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Abstract 

Advanced brain imaging of neonatal macrostructure and microstructure, which has prognosticating 

importance, is more frequently being incorporated into multi-center trials of neonatal neuroprotection. 

Multicenter neuroimaging studies, designed to overcome small sample sized clinical cohorts, are 

essential but lead to increased technical variability. Few harmonization techniques have been developed 

for neonatal brain microstructural (diffusion tensor) analysis. The work presented here aims to remedy 

two common problems that exist with the current state of the art approaches: 1) variance in scanner 

and protocol in data collection can limit the researcher’s ability to harmonize data acquired under 

different conditions or using different clinical populations. 2) The general lack of objective guidelines for 

dealing with anatomically abnormal anatomy and pathology. Often, subjects are excluded due to 

subjective criteria, or due to pathology that could be informative to the final analysis, leading to the loss 

of reproducibility and statistical power.  This proves to be a barrier in the analysis of large multi-center 

studies and is a particularly salient problem given the relative scarcity of neonatal imaging data.  We 

provide an objective, data-driven, and semi-automated neonatal processing pipeline designed to 

harmonize compartmentalized variant data acquired under different parameters. This is done by first 

implementing a search space reduction step of extracting the along-tract diffusivity values along each 

tract of interest, rather than performing whole-brain harmonization. This is followed by a data-driven 

outlier detection step, with the purpose of removing unwanted noise and outliers from the final 

harmonization. We then use an empirical Bayes harmonization algorithm performed at the along-tract 

level, with the output being a lower dimensional space but still spatially informative. After applying our 

pipeline to this large multi-site dataset of neonates and infants with congenital heart disease (n= 398 

subjects recruited across 4 centers, with a total of n=763 MRI pre-operative/post-operative time points), 

we show that infants with single ventricle cardiac physiology demonstrate greater white matter 

microstructural alterations compared to infants with bi-ventricular heart disease, supporting what has 

previously been shown in literature.  Our method is an open-source pipeline for delineating white 

matter tracts in subject space but provides the necessary modular components for performing atlas 

space analysis. As such, we validate and introduce Diffusion Imaging of Neonates by Group Organization 

(DINGO), a high-level, semi-automated framework that can facilitate harmonization of subject-space 

tractography generated from diffusion tensor imaging acquired across varying scanners, institutions, 

and clinical populations. Datasets acquired using varying protocols or cohorts are compartmentalized 

into subsets, where a cohort-specific template is generated, allowing for the propagation of the 

tractography mask set with higher spatial specificity. Taken together, this pipeline can reduce multi-

scanner technical variability which can confound important biological variability in relation to neonatal 

brain microstructure. 
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Introduction 

Neonatal imaging studies are significantly more challenging than comparable adolescent and 

adult studies. Overall head size, rapidly developing structures in a short period of time, reduced control 

of motion in subjects, and higher water content in the brain tissue all contribute to the challenges in 

advancing neonatal imaging studies to equivalent adult standards.1 Imaging studies in disease 

populations are further hindered by low incidence rate, recruitment challenges, and data acquisition 

problems, which can all be exacerbated by abnormal anatomy. Thus, sufficiently large landmark 

neonatal studies more frequently necessitate the use of cross-scanner and cross-institutionally acquired 

imaging to be sufficiently powered to detect small effect sizes.  This creates the additional problem of 

data harmonization. Latent vendor and scanner specific variances can introduce bias into cohort studies, 

decreasing statistical power and limiting the generalizability of the results.2–4  

Here, we will delineate a diffusion imaging pipeline that is able to harmonize heterogeneously 

acquired neonatal imaging by hierarchically compartmentalizing the unwanted sources of variance, 

allowing for a final harmonization of multi-site, high anatomical variance data. The motivation behind 

this work is not to develop yet another standard for general neonatal diffusion imaging analysis, but 

rather to cover a need specific to multi-center studies using populations with pathological conditions. In 

these studies, state-of-the-art methods are insufficiently flexible when dealing with protocol 

heterogeneity, varying acquisition site and scanner, and abnormal anatomy. We believe this is of 

particular importance in identifying developing white matter neuroimaging biomarkers derived from 

multi-center neonatal neuroprotection trials. In this work we use as validation a large-scale dataset of 

neonates born with congenital heart disease (CHD) acquired at four different institutions. Congenital 

heart disease (CHD) is one of the most common birth defects, affecting nearly 1% of all births.5,6 Through 

advancements in surgical intervention, neonates born with CHD now have excellent survival rates. 
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However, this population remains at a significant risk for more subtle cognitive-behavioral executive-

functional deficits later in life, with a predilection for executive-functional disorders.7–12 Adolescents 

born with CHD are at risk for a constellation of behavioral and cognitive impairments, including ADHD, 

autism, and executive function disorders.13,14 The mechanism of these deficits requires further 

elucidation, and prognostic biomarkers are needed to identify these deficits at the earliest possible time 

in development.  

 Diffusion tensor imaging (DTI) is an advanced MR technique that models microstructural white 

matter connections throughout the brain. DTI has been used extensively to map white matter 

connections in normal populations and a plethora of disease subtypes, including autism, dementia, and 

trauma.15–18 Moreover, DTI measures provide an effective estimation of myelination and overall white 

matter development in neonatal imaging. DTI has increasingly been incorporated, both in clinical trials 

and routine diagnostic workflows, as a complement to surgical planning and injury characterization, but 

primarily in adult populations. While analysis and clinical methods in adult imaging have matured into 

robust, reproducible standards, comparable methods for neonatal imaging are still lagging.  

