507 

baseline lung function and disease progression (lung function decline) in the CF patient cohort. To 508 

identify the best prediction model, a genetic programming algorithm implemented in TPOT (Le, 509 

Fu et al. 2019) was used. TPOT attempts to identify the machine learning prediction pipeline with 510 

the best performance (i.e. cross-validation using the area under the receiver operating characteristic 511 

curve (AUROC) as the performance metric). We began with 10,000 random prediction pipelines 512 

which were evolved over 5 generations with an offspring size of 100 in each generation, using the 513 

recommended mutation rate of 0.9 and recombination rate of 0.1. The performance of each pipeline 514 

was evaluated using 20-fold stratified shuffled cross validation. This analysis revealed logistic 515 

regression with L2 regularization to be the most generalizable prediction model based on the cross-516 

validation scores. To confirm the results of genetic programming, three additional methods 517 

including extreme gradient boosting implemented in XGBoost (Chen and Guestrin 2016), 518 

ensemble decision trees implemented in random forest (Svetnik, Liaw et al. 2003) and linear 519 

support vector machine (SVM) with linear kernel were also tested, using 20-fold stratified shuffled 520 

cross validation implemented in scikit-learn (Pedregosa, Varoquaux et al. 2011). The performance 521 

of machine learning models were evaluated using six metrics including AUROC, accuracy 522 

(number of correct predictions/total number of predictions), precision (True Positives / (True 523 

Positives + False Positives)), recall (True Positives / (True Positives + False Negatives)), F1 score 524 

(2*(Precision*Recall)/Precision+Recall), and balanced accuracy (bACC), the average of recall 525 

obtained on each class (i.e. severe/mild for baseline lung function and rapid/non-rapid for lung 526 

function decline). 527 

 528 

To evaluate the statistical significance of the prediction performances (AUROC scores) obtained 529 

by ML models in comparison with random expectations, a non-parametric permutation test 530 

(Pedregosa, Varoquaux et al. 2011) was performed using 20-fold stratified shuffled cross-531 

validation across hundred rounds of label switching and model training followed by empirical p-532 
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value estimation (i.e. the chance that the observed AUROC scores obtained using the data could 533 

be obtained by chance alone). 534 

 535 
Data availability 536 

All amplicon sequencing data generating in this project are deposited in NCBI GenBank under 537 
BioProject PRJNA763719.  538 
 539 

Acknowledgements 540 

The project was supported by funding from CIHR (PJT-148827 to DN) and a Vertex Research 541 
Innovation Award (DN), and salary support from the Cystic Fibrosis Canada Research 542 
Fellowship (Award ID 558850 to JD), the Leopoldina Foundation (German National Academy 543 
of Sciences Leopoldina, Award ID LPDS 2017-17), the Reseau en Santé respiratoire (IL), and 544 
the Fonds de Recherche en Santé Quebec (IL, DN). MMS and BJS were supported by a Genome 545 
Canada and Genome Quebec Bioinformatics and Computational Biology grant. 546 
We would like to acknowledge Michael Surette for providing the PES genome sequence and 547 
Pradeep K. Singh for input in the Ampliseq design.  548 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.21264421doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264421
http://creativecommons.org/licenses/by/4.0/


 23 

Tables 549 

 550 

 Table 1. Patient clinical data.  551 

 552 

Values show the mean or absolute count, with standard deviation in parenthesis where applicable. 553 

Baseline lung function is defined as severe when FEVp < 60 and mild otherwise. Lung function 554 

decline is defined as non-rapid when five-year FEVp decline < 5% and rapid otherwise. The 555 

relative abundance of Pa, as well as Shannon and Simpson diversity indices, were computed based 556 

Patient data 

Baseline lung function Lung function decline over 5 years 

Severe 

 (n=27) 

Mild 

 (n=27) 
Test 
statistic P value Non-rapid 

(n=31) 
Rapid 

 (n=23) 
Test 
statistic P value 

Pa  

relative abundance 
0.59 
(0.32) 0.35 (0.32) 2.48 0.01 0.46 (0.33) 0.49 (0.32) 0.3 0.75 

Age (year) 19.05 
(1.13) 

19.37 
(1.16) 1.40 0.16 19.21 (1.1) 19.22 

(1.25) 0.24 0.80 

Body Mass Index 

 (kg/m²) 
19.01 
(2.3) 21.45 (2.3) 3.45 0.0005 20.62 (2.9) 19.70 (2.1) 1.18 0.23 

Shannon index 1.12 
(0.64) 1.21 (0.68) 0.42 0.66 1.31 (0.66) 1.06 (0.65) 1.44 0.24 

