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Hofberger, Michael Höfinger, Larissa Hofmann, Sacha Horn, Kristina Huber, Christian Janke,

Ursula Kappl, Charlotte Kiani, Isabel Klugherz, Norah Kreider, Arne Kroidl, Inge Kroidl,

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 17, 2023. ; https://doi.org/10.1101/2021.10.01.21263052doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.10.01.21263052


Magdalena Lang, Clemens Lang, Silvan Lange, Ekaterina Lapteva, Michael Laxy, Ronan Le

Gleut, Reiner Leidl, Felix Lindner, Alexander Maczka, Alisa Markgraf, Paula Matcau, Rebecca

Mayrhofer, Anna-Maria Mekota, Hannah Müller, Katharina Müller, Laura Olbrich, Leonie

Pattard, Claire Pleimelding, Michael Pritsch, Stephan Prückner, Konstantin Pusl, Katja Radon,

Elba Raimúndez, Julius Raschka, Jakob Reich, Friedrich Rieß, Raquel Rubio-Acero, Elmar
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Abstract

Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data

interpretation, forecasting, and policy making. However, most models are based on officially

reported case numbers, which depend on test availability and test strategies. The time dependence

of these factors renders interpretation difficult and might even result in estimation biases.

Here, we present a computational modelling framework that allows for the integration of reported

case numbers with seroprevalence estimates obtained from representative population cohorts. To

account for the time dependence of infection and testing rates, we embed flexible splines in an

epidemiological model. The parameters of these splines are estimated, along with the other

parameters, from the available data using a Bayesian approach.

The application of this approach to the official case numbers reported for Munich (Germany) and

the seroprevalence reported by the prospective COVID-19 Cohort Munich (KoCo19) provides first

estimates for the time dependence of the under-reporting factor. Furthermore, we estimate how

the effectiveness of non-pharmaceutical interventions and of the testing strategy evolves over time.

Overall, our results show that the integration of temporally highly resolved and representative data

is beneficial for accurate epidemiological analyses.

Introduction

Social distancing, mask wearing, lockdowns and other non-pharmaceutical interventions (NPIs)

are used worldwide to slow the spread of SARS-CoV-2 and to avoid overburdening health care

systems. Various studies have analysed how such NPIs influence the contact rate (Latsuzbaia

et al. 2020; Jarvis et al. 2020), the infection rate (Courtemanche et al. 2020; Hartl, Wälde,

and Weber 2020; Li et al. 2020; Lyu and Wehby 2020; Siedner et al. 2020), the reproduction

number (Giordano et al. 2020; Zhao and Chen 2020; Liu et al. 2021; Brauner et al. 2021; Sypsa

et al. 2021) and related quantities. These studies use a broad spectrum of analysis approaches,

including statistical methods (e.g., generalized linear models, generalized estimating equations,
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machine learning) (Streeck et al. 2020; Latsuzbaia et al. 2020; Siedner et al. 2020; Courtemanche

et al. 2020), compartmental models based on ordinary differential equations (ODEs) (Barbarossa

et al. 2020; Jarvis et al. 2020), and agent-based models (Lorch et al. 2021), and provide important

insights. However, a limitation of most studies is that they are exclusively based on official case

numbers.

The officially reported case numbers provide in most countries information about the number of

positive tests for viral load registered on a specific day. Such tests can either be based on the

polymerase chain reaction (PCR) or on antigen detection; for brevity’s sake, in the following we

will refer to them indiscriminately as diagnostic tests. However, there are several well-known

issues with these numbers (Raimúndez et al. 2021). Besides reporting delays, the most important

problems are that case numbers depend on the availability of tests and on the test strategy.

Clearly, the number of performed tests and the selection criteria have changed over time (e.g., due

to the introduction of antigen tests). As an alternative to the officially reported case numbers,

the officially reported death numbers, which are generally considered as more reliable (Radon,

Bakuli, et al. 2021; Pritsch et al. 2021), can be used. However, there the effects of NPIs are

smoothed over time and only visible after a substantial delay. Furthermore, the observation can

be confounded by the quality of medical care, in particular if the number of beds in intensive-care

units becomes a limiting factor. In summary, while case and death numbers provide information

on the progression of an epidemic, the interpretation is often difficult.

The ideal data-source for the analysis of NPIs as well as the efficiency of test strategies would be

a thorough monitoring of a large representative population cohort. Yet this is rather time- and

resource-consuming, and in most cases not realistic. Cross-sectional studies based on diagnostic

tests with a high time resolution would provide a comprehensive picture of the spread within

populations, but the number of required tests would be very high. For a prevalence of 100 in

100,000 individuals, on average 1000 tests have to be performed to observe a single positive

individual. For tight confidence intervals, tens of thousands of diagnostic tests would be necessary

per time point. To make things worse, diagnostic tests are only positive for a short period after

exposure to the virus.

An alternative to diagnostic tests that allows for the monitoring of epidemics is testing for the

presence of antibodies, which assesses seroprevalence. The antibody response is rather stable and

can usually be detected even months after the initial infection (Radon, Bakuli, et al. 2021; Olbrich

et al. 2021; Isho et al. 2020). Accordingly, antibody tests do not only provide a snapshot of the

current situation as diagnostic tests do, but inform about previous exposure and hence the past

history of the epidemic up to the current point. However, to provide an assessment of NPIs and

test strategies with a high temporal resolution, immense resources would be required in this case

too.

We believe that the most practical way to monitor at a high temporal resolution the evolution

of a pandemic is to combine the frequent but biased official daily case numbers collected by the

healthcare authorities with less frequent but more informative seroprevalence measurements from

representative population studies. In order to prove that, in this paper we report an analysis of

the first COVID-19 wave in Munich during the spring of 2020. The outline of the paper is as

follows: (i) we present a compartment model for integrating officially reported case and death

numbers, as well as seroprevalence data from the population-based prospective COVID-19 cohort

study KoCo19 in Munich (Radon, Saathoff, et al. 2020; Pritsch et al. 2021); (ii) we fit the model
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with and without using seroprevalence data, showing that the additional data drastically reduces

uncertainty in the hidden dynamics of the epidemic; (iii) we assess the estimates of the time-

dependent effectiveness of NPIs and testing strategies, quantifying their relative contribution to

the reduction in the spread of the infection.