Existing DTI analysis techniques in neonates require a trade-off between labor intensive, but 

precise individual-level methods and more limited, but faster automated group-level approaches.19–27 

Manually delineated tracts in native subject space are considered the gold standard of DTI tractography. 

This approach requires the user to manually draw regions of interest (ROI) and regions of avoidance 

(ROA) in each subject’s diffusion image, for each tract of interest. Manual delineation provides the most 

accurate tract outputs, as each region is specifically placed with consideration to each subject’s variable 

anatomical features.28 However, this method is prohibitively time consuming when analyzing large 

datasets. Manual tractography can be prone to user bias in both mask generation and often-used “tract 

pruning” steps, resulting in diminished reproducibility. Moreover, native space tractography lacks inter-

subject correspondence between tracts, as each subject tract has its own unique curvature and volume. 
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Relative position can be modeled across subjects, but with lower reproducibility and anatomical 

accuracy. As such, purely native space analyses are limited to global tract metrics such as average 

fractional anisotropy or other derived diffusivity metrics, resulting in relatively low biomarker 

granularity, despite the required manual labor. 28,29 

The work presented here aims to remedy two common problems that exist with the methods 

mentioned so far: 1) The general lack of objective guidelines for dealing with anatomically abnormal 

anatomy and pathology. Often, subjects are excluded due to subjective criteria, or due to pathology that 

could be informative to the final analysis. This leads to the loss of reproducibility and statistical power. 

2) Variance in scanner and protocol in data collection can limit the researcher’s ability to harmonize data 

acquired under different conditions or using different clinical populations. This proves to be a barrier in 

the analysis of large multi-centered studies and is a particularly salient problem given the relative 

scarcity of neonatal imaging data.  We provide an objective and data-driven semi-automated neonatal 

processing pipeline designed to harmonize compartmentalized variance data acquired under different 

parameters. This is done by first implementing a search space reduction step of extracting the along-

tract diffusivity values along each tract of interest, rather than performing whole-brain harmonization. 

This is followed by a data-driven outlier detection step, with the purpose of removing unwanted noise 

and outliers from the final harmonization. We then use an empirical Bayes harmonization algorithm 

performed at the along-tract level, with the output being a still spatially informative, yet lower-

dimensional space. We test the null hypothesis that after harmonization. There should be no observed 

differences across similarly stratified subjects, while retaining the across-group variances. After applying 

our pipeline to this large multi-site dataset of neonates and infants with CHD, we show that infants with 

single ventricle cardiac physiology demonstrate greater differences in developing white matter 

microstructural alterations compared to infants with bi-ventricular heart disease, which has been shown 

by previous literature.30,31 Our method is an open-source pipeline for delineating white matter tracts in 
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subject space, but provides the necessary modular components for performing atlas space analysis. We 

minimize the dependency of a standard atlas by only using it to propagate robust masks, retaining 

subject space fidelity.  
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Methods 

Subjects 

A total of 652 near term born neonates ( > 34 weeks GA) with congenital heart disease (with 

both single ventricle and bi-ventricular cardiac anatomy)were prospectively and retrospectively 

recruited at UPMC Children’s Hospital of Pittsburgh (CHP), Children’s Hospital of Philadelphia (ChoP), 

Children’s Hospital Los Angeles (CHLA), and Texas Children’s Hospital (TCH). Institutional Review Board 

approval was granted at each scanning site, and all imaging was acquired with written parental consent. 

Inclusion criteria for the study across all four sites was the presence of CHD (single or bi-ventricular 

physiology) and a neuroimaging study.  Of note, these patients were recruited for different types of 

research studies with the purpose of correlating neuroimaging biomarkers with fetal imaging time 

points, concurrent post-natal neuro-diagnostic studies (NIRS/optical imaging/EEG) and correlated with 

neurodevelopmental outcomes. Multiple prior site-specific publications document the specific inclusion 

criteria.32–35 221 infants were recruited from CHP (101 included in analysis), 225 from ChoP (129 

included), 107 from CHLA (77 included), and 99 from TCH (89 included). Figure 1 shows a summary of 

the demographic distribution of subjects acquired from each site.  

MRI Acquisition 

Infants were scanned at close to term equivalent age, or when deemed clinically stable. Infants 

recruited at CHP were scanned on a 3T Siemens Skyra (32-channel head coil, FOV=256mm, voxel 

dimensions=2x2x2mm, TE/TR=83/7800ms with 42 directions at B=1000s/mm2) or GE Signa HDxt (32-

channel head coil with FOV=160-260mm, voxel dimensions 2x2x2.2-6mm with 30 directions at B=700-

1000s/mm2).  Infants imaged at TCH were scanned on a 1.5T Philips Achieva (8 channel head coil, 

FOV=200mm, voxel dimensions=2x2x2.7mm, TE/TR=90/6065ms, 15 directions at B=860s/mm2).  Infants 
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scanned at CHoP were scanned on a 1.5T Siemens Avanto (8 channel head coil, FOV=220mm, voxel 

dimensions=1.5x1.5x5.2mm, TE/TR=93/5600ms, 80 directions [20 unique] at B=1000s/mm2).  Infants 

imaged at CHLA were scanned on a 3T Philips Achieva (8-channel head coil, FOV=190mm, voxel 

dimensions=2x2x2mm, TE/TR=74/8000 with 32 directions at B=700s/mm2).  Not enough data was 

collected for four scans (of three infants) and two moved too much to allow reconstruction. There was a 

persistent spike artifact for one infant. For six infants there was data corruption before analysis could be 

conducted. 

