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Abstract  30 

Background: Stroke in UK Biobank (UKB) is ascertained via linkages to coded administrative 31 

datasets and self-report. We studied the accuracy of these codes using genetic validation. 32 

Methods: We compiled stroke-specific and broad cerebrovascular disease (CVD) code lists (Read 33 

V2/V3, ICD-9/-10) for medical settings (hospital, death record, primary care) and self-report. 34 

Among 408,210 UKB participants we identified all with a relevant code, creating 12 stroke 35 

definitions based on the code type and source. We performed genome-wide association studies 36 

(GWASs) for each definition, comparing summary results against the largest published stroke 37 

GWAS (MEGASTROKE), assessing genetic correlations, and replicating 32 stroke-associated loci.  38 

Results: Stroke case numbers identified varied widely from 3,976 (primary care stroke-specific 39 

codes) to 19,449 (all codes, all sources). All 12 UKB stroke definitions were significantly correlated 40 

with the MEGASTROKE summary GWAS results (rg 0.81-1) and each other (rg 0.4-1). However, 41 

Bonferroni-corrected confidence intervals were wide, suggesting limited precision of some results. 42 

Six previously reported stroke-associated loci were replicated using ≥1 UKB stroke definitions.  43 

Conclusions: Stroke case numbers in UKB depend on the code source and type used, with a 5-fold 44 

difference in the maximum case-sample size. All stroke definitions are significantly genetically 45 

correlated with the largest stroke GWAS to date. 46 
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Introduction 53 

UK Biobank (UKB) is a prospective population-based cohort study with extensive phenotype and 54 

genotype information on >500,000 participants from England, Scotland and Wales 55 

(www.ukbiobank.ac.uk). It is an open access resource, established to facilitate research into the 56 

determinants of a wide range of health outcomes, particularly those relevant in middle and older 57 

age (Sudlow, 2015). An example of such a disease is stroke, the second most common cause of 58 

death worldwide and a major global cause of disability (Lozano, 2012).  59 

Disease outcomes in UKB are ascertained chiefly via linkages to routinely collected, coded, 60 

national administrative health datasets. In addition, data on self-reported medical conditions was 61 

collected at recruitment. However, to use these data appropriately, researchers need to select 62 

which particular disease codes to use for their study and have an understanding of their accuracy. 63 

For example, to identify stroke cases, existing codes can be divided into those that are stroke-64 

specific and those that fall under the broad cerebrovascular disease (CVD) category. Stroke-65 

specific codes are used to code acute stroke events where the clinician is confident about the 66 

diagnosis and can usually assign a subtype. In contrast, broad CVD codes also capture cases with: 67 

(i) phenotypes which pose a high risk for a subsequent stroke (e.g. a code for transient ischaemic 68 

attack, an unruptured aneurysm, or carotid artery stenosis); (ii) a past history of stroke with 69 

residual symptoms (e.g. a code for sequelae of cerebral infarction); (iii) events where there may be 70 

some diagnostic uncertainty (e.g. a code for unspecified cerebrovascular disease); and (iv) 71 

intracranial haemorrhages other than intracerebral or subarachnoid haemorrhage (e.g., extradural 72 

or subdural haemorrhages, which most clinicians consider different from stroke). Including codes 73 

from the broad CVD category will therefore significantly increase the overall number of cases 74 

identified, but while this is likely to include at least some misclassified true acute stroke cases, 75 

non-stroke cases will also be included.  76 
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In a systematic review of studies validating stroke code accuracy from case-note review, the 77 

overall positive predictive value (proportion of true-positive cases among all identified cases) for 78 

identifying acute stroke cases was consistently >70% for stroke-specific codes, dropping to <50% in 79 

many studies when broad CVD codes were included (Woodfield, 2015 & Rannikmäe, 2020). For 80 

self-reported stroke events, the positive predictive value ranged from 22% to 87% across different 81 

studies, making it hard to draw firm conclusions (Woodfield, 2015). While case-note review for 82 

code validation is often considered a gold-standard, this method also has its limitations. It is time-83 

consuming and labour-intensive, so can only be achieved in relatively small numbers of cases, with 84 

limited precision of the results. In addition, the results rely on: (i) accessing the complete relevant 85 

medical record; (ii) the detail and quality of the medical record; (iii) the qualification of the person 86 

reviewing the notes; (iv) the inter-adjudicator agreement, which we know is not perfect even 87 

between highly specialised clinicians; and (v) the consistency of results across different healthcare 88 

settings/providers (Liberman, 2018).  89 

We set out to supplement current knowledge about the accuracy of stroke codes with a method 90 

making use of large-scale genetic data, which we refer to as ‘genetic validation’. The fundamental 91 

idea is to use existing knowledge of genetic associations with a disease (in this case acute stroke), 92 

to assess how well various potential code lists capture people who truly have this disease, which in 93 

turn could be used to harmonise disease definitions across cohorts and health systems (Manolio, 94 