Results

Compartmental model for the COVID-19 epidemic

We developed a compartmental model for the dynamics of the COVID-19 epidemic that allows for

the integration of the officially reported numbers of positive diagnostic tests and COVID-19 related

deaths, hospital bed usage, and seroprevalence in representative cohort studies (Figure 1). The

model describes the state of individuals: susceptible, exposed, infectious, hospitalized, recovered

and deceased. Several of these generic states can be further refined (Figure 1A) by distinguish-

ing infectious individuals with and without symptoms, recovered individuals with and without

detectable virus, and hospitalized individuals in ward and intensive care unit (ICU).

Realistic distributions of transition times of individuals between states are achieved by subdividing

the illness-related states into multiple sub-states (Figure 1B). This is often referred to as the

Gamma Chain Trick or Linear Chain Trick (Smith 2011). Many important transition times related

to the COVID-19 disease cannot be reasonably modelled by an exponential distribution (single

sub-state case) — a fact that is disregarded by many studies. For example, the incubation time

has been shown to be reasonably approximated by an Erlang distribution with shape parameter

6 (Lauer et al. 2020), suggesting a split into six sub-states.

The testing process is modelled by splitting illness-related states into two sub-states: infectious

individuals that have not been detected, and infectious individuals that have been detected by

means of a positive diagnostic test. The rates at which individuals transition from the undetected

to the detected branch reflect the efficacy of the testing system set up by the healthcare authori-

ties. As individuals with symptoms are more likely to get tested, we assume that these detection

rates depend on the illness phase. In particular, the detection rate for asymptomatic and presymp-

tomatic individuals are especially important since they can be considered a measure of contact

tracing effectiveness. Hospitalized individuals are assumed to be immediately detected. The num-

ber of reported positive diagnostic tests is then equal to the sum of all fluxes from undetected to

detected sub-states.

Since antibodies become detectable only about two weeks after an exposed individual has become

infectious (Long et al. 2020), it is not possible to obtain the current number of seropositive

individuals from the model state. Instead, we compute the number of individuals who will be

seropositive in two weeks’ time, which is equal to total population size minus the number of

susceptible, exposed (but not yet infectious) and deceased individuals.

The rate at which susceptible individuals are infected is proportional to the sum of the number

of asymptomatic individuals, presymptomatic individuals, symptomatic individuals, recovered

individuals with detectable virus levels, and hospitalized individuals in ward (ICU patients are

considered to be not infectious). The elements of this sum must be weighted by the average number

of secondary cases generated in a day, which is specific of each compartment. In particular, this
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Figure 1: Structure of the compartment model. (A) High-level structure indicating possible transi-

tions between various illness phases and hospitalization compartments. The delay between death and its

reporting to the healthcare authorities is added in order to account for the lower number of deaths observed

during weekends. Infectious phases are coloured with different colours encoding our a priori beliefs on the

average number of secondary cases generated in a day by an individual in the corresponding compartment.

We remark that such a number depends on the degree of infectiousness as well as the total number of

inter-personal contacts. For example, on the one hand symptomatic individuals are more infectious than

asymptomatic ones, but on the other they are much less likely to encounter other people due to their health

condition. It is thus difficult to determine a priori which phase generates more secondary cases and as a

first guess they are assigned the same colour in the figure. (B) Detailed structure of the compartment

model. Each compartment is split into several sub-states in order to have Erlang-distributed transition

times between compartments, and to explicitly model the testing process by tracking individuals reported

to the health care authorities on a parallel but separate branch. (C) Time-dependent parameters (here

the viral transmission reduction due to NPIs is used as an example) are modelled by splines which can be

encoded inside the parameter vector by their values at the grid points.

number depends both on biological factors, such as the stage to which the illness has progressed,

and behavioural factors, which in turn depend strongly on whether the infected individual has

been detected or not (detected individuals are quarantined and therefore less likely to spread

the disease). The qualitative ordering is indicated by colours in Figure 1A, but the quantitative

contributions are considered to be unknown a priori.
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Statistical framework for inferring testing and intervention effects

The compartment model describes possible transitions between states, but the transition rates

are unknown and depend on many factors. Particularly relevant is the influence on the infection

and detection rates due to the policies set by the government and the healthcare authorities. We

model such effects with three parameters and, since policies have evolved over time, we assume

these parameters to be time-dependent, modelling them using splines (Figure 1C).

The first two are the detection rates for (i) symptomatic and (ii) asymptomatic/presymptomatic

individuals respectively. These rates are influenced by testing capacity, by the effectiveness of

contact tracing, and by the criteria to be met in order to be eligible for testing, all of which have

undergone considerable changes in the first months of the epidemic. The third is a fractional

reduction in the number of infectious contacts compared to the situation at the beginning of

the epidemic. Such a reduction is strongly influenced by government restrictions such as busi-

ness/school closures or lockdowns, but also depends on the compliance of the general population

with social distancing and other preventive measures. In all cases time dependency is modelled

by cubic splines with an inter-node distance fixed at 2 weeks. Moreover, the evolution of the

detection rates has an additional week-periodic component in order to account for the lower case

counts during weekends that have been observed in Germany and elsewhere in the world (see

Material and Methods for more details). A similar week-periodic component is also present in the

delay between death and its reporting to the healthcare authorities.

To determine the time-dependent infection and detection rates as well as other unknown pa-

rameters, we employ a Bayesian approach to integrate different pieces of information, including

seroprevalence observed in representative cohort studies, reported case numbers, and prior knowl-

edge on process parameters. The publicly available case counts have been modelled with negative

binomial distributions, since the variance increases together with the expected value. Since hos-

pital bed counts have a much more limited dynamic range and consequently their variance can

be safely considered constant, they are assumed to be normally distributed. Finally, the number

of positive antibody tests in a random sample from the population is naturally modelled as the

result of a binomial random variable. The priors for the various model parameters were extracted

from various published reports (see Supplementary Tables 1 and 2).