Diffusion Imaging of Neonates by Group Organization (DINGO)  

The overarching goal of this pipeline is to provide a semi-automated framework for the 

harmonization of subject-space tractography generated from diffusion tensor imaging acquired across 

varying scanners, institutions, and populations.  Figure 2 shows a high-level overview of the cohort-

specific harmonization framework. Datasets acquired using varying protocols are compartmentalized 

into subsets, where a cohort-specific template is generated, allowing for the propagation of the 

tractography mask set with higher spatial specificity. To reduce variance of label propagation and 

minimize manual effort, only one set of labels are generated for the entire analysis, derived from a 

“master template” created from combining all dataset specific templates. The master mask set is 

propagated through each cohort specific template, resulting in group-specific sets of labels.  

Figure 3 shows a detailed view of the group-level workflow of the proposed pipeline, named 

Diffusion Imaging of Neonates by Group Organization (DINGO). Detailed descriptions of each step will be 

provided below. DINGO first generates a cohort-specific template by iteratively co-registering all 

subjects in the cohort, generating a group-wise average atlas. This atlas is used for the generation of ROI 

and ROA for the desired tracts. Here, we will refer to the set of ROIs and ROAs for each tract as the Mask 

Set. The mask sets are propagated onto each subject’s native DTI space for fiber tracking. At each 
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iteration of the previous steps, quality control is performed by carefully chosen criteria: spatial maps, 

along tract metrics, and group diffusion metrics. If necessary, mask refinement steps are performed to 

improve these metrics until no significant improvement is observed. This is described in detail below. 

The final step is to analytically find outliers, and if deemed appropriate, to remove them from the group, 

followed by a final pass through the workflow. The identified outliers are then grouped into their own 

sub-cohort, where a new cohort-specific template is generated and processed through DINGO.  

The core framework of the DINGO pipeline is built using the Nipype library.36 Nipype is an open 

source pipeline development library developed to promote open and reproducible neuroimaging 

workflows, providing direct interfaces to standard neuroimaging tools, including FSL37 and DSI Studio. 

38The full DINGO source code can be found at https://github.com/PIRCImagingTools/DINGO.git.  

Pre-Processing 

First, each subject’s diffusion tensor images are inspected for motion artifacts, and gradient 

volumes with strong artifacts are removed. Images have the brain extracted using FSL Brain Extraction 

Tool (BET),39 then are eddy current and motion corrected using the standard DSI studio workflow. The 

estimated motion parameters are applied to the diffusion vectors prior to tensor reconstruction.  

Fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) maps 

are generated for each subject in native space and the FA serve as the input for the template generation 

step.  

Template Generation 

The template generation step of DINGO leverages the existing cohort-specific template creation 

workflow developed by the existing Tract-Based Spatial Statistics (TBSS) method.40,41 Each subject within 

the cohort is registered to every other subject, and the subject with the smallest average deformation to 

every other subject is chosen as the “representative subject” of the cohort. This becomes the template 
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space for group registration. Each subject is then non-linearly transformed into this space, and an 

average FA map is generated for the cohort. The non-linear transformation is performed using the 

Advanced Normalization Tools (ANTS).42 This FA map then becomes the new target of registration, and 

all subjects are again transformed into this space, generating a new average FA map.  

Iterative Mask Set Refinement 

Barring post-mortem dissection, there is no objective anatomical gold-standard for imaging based 

tractography. Manual approaches use anatomy and segmentation experts to evaluate the accuracy of 

the tracts, including prior knowledge-guided “pruning” of spurious connections. Therefore, to measure 

the accuracy of our iteratively developed semi-automated method, we first needed to generate a “gold-

standard” set by manually delineating the mask sets for the desired tracts. The final evaluation of the 

accuracy of the automated method uses a combination of quantitative comparisons to this “gold-

standard” as well as expert-guided interpretation. We delineated the following tracts: Genu, Body, and 

Splenium of the Corpus Callosum; anterior and posterior segments of the superior longitudinal 

fasciculus (SLFA and SLFP, respectively); Inferior Longitudinal Fasciculus (ILF), Fronto-Occipital Fasciculus 

(FOF), Cingulum, and Cortical Spinal Tract (CST). Manual mask set delineation was performed following 

the guidelines published by Fernandez-Miranda et al.43 Table 1 shows the ROIs and ROAs comprising 

each mask set, and visualization of each manual mask set is provided as supplemental material. All 

subjects from the CHP and CHLA datasets were manually delineated.  