2020). If the code list captures true-positive cases, we would expect the genetic associations that 95 

result from stroke cases identified through coded data to closely mirror the genetic association 96 

results from previous studies of stroke.  97 

 98 
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Methods  101 

Study setting 102 

We included all 408,210 UKB white British ancestry participants in this study. We restricted our 103 

analyses to this ancestry subgroup because it covers 94% of the UKB participants and allowed us 104 

to achieve a good balance between attaining sufficient case numbers while reducing population 105 

stratification and analytic complexity. As part of the UK Biobank recruitment process, informed 106 

consent was obtained from all individual participants included in the study. At the time of the 107 

study, UKB had linked hospital admissions and death registry administrative coded data available 108 

for all participants, and primary care administrative coded data for 47% of the cohort (191,146), 109 

covering the time period up to March and September 2019, respectively (S1 Table). In addition, all 110 

participants self-reported pre-existing health conditions during an interview at recruitment. The 111 

subset of the cohort with primary care data available was similar to the whole cohort with respect 112 

to age at recruitment, sex and Townsend deprivation index (S2 Table).  113 

Identifying stroke cases in UKB 114 

We compiled stroke-specific and broad cerebrovascular disease (CVD) code lists for each medical 115 

setting (hospital admission, death record, primary care) and self-report. This process was informed 116 

by previously published codes where available (Woodfield, 2015 & Rannikmäe, 2020), 117 

supplemented by the selection of additional codes by expert clinicians (authors KR, CLMS, ED, RW) 118 

on discussion and mutual agreement. This resulted in a total of 8 code lists, covering the ICD-119 

9/ICD-10, Read Version 2, Clinical Terms Version 3 (Read Version 3) and UKB self-report illness 120 

coding systems (S3 Table).  121 

Next, we identified all participants with a relevant code from any of the code lists and created 12 122 

different ways of defining stroke cases in UKB based on the code type (stroke-specific, broad CVD) 123 

and source (hospital admission, death record, primary care, self-report). This resulted in 12 124 
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partially overlapping case-control groups, where cases were all the individuals with a stroke code 125 

for the particular stroke definition, and all the remaining participants acted as controls. A specific 126 

UKB participant could therefore be a stroke case for one definition and a control for another 127 

definition.  128 

Genome-Wide Association Studies 129 

We performed 12 genome-wide association studies (GWASs), one for each case-control set (i.e. for 130 

each definition of stroke cases and their controls). We applied a linear mixed model method using 131 

the BoltLMM software package (v2.3.4) software (Loh, 2015). We included the following as 132 

covariates: genotyping array, UKB assessment centre, sex, age at recruitment, and principal 133 

components one to ten. We filtered the results for single nucleotide polymorphisms (SNPs) with 134 

an imputation quality INFO score ≥0.9 and minor allele frequency ≥1%. After filtering the results 135 

for SNP imputation quality and minor allele frequency, we included 9,524,428 SNPs. We converted 136 

the linear mixed model effects to odds ratios using R code provided in 137 

https://shiny.cnsgenomics.com/LMOR/ (Lloyd-Jones, 2018).  138 

Analyses of GWAS results 139 

We compared summary results from our 12 GWASs against the largest published stroke GWAS 140 

meta-analysis project - the MEGASTROKE study. The MEGASTROKE study is a meta-analysis of 29 141 

stroke GWASs (17 including individuals of European ancestry) and does not include UKB data. 142 

Almost all studies included in MEGASTROKE (covering >95% included cases) required the stroke 143 

diagnosis to be confirmed by a medical professional or required evidence of stroke from >1 144 

source, even if the initial case ascertainment included using administrative codes (Malik, 2018). All 145 

analyses were done using R software version 3.6.2.  146 

Genetic correlation with the MEGASTROKE study results 147 
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We applied a high-definition likelihood method using the HDL software (Ning, 2020) to assess the 148 

genetic correlation between our GWAS results using the 12 stroke definitions, and the 149 

MEGASTROKE study GWAS summary results for any stroke subtype in European samples. Genetic 150 

correlation (rg) is the proportion of variance that two stroke definitions share due to genetic 151 

causes. A genetic correlation of 0 implies that the genetic effects on one definition are 152 

independent of the other, while a correlation of 1 implies that all of the genetic influences on the 153 

two definitions are identical. We assessed if the correlation was significantly different from 0 and 154 

from 1, setting the p-value significance threshold to 0.0042 after a Bonferroni correction for the 12 155 

tests. We displayed the results (correlation measured as rg) on a heatmap. We also display 156 