Modelling without representative data provides uncertain estimates

As most studies are only based on officially reported case numbers, we first studied the reliability

of such an approach. Therefore, we inferred the model parameters from the reported number of

infected, hospitalized and deceased individuals for the city of Munich in Germany. In addition to

these commonly used counts, we also employed the publicly available number of reported symptom

onsets, which has been rarely used in other modelling efforts but can be easily integrated in our case

thanks to our explicit description of the detection process. The number of cases (new infections,

deaths and symptom onsets) was extracted from the official report by the Robert Koch Institute

(2020), while the hospital usage was obtained from the web-based information system IVENA.

The city of Munich was selected as detailed seroprevalence results are available from the KoCo19

study (Radon, Saathoff, et al. 2020; Pritsch et al. 2021). The time window used for this study

coincides with the first COVID-19 wave in Germany, from the 1st of March to the 7th of June.

The first wave is the most interesting phase for assessing the time-dependence of testing efficacy

6
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and NPIs, since several NPIs were tried in succession (up to the strictest lockdowns) and the

testing capacity quickly ramped up in response to the novel virus.

Inferred parameter estimates capture correctly the case numbers used for fitting (Figure 2A). Yet,

many of the estimated parameters are not well determined, as evinced by the broad credible in-

tervals (Figure 2C, in blue). To assess the reliability of the predictions, we employed the posterior

samples to predict the seroprevalence and compared it with the KoCo19 data, which was not used

for fitting (Figure 2A, bottom-right panel). The prediction given by the most likely parameters

encountered during sampling is compatible with the observed seroprevalances. However, as can

be seen from Figure 3, the total number of cases predicted by the model has very large cred-

ible intervals. This shows that officially reported case numbers are, even in combination with

prior knowledge, insufficient to predict the the actual number of COVID-19 infections during the

epidemic with a satisfactory degree of confidence.

Modelling with representative data reduces uncertainties

In order to quantify the added value provided by prevalence data obtained by extensive serological

testing, we extended the previously used dataset with the time-dependent prevalence reported by

KoCo19 and performed the same Bayesian parameter estimation procedure. As in the previous

analysis, the obtained parameter estimates provide an accurate description of all available data

(Figure 2B) and the uncertainty on the values of the single parameters is quite large (Figure 2C,

in green; for the full posterior distributions see Supplemental Figure 3). The uncertainty on

the hidden states of the model (Figure 3) is instead greatly reduced, in particular for the total

number of cases (not surprisingly, since this quantity is closely linked to the seroprevalence level)

and for the number of asymptomatic cases, showing the effectiveness of the seroprevalence data in

reducing uncertainty. Figure 3 also shows how the number of infections predicted by the model is

substantially higher than the number of reported cases, highlighting the limitations of the publicly

reported case counts.

Model reveals efficiency of testing strategy

Using the compartment model integrating case reports and representative data, we studied the

effectiveness of the testing and NPI strategy. To do that, we computed from the posterior samples

the time-dependent detection and number of infectious contacts, along with several secondary

properties.

Instead of employing directly the time-dependent detection rates, in order to evaluate the effec-

tiveness of the testing strategy we use a more easily interpretable metric: the probability that an

infected individual is reported to the healthcare authorities before the virus is cleared from their

system (Figure 4B). The effectiveness of testing increased gradually as the epidemic progressed.

The model estimates that at the beginning of March only 10–40% (90% CI) of infected individuals

were reported, while in April and May the fraction was 25–50% (90% CI). The largest contribution

is the increase in the detection probability for asymptomatic cases, which jumps from 0–10% (90%

CI) to 15–40% (90% CI).

For the time-dependent reduction in infectious contacts, which models both the effect of govern-

ment policy and behavioural changes, we observed an opposite effect compared to the detection
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Figure 2: Modelling and parameter estimation for Munich, Germany. (A, B) Model simulation

for the sampled parameter vector with the highest posterior probability compared with the observed data.

In (A) only the case numbers reported by the Robert-Koch Institute and hospital usage for Munich are used

for fitting, while in (B) seroprevalence data is also employed. The error bands show the range of plausible

values for the observation, confirming that the noise models used are appropriate. In the bottom-right

panels of (A, B), where the seroprevalence predicted by the model is plotted, the error bars are only shown

at the observation times since the variance of each observation is linked to the number of total antibody

tests carried out in each sub-batch. (C) Credible intervals (bars) and median value (line) for a subset of the

model parameters. By reproduction number we mean the basic reproduction number in absence of NPIs

and diagnostic testing (see Materials & Methods for more details on its computation).
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Figure 3: Estimates for the hidden dynamics of the epidemic. The number of individuals in

different compartments is plotted as a function of time for both the model fitted with seroprevalence

data and the one fitted without. In the bottom-right panel the cumulative number of cases detected by

the healthcare authorities is also plotted for reference. The bands correspond to 90% posterior credible

intervals, while the solid line denotes the median value.

rate (Figure 4A). Fixed to be 1 on the first day of March, this factor immediately started to drop

quickly. Similarly, the effective reproduction number dropped from above three at the beginning

of March to below one after the middle of March (Figure 5D). This coincides with the raising of

public awareness (e.g., a speech by the German chancellor) and various interventions.

The effective reproduction number is influenced by both NPIs and by the testing strategy and

it is therefore important to deconvolute these two effects. In order to do so, we computed the

evolution of the effective reproduction number for three hypothetical scenarios (Figure 6): (i)

neither NPIs are used nor diagnostic testing performed; (ii) only diagnostic testing is performed;

(iii) only NPIs are employed (see Materials & Methods for more details on the computation). This

revealed that diagnostic testing results in a small improvement over what can be achieved with

NPIs alone. However, in absence of NPIs such as the lockdown, the testing strategy implemented

during the first epidemic wave in Germany would not have been able to lower the reproduction

number enough to stop the spreading of the disease.
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plot shows the average value, while the right plot shows separetely the contributions due to symptomatic
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Figure 5: Temporal evolution of the effective reproduction number. The right plot shows the

effective reproduction numbers for symptomatic and asymptomatic infected individuals, while the left plot

shows their weighted average, i.e. the reproduction number for a generic infected individual. The bands

correspond to 85%/90%/95% posterior credible intervals, while the solid line denotes the median value.