The first iteration of the pipeline was performed by duplicating the above mask sets, following 

the identical anatomical guidelines, on the generated cohort template. The masks were then 

propagated into each subject’s native diffusion space using the previously calculated non-linear 

transforms. Each tract was delineated in DSI studio using a deterministic tracking algorithm an FA 

threshold of 0.1 and angular threshold of 45 degrees with no manual pruning. We used four increasingly 
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granular metrics to measure the accuracy of the semi-automated approach. At each successive mask-

refinement iteration, more emphasis is placed on the more granular measure. First, as a qualitative 

measure of cohort-level accuracy, we projected both the manually delineated tracts and automated 

tracts onto the cohort-specific atlas, displaying the spatial distribution of each tract and level of 

agreement. This allows for the detection of obvious points of failure in the pipeline, such as consistently 

present spurious fibers or anatomically incongruent delineations, as well as a general overview of the 

variance in anatomical tract location.  

We then quantitatively measured the degree of spatial overlap between each manually 

delineated tract and gold standard tract using the Dice Similarity Coefficient (DSC).44 Each tract’s mask 

set is then independently refined at the master template to improve this measure prior to the next 

iteration. The directive of mask refinement is set to alter the masks to make them more robust to mis-

registration errors, while controlling for the appearance of spurious tracts. The third measure used was 

the distribution of the mean fractional anisotropy of each tract. This provides a quantitative measure of 

the whole tract and can indicate slight global mis-registration or dilation of the tract body that may lead 

to decreased anisotropy values.  

Finally, the final metric used to quantitate the accuracy of the automated method was using 

along-tract analysis. Along-tract analysis measures the mean anisotropy of each tract at each point in its 

principal orientation. This approach measures variations at local points in each tract and can be 

indicative of regional failures in the mask set delineation. Figure 4 shows the along tract FA measure 

comparing the manually delineated and the automated generation of each tract. We see no statistically 

significant differences in tract FA, however, we do observe non-significant, higher variance in regions of 

low FA and at tract extremes. This method is informative of regions of low reliability in tract delineation 

and is an objective measure of regions that should be excluded from comparative analyses between 

groups.  
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Outlier Detection 

Prior to the final harmonization step, we run an outlier detection algorithm to identify significantly 

abnormal subjects within each group. This acts as an automated data check to alert users of potential 

technical problems, as well as significantly abnormal subjects, that may have cleared preliminary QC. We 

place this processing step prior to harmonization, as harmonization methods can be sensitive to outliers, 

which could lead to biased correction factors.2,3,45 Several approaches for outlier detection were 

explored, including regression, principal component analysis (PCA), and PCA combined with support 

vector machines (SVM).  We chose to implement an Isolation Forest (IF) algorithm, as it is a 

computationally cheap, data agnostic approach to outlier selection, and less prone to overfitting 

compared to SVMs.46 Isolation Forests, as its name implies, takes advantage of the binary tree structure 

inherent to Random Forest classification algorithm.  IF trains a random forest algorithm on the entire 

dataset (all concatenated along-tract FA values) and uses the average path length of each subject’s set 

of decision trees to determine how likely it is to be an outlier. The general principle is that a subject with 

a consistently short path length across all trees is more likely to be an outlier, as it is readily separated 

from the remainder of its cohort. This method is intended to identify subtle technical or biological 

outliers that may have cleared preliminary quality control, as it is applied to the already delineated 

along-tract measures. We used the ScikitLearn47 implementation using the recommended default 

hyperparameters and 300 estimators.  

Data Harmonization 

In the setting of retrospectively acquired data, we are limited in the techniques we can apply to 

harmonize site parameters – retroactively scanning phantoms is generally not feasible and may not be 

representative of the scanner profile at the time of study. Bayesian approaches to data harmonization 

provide a flexible set of tools that incorporate the inherent uncertainty of the estimated parameters 
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into the analysis. Empirical Bayes methods, including the recently published ComBat approach,48 

estimate from the input data a set of scanner-specific correction factors that are dependent on the 

covariates of interest. This approach tries to estimate the distribution that contributes most to the 

covariates being analyzed, while shrinking away the variance contributed by external factors (including 

inter-scanner variability). DINGO performs an empirical Bayes correction at the along-tract level using 

the publicly available NeuroCombat package45. This generates a new harmonized diffusion metric (FA, 

MD, RD, or AD) at each point along the tract of interest.  

Statistical Analysis and Evaluation 

 We evaluated the performance of DINGO on four independent datasets of neonates with CHD 

acquired at different institutions. As each cohort comes from populations of matched cardiac 

pathologies, we expect to observe similar diffusion metric distribution between each group after 

harmonization using ComBat. We tested the hypothesis that neonates born with a single ventricle heart 

defect (SV) would show reduced anisotropy (FA) and increased diffusivity (mean, radial and axial 

diffusivity) compared to bi-ventricular heart defects in developmentally vulnerable white matter tracts. 