Simpson index 0.48 
(0.26) 0.5 (0.28) 0.23 0.81 0.54 (0.26) 0.45 (0.27) 1.61 0.20 

PES (PFGE typing) 15 9 2.5 0.17 16 8 2.0 0.27 

Homozygous ΔF508 15 13 1.34 0.78 14 14 0.52 0.28 

Not-deceased 
(Death) 22 25 0.35 0.42 27 20 1.01 1 

Male (Gender) 11 9 0.72 0.77 8 12 3.13 0.86 

Mucoid  24 23 0.71 1 27 20 0.98 1 

Birth cohort 1978-
1984 11 8 0.47 0.49 12 7 1.31 0.25 

Birth cohort 1985-
1990 9 11 0.2 0.65 7 13 1.8 0.17 
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on 16S rRNA gene sequencing of the lung microbiome community. Homozygous ΔF508 indicates 557 

the counts of individuals with a ΔF508/ΔF508 genotypes; others include heterozygotes or other 558 

genotypes. Test statistics are Wilcoxon rank-sum statistic for numerical data (Pa, Age, BMI, 559 

Shannon and Simpson indices) and odds ratio for categorical data.  560 
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Table 2. Functional classification of predictor genes used for prediction of baseline lung 561 

function and lung function decline. 562 

 
 

Baseline lung function 
predictor genes 

Lung function decline 
predictor genes 

Shared genes 

Host 
adaptation 

PA0454|conserved hypothetical protein 
PA1188|hypothetical protein 
PA2077|oleate 10S-lipoxygenase 
PA3234|probable sodium:solute 
symporter 
PA3327|probable non-ribosomal peptide 
synthetase 
PA3728|hypothetical protein 
PA3895|probable transcriptional regulator 
PA4311|conserved hypothetical protein 
PA4489|magD 
PA4735|hypothetical protein 
PA4961|hypothetical protein 

PA2072|conserved 
hypothetical protein 
PA2151|conserved 
hypothetical protein 
PA2435|probable cation-
transporting P-type ATPase 
PA2635|hypothetical protein 
PA3105|xcpQ 
PA4372|hypothetical protein 

PA4719|probable 
transporter 
PA5238|probable O-antigen 
acetylase 

Antibiotic 
resistance 

PA2018|mexY 
PA3168|gyrA 

PA4020|mpl 
PA4082|cupB5 
PA4266|fusA1 

 

Cell wall, 
LPS, 
capsule, 
motility & 
attachment 

PA1099|fleR 
PA0705|migA 
PA3703|wspF 
PA4082|cupB5 

PA0861|rbdA 
PA4601|morA 

Iron 
transport 
and 
metabolism 

PA0470|fiuA 
PA0931|pirA 

  

Regulators   PA0600|agtS 

Stress/ 
metabolism 

 PA1259|lhpH 
PA4814|fadH2 

PA1874|hypothetical protein 
PA4937|rnr 
PA5060|phaF 

Virulence PA4211|phzB1 
PA5266|vgrG6 

PA0934|relA 
PA2361|icmF3 
PA3290|tle1 
PA5262|fimS 

 

 563 
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Table 3. Performance of logistic regression in predicting baseline lung function and lung 564 
function decline using genomic data only, or a combination of genomic and clinical data. 565 
See Methods for descriptions of the performance metrics. 566 

 567 

  Genomic data 
(95% CI) 

Genomic and clinical 
data (95% CI)   

Baseline 
lung 
function 

AUROC 0.87 (0.84, 0.9) 0.92 (0.84, 1.00) 

bACC 0.81 (0.78, 0.84) 0.83 (0.72, 0.94) 

Accuracy 0.81 (0.78, 0.84) 0.83 (0.72, 0.94) 

F1 0.81 (0.78, 0.83) 0.83 (0.72, 0.94) 

Precision 0.83 (0.81, 0.86) 0.84 (0.73, 0.94) 

Recall 0.81 (0.78, 0.84) 0.83 (0.72, 0.94) 

Lung 
function 
decline 

AUROC 0.74 (0.71, 0.78) 0.79 (0.70, 0.88) 

bACC 0.63 (0.59, 0.66) 0.66 (0.59, 0.74) 

Accuracy 0.64 (0.60, 0.67) 0.67 (0.60, 0.75) 

F1 0.62 (0.58, 0.65) 0.66 (0.58, 0.74) 

Precision 0.65 (0.61, 0.69) 0.69 (0.60, 0.78) 

Recall 0.64 (0.60, 0.67) 0.67 (0.60, 0.75) 

  568 
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