Discussion

Test availability, testing strategy, governmental interventions and various factors have changed

over the course of the COVID-19 epidemic in Germany. This renders the interpretations of the

reported case numbers difficult, while creating the need to infer time-dependent characteristics

(e.g., to assess the impact of strategies). Here, we approached both points by integrating officially

reported case numbers with representative seroprevalence observations using integrative modelling

and Bayesian parameter estimation framework. Our analysis revealed that the integration of

datasets is critical: The amount of available seroprevalance data was too limited to build models
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Figure 6: Relative importance of the detection process and the NPIs on the spread of the

epidemic. Estimates for the reproduction number are plotted for three different scenarios: (red) neither

diagnostic testing nor NPIs are employed; (blue) only diagnostic testing is performed; (green) only NPIs

are applied. The bands correspond to the 90% posterior credible interval, while the solid line denotes the

median value.

just based on them, while case report numbers on their own resulted in vary large uncertainties

on the hidden states of the model, especially on the number of asymptomatic cases (Figure 3). In

the last year statistical works integrating case numbers and seroprevalence have been published

(Quick, Dey, and X. Lin 2021), but their number is still rather limited due to the logistical

difficulties of wide serological surveys.

In addition to the use of various data sources, a strength of our study is the rigorous application of

Bayesian uncertainty quantification. The vast majority of models for the COVID-19 epidemic we

have found in the literature were not accompanied by uncertainty quantification. Some exceptions

exist, such as a study by Y. T. Lin et al. (2021), in which uncertainty estimates are given for the

observed case number and the parameter values. However, they chose not to estimate most illness

related parameters, but to fix them to values taken from the literature. This is problematic for two

reasons: Firstly, many parameters are region- and situation-specific and can thus lead to wrong

estimates of inferred parameters. Secondly, estimates typically have large uncertainty intervals, as

also seen in our study and by Raimúndez et al. (2021). Fixing those to single values may lead to

an underestimation of the uncertainty of inferred parameters. This was especially true during the

first wave of the pandemic, when abundant observational data was still not available. For these

reasons, we incorporate pre-existing knowledge from the literature only as prior information and

estimate all parameters at the same time.

Our integrative modelling framework is able to estimate the effectiveness of the testing strategies

employed during the first wave of the epidemic in Munich (Germany). In particular, it suggests

that the fraction of detected asymptomatic SARS-CoV-2 cases quickly saturated. At the beginning

of April 20% (90% CI: 10–30%) of asymptomatic individuals were detected and the numbers

changed afterwards only marginally. Indeed, the model predicts even a small drop at the end of

May, but the uncertainty is large (due to a low number of observations).

The proposed model relies on a detailed description of the testing process, with the inclusion of

symptom onset data and time-dependent detection rates reflecting the varying test capacity of

the health care system and the change of the criteria needed for obtaining a test. While still

preliminary, we believe such additional modelling to be very important especially in the initial

phase of an outbreak. The proposed formulation could be the basis for future studies and expanded
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by e.g. including age groups and interactions with neighbouring regions.

Our model is rather complex compared to what is commonly found in the literature since we

have deliberately striven to model as precisely as possible the viral life cycle and the detection

process. In addition to bringing us closer to the real phenomenon, a more detailed model has the

advantage that model states have a more precise interpretation, allowing us to map them to a

wider range of data sources, either for fitting or for obtaining prior information. This approach

has however its limitations. Our complex model, coupled with our use of weak priors that reflects

the lack of information at the beginning of a new pandemic, results in a very large uncertainty

on most parameters, some of which are most certainly not identifiable. However, we are not

mainly interested in providing tight parameter estimates but rather in assessing the added value

brought by seroprevalence datasets. If one looks at the estimates of the evolution of the number

of infected individuals (especially asymptomatic ones), the levels of uncertainty are much lower

and the improvement due to the integration of seroprevalence data is clear. The real limitation

of a complex model lies instead in the computation time it requires. A simpler model with more

identifiable parameters and/or stronger priors would be more effective for time-sensitive goals,

e.g. in providing online estimation and predictions for an ongoing pandemic.

Overall, the proposed work highlights the importance of seroprevalence data and thereby com-

plements various existing efforts. We expect that it might contribute to a better understanding

of the dynamics of epidemics in a dynamic environment, with changing testing capabilities and

NPIs.

Materials and Methods

Data sources

Case report data We use the official case data for Munich (Germany), which is released on a

daily basis by the Robert Koch Institute (2020). We process the data to obtain the total number

of new cases and deaths which were communicated to the public health officials for each day. The

delay between diagnosis and recording in the RKI database can be rather long, but since we are

only dealing with data from the first pandemic wave this is not a matter of concern in our study.

We can observe in the RKI dataset the so-called “weekend effect”: the number of new cases and

deaths is significantly lower during the weekend. A similar effect has been observed in other

countries and for other diseases as well. However, there is no consensus on the reasons behind

such a periodicity. Possible explanations include: reporting delays; decreased diagnostic testing

capacity; lower probability of dying during the weekend due to critical therapeutic decisions being

made less often during holidays. Our model treats the weekend effect as a kind of reporting delay

(see the Detection process paragraph for more details). Decreased testing capacity and decreased

changes in therapy can also be accounted for by such an approach.

In addition to the case and death counts used in many other studies, for a subset of patients the

RKI provides the date at which they first displayed symptoms. To the best of our knowledge such

information has not been used in any other modelling effort. By comparing the date of symptom

onset to the date of detection we can determine whether the patient was presymptomatic or

symptomatic when they were tested. Since our model keeps the progression of detected and
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undetected individuals separate, these two counts can be fitted simultaneously.