Along-tract statistical significance was assessed on post-menstrual age-adjusted diffusivity metrics 

(FA,RD,MD,AD) at pre- and post-surgical intervention time points. P-values were calculated using re-

randomization tests (1000 permutations per tract slice), for each tract, using Welch’s T-statistic for 

unequal variance. Multiple comparison correction was done using the stepdown max-T algorithm49.  
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Results 

Subjects 

Of the 592 infants recruited from CHP, 101 were included in the final analysis. 70 imaging time points at 

CHP were acquired prior to first surgical intervention, with 36 scanned post-surgery. Of the 107 infants 

recruited from CHLA, 77 were included. 49 time points were acquired pre-surgical intervention, and 61 

imaging time points were post-surgery. Of the 225 infants recruited from CHoP, 129 were included in 

the analysis. 124 time points scanned pre-intervention, and 98 scanned post-intervention were 

included. Of the 99 infants recruited from TCH, 91 were included in the final analysis. 82 time points 

scanned pre-surgical intervention were included, with 83 scanned post-intervention. For final 

comparison between single vs. biventricle outcomes, subjects with GA below 34 were excluded. Pre-op 

time points were restricted to < 6 days post-natal age, and post-op time points were restricted to < 25 

days.  

Template Generation 

The chosen neonate to initialize the template for the CHP cohort was born at 39.1 weeks gestation, 

scanned at 0.4 weeks post-natal, pre-/post-surgical [diagnosis: double outlet right ventricle with 

hypoplastic left ventricle and heterotaxy].  The chosen infant for the TCH cohort was born at 38.1 weeks 

gestation, scanned at 0.9, 1.9 weeks post-natal, pre-,post-surgical [HLHS]. The representative infant for 

the CHoP cohort was born at 39.0 weeks gestation, scanned at 0.3, 9.0 weeks post-natal, pre-,post-

surgical intervention [d-TGA]. The chosen infant for the CHLA cohort was born at 39.0 weeks gestation, 

scanned at 0, 9 weeks post-natal. Supplemental Figure 1 shows each site’s selected representative 

subject, and the final generated atlas.  

Iterative Mask Set Refinement 
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Figure 5 shows the DICE coefficients between the gold-standard manually delineated tracts and the 

automatically generated tracts after final iteration. Tracts with higher average FA (CST and CC fibers) 

showed the highest DICE coefficients compared to manual delineated fibers, while peripheral cortico-

association fibers (SLF) showed the lowest DICE coefficients. Supplementary figure 2 shows a 

comparison between mask sets for each tract pre- and post-refinement. In total, 4 iterations were 

required before reaching significantly diminishing returns in DICE coefficients for all tracts. Masks were 

altered to be more robust to misregistration errors, generally requiring larger coverage for each mask, 

and additional exclusion masks to delineate the search space for fiber tracking.  

Outlier Detection 

A total of 8 (3 pre-op, 5 post-op) subjects were identified by the Isolation Forest algorithm as outliers. 

Figure 6 shows an example of inliers compared to outliers detected by IF. As the IF algorithm uses all 

concatenated tracts to detect outliers, we do not attribute the selection criteria to individual tracts. 

However, it is useful to visualize each individual tract as a diagnostic step. Qualitative interpretation of 

outlier selection shows that outliers were selected for two primary reasons: 1) low signal resulting in 

fewer fiber tracts per tract of interest, and 2) spurious tracts causing missing or excessive bundles 

outside the expected anatomical location of the desired tract. Supplemental figure 3 shows the effect of 

including the selected outliers in the final harmonization step, in the left cortico-spinal tract at post-

operative scan. Despite only including an additional 5 subjects, a noticeable increase in cross-site 

variance can be seen, particularly in areas of lower signal such as crossing fibers. 

Cross-Site Harmonization 

We applied ComBat independently to the pre-op timepoint scans and post-op, harmonizing the cross-

site variance across scans. Covariates included in the harmonization were each infant’s post-natal age at 

time of scan, gestational age, and single-/bi-ventricle surgical repair.  Figure 7 shows the observed effect 
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size for the left cortico-spinal tract pre- and post-harmonization at post-surgical intervention. Note the 

cross-site variance prior to harmonization is larger in regions of lower signal (lower FA).  

Single vs. Bi-Ventricle Differences at Pre- and Post-Op 

There was a statistically significant difference in FA (bi-ventricle reconstruction > single ventricle 

reconstruction) along the left FOF (Figure 8) and bilateral CSTs (Figure 9) in the pre-op time points. The 

remaining tracts analyzed did not show significant differences in FA at pre-op scan. In the post-op scan, 

we note statistically significant differences in FA (bi-ventricle > single ventricle) along bilateral CST 

(Figure 10), bilateral cingulum (Figure 11), bilateral FOF (Figure 12), and corpus callosum genu, 

splenium, and body (Figure 13). We did not see statistically significant differences in SLF at the post-

operative timepoint.  

Availability and Computational Time 

 The full Dockerized pipeline is freely available at https://github.com/PIRCImagingTools/DINGO. On 

an Intel® Core™ i9-7900X CPU @ 3.30GHz with 64 GB of memory the automated aspects of pre-

processing will run approximately 3-4 minutes per scan.  Though each registration when determining the 

representative subject took no longer than 3-5 minutes, there are N x N registrations, so this can 

potentially be the most time consuming.  Finally, the ANTS registrations take approximately 2 hours per 

scan with the following call, ANTS 3 --image-metric CC[ template, native, 1, 5 ] --number-of-iterations 

50x50x50x50 --output-naming ANTS_OUT_ --regularization Gauss[0.0,3.0] --transformation-model 

SyN[25,3,0.05] --use-Histogram-Matching 0.   
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Discussion 