Hospital bed counts In addition to the RKI data, we employed also the number of hospital beds

in Munich occupied by COVID-19 patients (IVENA). Bed counts were aggregated by hospital

unit: ward, medium care unit (MCU) and intensive care unit (ICU). Since not all hospitals have

a MCU, we further aggregated MCU and ICU bed counts. Due to a non-uniform reporting by the

different hospitals (especially in the first days since the reporting system was set up), the data

before 25 March 2020 had to be discarded. Some of the smaller hospitals/clinics did not reliably

report bed counts even after this date and had to be excluded, leading to a possible, albeit slight,

underestimation of the total number of occupied beds.

Another possible problem in the data is that patients may be moved from the surrounding areas

to the city, where hospital concentration is higher, resulting in a possible overestimation of the

number of occupied beds compared to what can be predicted by a model which does not take

into account immigration effects. We thus introduce two under/over-representation factors for

the bed counts, one for the occupied beds in ward and the other for the occupied ICU stations

(see Supplementary Figure 7 for their posterior distributions). We have to distinguish them since

the distribution of patients coming from outside the city may be skewed in favor of severe cases

which cannot be treated in smaller hospitals. Evidence for this can be found in the ratio between

occupied ICU and ward beds, which differs significantly when comparing the city with the whole

of Bavaria (Supplementary Figure 2).

Seroprevalence data We use the serological testing results reported by the “Prospective COVID-

19 Cohort Munich” study (KoCo19). KoCo19 is organised by the Ludwig Maximilian University

(LMU) Hospital and is currently monitoring nearly 3000 households in the Munich city area

(Radon, Saathoff, et al. 2020). At regular intervals, blood samples for each household member are

gathered and tested for several indicators of the presence of antibodies to SARS-CoV-2 (Olbrich et

al. 2021). These tests are then used to impute the lifetime prevalence of COVID-19 in the general

population (Pritsch et al. 2021), which due to the potentially large number of asymptomatic cases

is impossible to recover from the case counts released by the national health authorities. In this

work we employ the results from the first round of testing, spanning the period from April 6th to

June 12th, 2020.

Epidemiological model

Illness phases and states At the coarsest level, individuals can be assigned to compartments

corresponding to biologically different phases of the infection. From each of these phases an

individual can transition to a subset of the other phases and a transition probability can be

assigned to each of these possible disease progressions. Such a model can be easily visualized

in graph form (see Figure 1A) and converted to a set of ODEs (mostly linear, except for the

non-linear infection process). However, as mentioned in the Results section, transition times are

usually not exponentially distributed and thus each phase is subdivided into distinct model states

in order to model Erlang-distributed transition times, in what is usually referred to as the Gamma

Chain Trick (Smith 2011). Additionally, the distribution of the transition times may depend not

only on the current illness phase, but also on the future phase (e.g., symptomatic individuals who
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worsen and are hospitalized transition to the next phase faster than symptomatic individuals who

are never hospitalized). When this occurs a different branch for each possible progression must be

considered, each with its own transition rates and possibly with a different number of substates

for the Gamma Chain Trick.

Detection process As mentioned in the Results section, the process by which infected individuals

are reported to the healthcare authorities (by means of a positive diagnostic test) is modelled

explicitly with additional states that represent detected individuals. The transition rates to the

model branch containing detected individuals are denoted by kdetect,asym (for asymptomatic and

presymptomatic individuals) and kdetect,sym for symptomatic individuals. Since the efficacy of

diagnostic testing strategies has changed during the course of the first wave of the pandemic,

these two rates depend on time. We further decompose

kdetect,asym(t) = ρdetect,asym(t) kdetect,sym(t),

with ρdetect,asym(t) ∈ (0, 1), in order to encode our reasonable belief that the detection of asymp-

tomatic individuals is more difficult than the detection of people displaying symptoms. As for the

detection rate of symptomatic individuals, we write it as

kdetect,sym(t) = ρweek,diagnostic(t) kdetect,sym,trend(t),

where kdetect,sym,trend(t) > 0 is the long-term variation of the detection rate and ρweek,diagnostic(t) >

0 is a week-periodic term modelling the weekend effect. To reduce non-identifiability we assume

that over one week ρweek,diagnostic(t) averages to one.

Since the weekend effect also influences death counts, a delay is also added between the time

a patient dies and the time their death is reported to the healthcare authorities. This can be

done by distinguishing deceased but unreported patients from reported deceased individuals, with

the rate kdetect,death(t) of the transition between these two states controlling the amount of delay

present. We assume that this delay has no long-term trend and is simply given by a week-periodic

function. For optimization and interpretability reasons, we decompose this value in the same way

as kdetect,sym, yielding

kdetect,death(t) = ρweek,death(t) kdetect,death,0,

where ρweek,death(t) > 0 is a week-periodic term which averages to one over one week and

kdetect,death,0 is consequently the average value of the transition rate.

Reporting of symptom onsets Individuals who are tested while presymptomatic and whose date

of symptoms onset is reported to the healthcare authorities are those who leave the presymp-

tomatic phase while being already detected. Individuals who are tested while symptomatic and

whose date of symptoms onset is reported are instead only just a fraction of those who leave

the presymptomatic phase while not being detected yet. This is due to the fact that, when the

detection rate is rather low, some symptomatic individuals may not be detected before the virus

is cleared from their system. The fraction of symptomatic individuals who will eventually be

detected can be easily computed from the model structure (all differential equations involved are

linear) and can be used to correctly scale the number of onsets. We refer to the supplemental

material for the full formulas.
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In order to account for the incompleteness of the symptom onset data, we introduce two scaling

factors: the first ensures that already detected individuals who become symptomatic do not

necessarily need to report their symptom onset date; the second allows individuals that were

detected after they had developed symptoms to not report their symptom onset date. Though the

uncertainty on these scaling factors is large (Supplementary Figure 7), the comparison between

the posterior and prior distributions suggests that some useful information can still be extracted.

We believe this also helps the model to estimate how many individuals are tested before any

symptoms are observed (presumably thanks to contact tracing efforts), which in turn influences

the detection rate of asymptomatic individuals.

Infection rate In a simple SIR model, the equation for the change in the number of susceptible

individuals S is given by
dS

dt
= −βI

N
S,

where I is the number of infectious individuals, N is the number of individuals who are alive

and β is the (mean) number of infectious contacts an infectious individual has in a time unit,

which we will assume to be equal to one day. The total number of infectious contacts occurring

in a day is then βI and thus, assuming that such contacts are equally distributed among all alive

individuals, each individual will be exposed to the virus an average of βI/N times per day. Since

only susceptible individuals can get infected, the number of new infections per day will be equal

to βIS/N , as in the above equation. Our model distinguishes several compartments of infectious

individuals Ii and we denote by βi the value of β specific to individuals in compartment Ii. Then,

the total number of infectious contacts in a day becomes
∑

i βiIi and the resulting equation is

dS

dt
= −

∑
i βiIi
N

S.

However, there are hidden dependencies between the βi parameters. In order to make these

relationships explicit, we have further decomposed each βi as βi = γiβ̃i, where β̃i denotes the

number of potentially infectious interactions that an individual from Ii has in a day and γi denotes

the fraction of such interactions that are actually infectious. The infectiousness factor γi only

depends on the biology of the disease and therefore on the illness phase. The value β̃i is instead a

measure of the mobility/behaviour of the individuals and can depend on other factors such as the

NPIs currently enforced or whether the individual has been detected by the healthcare authorities

(and is thus quarantined). While different compartments usually have different values of βi, they

may share either the value for γi (e.g., all symptomatic individuals are equally infectious, whether

they have been quarantined or not) or the value for β̃i (e.g., asymptomatic individuals are thought

to be less infectious than presymptomatic ones, but their social behaviour is the same since they

are both unaware of their illness). This parameter sharing further constrains the model which

usually has a beneficial effect on inference. Moreover, while putting priors on βi would be difficult,

the decomposition in biologically interpretable parameters allows us to use additional priors on

γi and β̃i to further constrain the model to realistic parameter configurations. For example, it is

expected a priori that the infectiousness γi of asymptomatic individuals should be lower than the

infectiousness for symptomatic and presymptomatic individuals.

The values of β̃i for asymptomatic and presymptomatic individuals can be considered equal since

they are both unaware of their infectiousness and thus their behaviour is the same. However,
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since individual behaviour and mobility is affected by the NPIs currently enforced by the gov-

ernment, such a value must be time dependent and will be denoted by β̃NPI(t). On the other

hand, symptomatic individuals know they are sick (though not necessarily from COVID-19) and

are limited in their mobility by their symptoms. We can safely assume that their number of

potentially infectious contacts is time-independent and denote it by β̃sick. Similarly, individuals

detected by diagnostic testing know they are infected and are quarantined, so that we can assign

them a constant number of contacts denoted by β̃quarantine such that β̃quarantine < β̃sick. Another

reasonable assumption is that β̃NPI(t) > β̃sick. If such an assumption is not included explicitly in

the model, uncertainty increases noticeably and β̃NPI(t) > β̃sick does not hold for most samples

from the posterior. We thus enforce the assumption by further decomposing

β̃NPI(t) = ρNPI(t) β̃0 + (1− ρNPI(t)) β̃sick,

where β̃0 is the number of potentially infectious interactions in a pre-pandemic setting and

ρNPI(t) > 0. The choice of β̃0 is somewhat arbitrary, since any change in it can be compensated

by an opposite change in the infectiousness level γi. Thus, we need to fix it (and not estimate it

along with the other parameters) and as its value we choose an estimate of daily social interactions

for Germany taken from the pan-European POLYMOD survey (Mossong et al. 2008). The factor

ρNPI(t) is instead the time-dependent reduction in potentially infectious contacts caused, e.g., by

a reduction in mobility or adherence to social distancing norms, which in turn can be influenced

by NPIs such as lockdowns. By definition of β̃0, we get that ρNPI(t) must be equal to 1 at the

beginning of the epidemic.

The relative values for γi and βi have been reported in Suppplementary Figures 4 and 5.

Time-dependent parameters Time-dependent parameters are represented in our model by cubic

Hermite splines defined on a grid of uniformly spaced points. The interval length has been set to

a relatively large value of two weeks: this may cause some small artifacts in regions where changes

occur fast, but a trade-off had to be made in order to keep computation time manageable (splines

make up for the majority of model parameters). Each spline is encoded in the parameter vector

by its values at grid points only and the spline derivatives are computed by finite differences,

i.e., we are using a Catmull–Rom spline (Catmull and Rom 1974). A standard interpolating

cubic spline would have required the same number of parameters and have been smoother (a

cubic Hermite spline is only continuous up to the first derivative), but we believe the potential

drawbacks were not worth it. First, a standard interpolating cubic spline requires a more difficult

and computationally expensive implementation since a linear system must be solved to compute

the polynomial coefficients. Second, the value of a standard spline at any given point depends on

all the values at the grid points, while for a Hermite spline it depends only on the values at the

two nearest grid points, preventing the unrealistic case of having parameter values at later times

influence observations at earlier times (even if such influence would probably be quite small).

Our time-dependent parameters are ρNPI, kdetect,sym,trend and ρdetect,asym and they must be positive

at all times, being transition rates or multiplicative factors. This cannot be enforced with a

spline because of possible under-shooting and thus we use splines to describe the logarithm of the

parameters of interest instead of the parameter values directly. As regularization, we also add

zero-mean normal priors for the derivatives and the curvature of the time-dependent parameter

(in its original scale, not in the logarithmic one), encoding our belief that if the data does not

strongly suggest otherwise the time-dependent parameters should stay constant in value.
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The two week-periodic functions ρweek,diagnostic and ρweek,death are (in logarithmic scale) periodic

Catmull-Rom splines. In order to approximate the normalization constraint (integral over one

week equal to one) imposed to ensure identifiability, by construction we force the mean of their

values at the grid points (in this case, the seven days of the week) to be equal to one. As a

regularization term to improve smoothness, we use the L2 norm of the derivative.

The estimate for β̃NPI/β̃0 can be found in Figure 4A, the estimates for kdetect,sym and kdetect,asym

are reported in Supplementary Figure 8 and the estimates for the periodic effects ρweek,diagnostic

and ρweek,death can be found in Supplementary Figure 9.