We have presented a framework for the analysis of neonatal diffusion tractography imaging, with 

an emphasis on retrospective harmonization of multi-site diffusion tensor imaging [multi-vendor, 

different field strengths (1.5T and 3T) and different acquisitions] of a high-risk neonatal population 

(CHD). We chose to build our pipeline with explicit emphasis on the uncertainty of the estimated group 

parameters (diffusion metrics and spatial similarity) by having automated outlier detection and site- and 

group-wide harmonization prior to data analysis. This allows for the building of cleaner, more rigorous 

statistical models able to detect smaller effect sizes in heterogeneous populations. Additionally, to our 

knowledge, this is the first time ComBat (empirical Bayes harmonization) has been applied to neonatal 

tractography, and also to a high-risk clinical population. Using this technique, we show increased 

sensitivity to local changes in white matter tracts pre- and post-surgical intervention in a large, multi-site 

population of neonates born with CHD.  

Currently, there is no standardized approach to neonatal diffusion analysis. Individual workflows 

are tailored to a particular protocol50,51 or dataset. Under appropriate conditions, protocol-specific 

pipelines offer the best approach for data extraction and quantitation. However, this approach is not 

scalable, or can introduce site-specific artifacts in heterogeneous data. In the setting where dealing with 

heterogeneous data is required, we need a framework that can scale to large data analysis while 

handling the intrinsic scanner- and site-specific variance. A popular alternative to manual delineation, 

and one of the most widely used group-level methods of DTI analysis, is Tract-Based Spatial 

Statistics.41,52,53 TBSS is an approach that transforms all subjects in the analysis into one common space, 

and projects each subject’s spatial diffusion metrics onto an atlas-derived tract “skeleton”. TBSS is 

effective at analyzing global differences between large groups, and is generally robust in large tracts 

with low spatial variance among subjects. In effect, TBSS looks only at the most prominent fibers within 

the group and restricts the generation of the FA skeleton based on overall FA values. This has two 
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significant downsides, especially in neonatal populations: 1) the non-linear transformation into a 

common space may distort a subject’s anatomy, leading to erroneous adjacent tract information 

propagating onto a skeleton, and 2) the restriction of the skeleton generation based on FA leads to a 

sub-optimal skeleton in neonates. Modified variants of TBSS have successfully improved its performance 

in neonatal datasets, but they still lack the local specificity that anatomically informed fiber tracking 

methods provide; and are still prone to errors in the context of anatomically abnormal subjects.53 

Other variants of group-level approaches are more generalized atlas space methods. Similar to 

TBSS, these approaches transform the subject’s DTI into atlas space prior to tractography.54,55 This allows 

for the generation of one set of ROI/As, and all fiber tracking is performed in this common space. This 

approach removes the time-consuming step of manually delineating the regions for each individual 

subject. Additionally, atlas-based methods inherently provide inter-subject correspondence derived 

from the non-linear transformation onto this common space. Performing tractography in atlas space has 

some disadvantages, however. The non-linear transformation can distort the native curvature of more 

complex tracts. We may lose informative features of the native structure of the tract. Additionally, atlas-

based approaches tend to be highly sensitive to abnormal structures, which can result in the exclusion 

of subjects due to potentially informative pathology. Therefore, we believe native-space along-tract 

analysis to be an effective compromise, with the search space reduction benefit of anatomically-driven 

tract generation, while standardizing the approach by propagating masks from a template. 

Using DINGO, the inclusion of subjects with similar structural abnormalities by grouping them into 

their own sub-cohort specific template is likely to improve tractography accuracy, retaining potentially 

informative pathology, reducing analysis bias, and retaining statistical power. We implement the outlier 

removal step at the end of the workflow as a way of empirically identifying and removing subjects from 

the cohort without user bias prior to analysis. Isolation Forests are data agnostic, and can identify 

outliers independent of anatomy, pathology, or visual differences. We believe this approach provides a 
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way of utilizing a larger portion of abnormal populations in the analysis, with a worthwhile tradeoff of a 

small added computational time. Our implementation of IF detected a small subset of outliers (5 pre-op, 

8 post-op). This small number was expected, as we chose a conservative approach for outlier detection 

as to not exclude too many subjects from the abnormal population, and a prior selection bias was 

already in effect due to pre-processing QA and the selection of subjects stable enough to undergo an 

MRI. Despite this low number of outliers, we noticed an increase (not statistically significant) in cross-

site variance after harmonization when the outliers detected by this algorithm were included in the 

dataset. 

Evaluating our pipeline on a heterogeneous dataset of neonates with CHD acquired at multiple 

institutions presents an ideal use case under controlled conditions – the images were acquired at 

multiple institutions, but under the same clinical trial surgical protocol35,56. Thus, it enables us to explore 

our null hypothesis that there should be no observed differences across similarly stratified subjects, 

while retaining the power to detect a significant effect size within the strata. Here we dichotomized the 

subjects as single vs. bi-ventricle CHD. Prior to harmonization, we detected larger cross-site effect sizes 

than the between-strata effects. After harmonization, we observed an amplified effect size when 

comparing single vs. bi-ventricle, with a decrease in the cross-site variance.  We observed larger changes 

in white matter diffusivity between single vs. bi-ventricle after surgical intervention. This may reflect a 