Observation model

Let ẋ(t) = f(x(t), t; θ) be our ODE model of the epidemic, where x is a vector representing the

model state and θ is the parameter vector. In most cases the model state is hidden, in the sense

that it cannot be directly (or at least not exactly) measured. Let {(ti, yi)}i be the data against

which the model must be fitted. In order to link this data to the hidden state of the model,

random variables Yi ∼ pi(y|x(ti), θ), known as observable quantities, must be introduced. Note

that these observable quantities cannot be simple deterministic mappings from the state x to the

observed values y since (i) measurement noise cannot be avoided; (ii) even if noise were to be

eliminated, a practical model is never a perfect representation of reality. The precise distribution

of the observables Yi depends on the particular data source and is often referred to as the noise

model.

Case counts (infections/deaths/symptom onsets reported to the RKI) The RKI releases the

total number of cases reported to the health care authorities on any given day. We compute

this from the simulated model trajectory using the midpoint rule, using the instantaneous rate of

detection at noon of each day. As the noise in the case counts by the RKI seems to increase as the

number of cases increase (Supplementary Figure 1), a simple Gaussian noise model with constant

variance is not sufficient and we use a negative binomial distribution instead. The negative

binomial distribution is a generalization of the Poisson distribution which is over-dispersed, i.e.,

for which the variance-to-mean ratio (VMR, also known as index of dispersion) is greater than

one (in the limit case in which the VMR tends to one we recover the Poisson distribution). Due to

its higher flexibility the negative binomial distribution is often the preferred choice for count data

(Beck and Tolnay 1995) and has been successfully employed in modelling case numbers for the

COVID-19 pandemic (Y. T. Lin et al. 2021; Chan et al. 2021). We employ it too, parametrizing

it by mean (the daily number of cases predicted by the model) and VMR (estimated along with

the other parameters, see Supplementary Figure 6 for its posterior distribution). While our data

(except for the number of new cases) is not significantly over-dispersed, we have observed the

negative binomial noise model to perform much better in practice than constant-variance additive

noise or log-normally-distributed multiplicative noise.

Hospitalization data For the hospitalization data too it can be observed that the variance in-

creases with the mean (Supplementary Figure 1). However, since the dynamic range of the bed

counts is limited compared to the range spanned by the case counts, such an increase in variance

is rather small and we can safely assume it to be approximately constant. We have found suffi-
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cient in this case to use the simpler Gaussian noise model with constant variance instead of the

more complex negative binomial distribution. These variances are estimated along with the other

parameters and their posterior distributions are reported in Supplementary Figure 6.

As for the time at which bed counts are observed, in this case too we assume it to be noon of each

day. In this case the choice is rather arbitrary, since we have no information on when the hospitals

count the number of patients and whether the methodology used is the same for all hospitals.

Prevalence estimates The raw data from the serological testing study consists in a test date and

test result for each participant. The period corresponding to the first round of testing is split into

equal-duration intervals and the antibody test results are aggregated accordingly. Assuming that

each of the resulting population subsets is representative of the whole, then the number of positive

tests in each interval is a realization of a binomial random variable, with success probability equal

to the prevalence (after correcting for the sensitivity and specificity of the test used) and number

of trials equal to the total number of tests in that batch.

Bayesian parameter estimation and priors

Our approach to parameter inference is fully Bayesian: we are interested in sampling probable

parameter values according to the posterior distribution

p(θ | y) ∝ p(y | θ)p(θ),

in which p(y | θ) is the likelihood of the observed data and p(θ) is a prior distribution on

the parameter values. The likelihood can be computed from the probability distributions of the

observable quantities as

p(y | θ) =
∏
i

pi(yi|x(ti), θ),

so that only the prior distribution is left to be defined.

The prior distribution should encode all available information about the parameters not coming

directly from the data against which the model is fitted. In our case such information is mainly

derived from clinical cases reported in the pre-existing literature. For example, the distribution

of the transition times between different illness phases (e.g., incubation time) has been the object

of many publications and can be used to obtain a reasonable value for the number of stages in

the Gamma Chain Trick expansion. Once the number of stages is set, the same transition time

distribution leads to a prior on the transition rates. Often priors can be obtained both for single

parameters and for more complex expressions containing several of them. For example, in the

case of transition times some overlap may be present: in one source information about the total

hospitalization time may be given, in another the distribution of the time spent in the ICU may

be presented and in a third the time from symptom onset to death (which in our model must

necessarily transit through the ICU compartment) may be described. We have found that adding

priors to derived expressions helps to exclude unrealistic values that would not have been excluded

by simply putting priors on the basic parameters.

We will now show how we deal with priors on multiple expressions which are not independent.

We start from the simple case where we have prior information on two quantities that can be

expressed as g1(θ) and g2(θ). More than one parameter may contribute to both expressions,
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meaning that, even if the components of θ are independent, g1 and g2 may not be independent.

The prior information for these two quantities is encoded in two probability distributions p1(g1)

and p2(g2). One could try to construct a prior p(θ) for the full parameter vector such that the

marginal distributions for the expressions g1(θ) and g2(θ) are exactly p1(g1) and p2(g2). How-

ever, such distribution may not exist (since p1 and p2 may be based on different studies and be

even slightly incompatible), if it exists it may be not unique and possible solutions can only be

obtained by numerical approximation. Instead we define the prior as proportional to the product

p1(g1(θ)) p2(g2(θ)). The advantage of this choice for the prior is that it has an analytical formula.

However, the marginal distributions for the two expressions are not p1 and p2. The posterior

distribution for g1(θ) is not only influenced by the explicit contribution of the term p1(g1(θ)) but

also by the implicit contribution of p2(g2(θ)), since some parameters appear in both expressions.

In general, given an arbitrary number of expressions gk for which we have prior information pk as

a probability distribution, we will use the non-normalized prior distribution

p(θ) ∝
∏
k

pk(gk(θ)).

Computation of the normalization coefficient is not necessary in order to draw from the posterior

distribution using MCMC. The shifting of the marginal for gk from the explicit contribution pk

may not be a big problem since they are due to the prior taking into account all available evidence.