direct biological signal, and it has been previously observed in similar populations that there is a 

compounding injury effect observed over time using structural imaging.57 However, we cannot rule out 

that we are more likely to detect subtle white matter changes at later time points, as increased diffusion 

signal in the developing brain allows us to tract both central and peripheral tracts with more fidelity. In 

this context, this work highlights the importance of data harmonization in multi-site studies. We are able 

to build more sensitive models where we can reduce the contribution of site and scanner variance.  
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 This study has several limitations. Implementing a semi-automated pipeline inherently comes with 

trade-offs, compared to more manual approaches. First, automated tractography requires larger ROI/As 

to account for anatomical variance across the population, in order to more robustly delineate the tracts 

of interest. We carefully constructed our templated ROI/As to account for the potential for spurious 

tracts, adding additional regions of avoidance where necessary. Additionally, we refrain from “tract 

pruning” corrections, as these steps can often introduce bias.  Our future work will include applying 

DINGO to independent neonatal datasets, which will allow us to use machine-learning to guide objective 

quality assurance and identify further technical outliers, including population-based FA cut-off, fiber 

bundle thresholding, and using gray and white matter masks to restrict tract pathways. We chose to 

perform our along-tract analysis by following the primary tract direction in an atlas space, rather than 

individual curvature-based approaches.19 This can lead to a loss of spatial information, particularly for 

high curvature tracts. However, in a heterogeneous neonatal population, following individual tract 

curvature can be noisy, as these curvature approaches can be unreliable due to lower structural 

resolution (SNR) and anatomical variance. Finally, ComBat harmonization, despite outperforming 

conventional methods, is limited in smaller datasets. By design, a different set of corrective values 

dependent on co-variates of interest needs to be generated with each statistical analysis. If the sample 

size is sufficiently large, this has low impact on data analysis. This is advantageous for large population 

studies, where we have enough confidence that the true population variance is modeled by the 

available data, and the Empirical Bayes method of estimating the priors directly from the data being 

analyzed is acceptable. Therefore, when we are restricted to retrospectively analyzing a multi-site 

dataset, without further access to data acquisition at each site, empirical Bayes outperforms classical 

statistical approaches, and improves statistical power.2,48 
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Tables and Figures 
 
 

Table 1.  

Patient Demographics 

Demographic Variables ALL CHLA CHP CHOP TCH 

% % % % % 

Male 59.19 61.84 71.29 50.39 56.04 

Late Preterm* 2.76 3.90 0.99 0.78 6.59 

Single Ventricle 45.59 61.84 36.63 41.09 48.35 

Age at MRI M (SD) M (SD M (SD M (SD M (SD 

Mean PNA at Pre-Op MRI  - weeks 1.5 (7.81) 0.5 (1.04) 4.1 (15.98) 0.5 (0.36) 1.2 (0.72) 

Mean PCA at Pre-Op MRI  - weeks 40.3 (7.95) 39.0 (1.95) 43.1 (16.06) 39.4 (0.99) 39.8 (1.64) 

Mean PNA at Post-Op MRI  - weeks 8.2 (11.84) 6.0 (3.77) 13.2 (23.34) 1.6 (0.57) 12.2 (11.64) 

Mean PCA at Post-Op MRI  - weeks 46.9 (11.84) 44.8 (3.71) 52.1 (23.56) 40.5 (1.04) 50.6 (11.64) 

*Notes: Late Preterm = born 35.0 – 36.9 weeks PCA 
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Figure 1. Summary of population for each cohort. 

 
 
Figure 2. Cohort compartmentalization framework. Every participant in a cohort is registered to its 
most representative subject to generate a cohort specific mean FA map. Regions of interest/avoidance 
are created in this mean FA space and transformed back into individual space for fiber tracking. Red 
arrows show the propagation of the masks from template space into subject space, black arrows show 
subject images propagated into template space. 
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Figure 3. DTI Processing Workflow. ROI/A masks created in template space are warped to individual 
space for tractography with DSI Studio. Generated tracts are evaluated against a subset of manually 
delineated subject-space masks on the basis of DICE coefficients (spatial overlap), tract averaged 
statistics, and along tract measures to create satisfactory group masks. Outliers are identified via 
isolation forest and either removed from analysis or grouped into a new sub-cohort if sufficient outliers 
with similar spatial similarity are identified. 
 
 

 
 
Figure 4. Spatial Distribution of Manual vs. Automated Along-Tract FA. Comparison of template 
generated tracts and manually delineated (in subject space) tracts. FA is measured along a tract’s 
primary direction, and statistical comparison is done at each voxel using permutation. No statistical 
significance was observed between manually delineated tracts and templated generated tracts after 
three iterations of mask refinement.  
 
 
 

 
Figure 5. DICE coefficient by tract comparing those generated with warped cohort masks and 
individual masks. Tracts with higher average FA (CST and CC fibers) showed the highest DICE coefficients 
compared to manual delineated fibers, while peripheral cortico-association fibers (SLF) showed the 
lowest DICE coefficients 
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Figure 6. Comparison of outliers identified by along tract isolation forest and most representative 
individual per cohort for CST, both 3D and along tract. Isolation Forest aggregates all tract values as its 
input, and selects outliers based on overall deviance from the population across all tracts. Breakout box 
shows all tracts for a single subject acquired at CHoP. While the CST appears visually normal, the subject 
was selected as an outlier as a result of asymmetrical delineation of peripheral tracts, notedly right SLF 
and bilateral ILF.    
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Figure 7. Raw and ComBat harmonized left corticospinal tract age-adjusted FA in neonates with single 

or biventricular repair acquired across four institutions. Top panels compare patients with single- vs. 