A summary of literature-derived priors used in our model is reported in Supplementary Tables 1

and 2. We have seen that choosing the appropriate source for prior information is difficult. For

example, while the biology of the virus is constant across all countries (at least during the first

wave of the epidemic, before the rise of any variant) other processes such as infection and hospi-

talization are extremely country specific. For this reason, we have given more weight to reports

on German cases over international studies or meta-analyses. A second problem is that there

is no standardization in the medical literature regarding what are the quantities of interest that

should be described. For example, mean hospitalization times are often reported separately for

patients that need ICU care, patients that are ventilated, patients with severe or mild symp-

toms, or other subsets of patients. In the worst cases the explanations provided are insufficient

to exactly determine what was actually measured, making it difficult if not impossible to map

the information to the model. For example, hospitalization can be considered to end with death

or discharge or both, but not all sources are clear on which definition they use. Additionally,

incomplete information is often reported, such as only giving median transition times instead of

more accurate statistics, such as interquartile ranges. A third problem is that often prior informa-

tion obtained from different sources may appear to be somehow contradictory, a problem which is

obviously exacerbated by the previous point. We have tried to only include prior information of

whose meaning we were quite confident but still some slight incongruities could not be removed.

We opted to employ particularly weakened priors in such cases rather than completely throw the

information away. A final problem is that unless the reported values are stratified by age group

they may not be applicable to different waves of the epidemic in which the affected demographics

differ (e.g., fraction of hospitalized individuals). In our case this is not problematic since we have

only modelled the first wave of the epidemic using prior information from studies conducted on

patients from the same first wave.
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Computational modelling pipeline

We established a reusable computation pipeline to automate the fitting process. The compartment

model is encoded in the Systems Biology Markup Language (SBML, Hucka et al. (2003)), a

widely used standard in the systems biology community. The datasets used for fitting, together

with parameter priors and bounds, are stored in the PEtab format (Schmiester et al. 2021),

a standard format for the formulation of estimation problems. Both formats are supported by

various simulation and analysis tools, which aids accessibility and reusability of model and results.

Using the SBML models and the data in PEtab format, we perform numerical simulation and sen-

sitivity calculation with the C++/Python library AMICI (Fröhlich et al. 2021), and parameter

estimation using the Python-based tool pyPESTO (Schälte et al. 2021). This combination of tools

offers a broad spectrum of functionalities, including advanced gradient-based nonlinear optimiza-

tion, profile calculation, sampling and ensemble uncertainty analysis. In the current phase, we are

using the optimization and the sampling capabilities to infer the unknown process parameters,

including the effects of different interventions.

For sampling from the posterior distribution we use the pyPESTO interface to the state-of-the-

art gradient-based No-U-Turn sampler (NUTS, Hoffman and Gelman (2014)) implemented in the

library PyMC3 (Salvatier, Wiecki, and Fonnesbeck 2016). As parameter estimation with a high

number of parameters (75 in our case) is computationally extremely demanding, we employed

parallelization on a local high-performance cluster. Yet, as sampling by the NUTS sampler is

intrinsically a sequential process, each individual chain can still take weeks before producing a

sufficiently high number of samples. In particular, for the results used in the paper we drew 7200

samples (excluding 2100 tuning samples) which took 2 months of wall time with a Intel® Xeon®

Gold 6130 CPU @ 2.10GHz. Even with half the amount of samples, convergence metrics (R-hat

and Geweke tests) and visual inspection of the chains were already acceptable. Effective sample

size (ESS) for some parameters remains comparatively low, but this is not unexpected for a model

with such a large number of parameters.

To facilitate reuse and extension, we openly share the analysis tools with the community1.

Computing the reproduction number

The basic reproduction number R0 is the average number of secondary cases (new infections)

generated in a completely susceptible population by a single primary case. R0 can be computed

as

R0(t) =
∑
i

pi(t)βi(t)τi(t),

where pi is the probability of an exposed individual of transiting through state Ii, βi is the

average number of new cases generated by an infected individual from state Ii in a day and τi is

the average time an individual in state Ii takes to transition to the next state. Since all equations

are linear (except the terms dealing with infection which are not relevant to the calculation of R0),

all of the three quantities can be computed analytically from the reaction rates. Moreover, since

all three of them depend on time, R0 depends on time too. Finally, we want to point out that the

above formula is not strictly correct, since as an individual progress through the illness states also

1doi:10.5281/zenodo.6983066
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time progresses, which would require using different values of t in the different states Ii. However,

since the temporal scale at which pi, βi and τi change (which is dictated by government policies,

behavioural shifts and biological evolution of the virus) is rather longer than the time required

for the illness to run its course, the proposed formula is a very good approximation of the true

reproduction number.

The effective reproduction number Re is the average number of secondary cases generated by

a primary case in a partially susceptible population. It can be easily computed from R0 as

Re(t) = R0(t)S(t)/N . We can also compute a separate reproduction number R0,sym (respectively,

R0,asym) for symptomatic (respectively, asymptomatic) individuals, defined as the average number

of secondary cases generated in a completely susceptible population by a primary case assuming

they will (respectively, will not) develop symptoms. The formula to be used is essentially the

same, with the only difference being the probabilities pi have to be conditioned on the individual

eventually developing (respectively, never developing) symptoms. It also holds that R0(t) =

fasymR0,asym+(1−fasym)R0,asym, where fasym is the fraction of individuals who will never develop

symptoms.

We also compute variants of the reproduction number in the case where NPIs and/or diagnostic

testing are removed (see Figure 6). More precisely, NPIs can be “switched off” by fixing ρNPI(t)

to be constantly equal to one, while diagnostic testing can be eliminated by setting all detection

rates to zero. In order to estimate the base infectiousness of the virus (as in the credible inter-

vals of Figure 2C and in the posterior distributions of Supplemental Figure 3) we use the basic

reproduction number in the case where both NPIs and diagnostic testing are absent: having no

NPIs in place puts us in a pre-pandemic setting, while removing diagnostic testing removes the

additional uncertainty coming from the estimates of the detection rates.
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