Biventricular reconstructions. Bottom shows the same subjects grouped by  site. Left shows pre-

harmonized FA values, right panels  are post-harmonization FA. Note that the cross-site variance is 

larger than the biological variance prior to harmonization.  
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Figure 8. Pre-operative along tract age-adjusted FA that was harmonized with ComBat in Fronto-
occipital Fasciculus (FOF). A) mean distribution between single vs. bi-ventricular repair groups. B) 
Statistically significant differences (p < 0.05) between single and biventricular repair projected onto 
mean along-tract FA in red. 
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Figure 9. Pre-operative along tract age-adjusted FA that was harmonized with ComBat in Corticospinal 
tract (CST). A) mean distribution between single vs. bi-ventricular repair groups. B) Statistically 
significant differences (p < 0.05) between single and biventricular repair projected onto mean along-
tract FA in red. 
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Figure 10. Post-operative along tract age-adjusted FA that was harmonized with ComBat in 
Corticospinal tract (CST). A) mean distribution between single vs. bi-ventricular repair groups. B) 
Statistically significant differences (p < 0.05) between single and biventricular repair projected onto 
mean along-tract FA in red. 
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Figure 11. Post-operative along tract age-adjusted FA that was harmonized with ComBat in Cingulum. 
A) mean distribution between single vs. bi-ventricular repair groups. B) Statistically significant 
differences (p < 0.05) between single and biventricular repair projected onto mean along-tract FA in 
red. 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.01.21264443doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.01.21264443
http://creativecommons.org/licenses/by-nc/4.0/


   
 

35 

 
Figure 12. Post-operative along tract age-adjusted FA that was harmonized with ComBat in Fronto-
Occipital Fasciculus (FOF). A) mean distribution between single vs. bi-ventricular repair groups. B) 
Statistically significant differences (p < 0.05) between single and biventricular repair projected onto 
mean along-tract FA in red. 
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Figure 13. Post-operative along tract age-adjusted FA that was harmonized with ComBat in A) Corpus 
Callossum Genu, B) Corpus Callosum Body, and C) Corpus Callosum Splenium. Top row shows the 
mean distribution between single vs. bi-ventricular repair groups, bottom row shows the statistically 
significant differences (p < 0.05) between single and bi-ventricular repair projected onto mean along-
tract FA in red. 
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Supplemental Material 
 

 
Supplemental Figure 1. Site-specific mean FA in most representative space. A) CHLA, B) CHoP, C) CHP, 
D) TCH 
 
 

 
Supplemental Figure 2. Cohort generated masks in template space. A) CHLA, B CHoP, C) CHP, D) TCH. 
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Supplemental Figure 3. Comparison of the inclusion of 5 outliers identified by Isolation Forest 
algorithm in the final harmonization step in the left corticospinal tract at post-operative time point. 
Noticeable increase in cross-site variance can be observed in regions of lower signal and crossing fibers. 
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Supplemental Table 1. Mask Set description for each delineated tract.  

 

Tract ROIs ROAs
Genu

Genu Insula_B

Sagittal_L PosteriorGenu

Sagittal_R

CCBody

CCBody ArcuateAxial_B

Sagittal_L ArcuateROA

Sagittal_R BodyCingulum

BodyFornixROA

CapsuleMerge_B

Midbody

Splenium

Splenium ArcuateCoronal_B

Sagittal_L FornixBody

Sagittal_R FornixCrura

Midbody

SFG_B

TemporalCoronal_B

Cingulum

Cingulum1_I ArcuateAxial_I

Cingulum2_I ArcuateSagittal_I

CapsuleMerge_I

FornixCrura

Midbody

SagittalROA

CST

AnteriorBrainstem ArcuateROA

Medulla Cerebellum_B

Midbody CingulumROA_I

InternalCapsule_I FornixBody

FornixCrura

ExternalCapsule_I

InternalCapsule_C

SagittalROA

TemporalCoronal_I

FOF

PosteriorCingulum ArcuateCoronal_I

TemporalCoronal_I Cerebellum_B

UncinateCoronal_I FornixBody

FornixCrura

Midbody

SagittalROA

ILF

InferiorOccipital_I AnteriorGenuFrontal

TemporalCoronal_I ArcuateCoronal_I

Cerebellum_B

FornixBody

FornixCrura

ExternalCapsule_I

Midbody

SagittalROA

UncinateAxial_I

UncinateCoronal_I

SLFA

ArcuateCoronal_I ArcuateAxial_I

PosteriorGenu ArcuateROA

ExternalCapsule_I

InternalCapsule_I

Midbody

PosteriorCingulum

Midbody

SagittalROA

TemporalCoronal_I

SLFP

ArcuateCoronal_I ArcuateROA

PosteriorCingulum ExternalCapsule_I

InternalCapsule_I

InferiorOccipital_I

Midbody

SagittalROA

TemporalCoronal_I
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