Bonferroni corrected confidence intervals to aid interpretation.  157 

Genetic correlation within our study definitions 158 

We then used the HDL software to assess genetic correlations within our study across the 12 159 

definitions. We set the significance threshold to 0.0024 after a Bonferroni correction for 7 160 

independent non-overlapping case-control definitions (definitions not in bold in Table 1), resulting 161 

in 21 correlation tests. We also display Bonferroni corrected confidence intervals to aid 162 

interpretation.  163 

Replicating the MEGASTROKE study stroke-significant loci 164 

The MEGASTROKE study identified 32 genetic loci significantly associated with stroke. We 165 

identified these loci (the lead SNP for each locus) in our GWAS summary results and considered a 166 

locus to be replicated (i.e. also significantly associated with the respective stroke definition in our 167 

data) if the p-value of association in our GWAS was <0.00156 (Bonferroni corrected for 32 loci). 168 

We compared the number of replicated loci across our summary definitions. We compared the 169 

effect sizes of the associations between MEGASTROKE trans-ethnic and European ancestry GWASs 170 

and our GWAS summary results. Where the lead SNP was not available in our data, we identified 171 
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SNPs in moderate LD (r2 > 0.7 in the 1000 Genomes GBR population using the Ensembl LD 172 

calculator https://www.ensembl.org/Homo_sapiens/Tools/LD) with the lead SNP, and if any SNPs 173 

in LD available in our data were identified, we examined their associations instead. We displayed 174 

results for five of our summary definitions of stroke cases and their controls: stroke-specific code 175 

from any medical setting; broad CVD code from any medical setting; stroke-specific or broad CVD 176 

code from any medical setting; specific or non-specific self-reported stroke event; any code or self-177 

reported event. We highlighted significantly associated (i.e. replicated) loci.  178 

We also calculated our expected power to replicate the 32 loci using the Genetic Association Study 179 

(GAS) Power Calculator (http://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html), 180 

assuming a stroke prevalence of 2.26% and inputting the disease allele frequency and genotype 181 

relative risk estimates from the MEGASTROKE publication Table 1 (Malik, 2018).  182 

Results 183 

Stroke cases in UKB 184 

The number of relevant codes for identifying stroke cases varied widely depending on the coding 185 

system (ICD versus Read versus self-report) and code type (stroke-specific versus broad CVD code) 186 

– from less than five codes for a specific self-reported stroke event, to >500 codes when including 187 

all possible codes across all coding systems. The stroke-specific and broad cerebrovascular disease 188 

(CVD) code lists for each medical setting and self-report are shown in S3 Table.  189 

The number of stroke cases identified among the 408,210 participants also varied widely 190 

depending on the code type and source used – from 3,976 cases in primary care when using 191 

stroke-specific codes, to 19,449 cases when including all possible code combinations (stroke-192 

specific and broad CVD) across all sources (hospital admission, death record, primary care, self-193 

report) (Table1).  194 
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The code source for cases with a stroke-specific code was: self-report only in 27%, primary care 195 

only for 9%, hospital/death record code only for 29%, and >1 source for 35% (S1 Figure). The code 196 

source for cases with either a stroke-specific or a broad CVD code was: self-report only in 14%, 197 

primary care only for 15%, hospital/death record code only for 34%, and >1 source for 37% (S1 198 

Figure). These proportions are calculated based on the primary care data being currently available 199 

only for ~50% of the participants, and so will change when primary care data for the whole cohort 200 

become available.  201 

The overall proportion of prevalent codes (i.e. first code predates participant’s recruitment to 202 

UKB) versus incident codes (i.e. first code date occurs after participant’s recruitment to UKB) was 203 

the same for stroke-specific and broad CVD categories: 38% prevalent versus 62% incident codes. 204 

These proportions are dependent on the updates to different linked health datasets and the 205 

proportion of incident codes will continue to increase with increasing duration of follow up. (S1 206 

Table).  207 

Mean and median age at recruitment were higher among stroke cases (for all stroke definitions) 208 

than for the whole cohort of UKB participants (mean age 61 to 62 years vs 57 years; median age 209 

62 to 63 years vs 58 years). Mean and median age at the time of stroke (in case of multiple events, 210 

age at the earliest event was taken) was higher for coded diagnoses from the medical setting 211 

compared to self-reported events (mean age 62 years vs 53 years, median age 63 years vs 55 212 

years, respectively). This is to be expected, considering that all self-reported events were recorded 213 

at the time of recruitment, whereas medical codes also capture diagnoses after recruitment 214 

during follow up. The proportion of women was lower among stroke cases than across all UKB 215 

participants (43% for those with any medical setting or self-reported code vs 54% for all UKB). This 216 

is to be expected as age-specific incidence rates are substantially lower in women than men in 217 

younger and middle-age groups, but these differences narrow down so that in the oldest age 218 
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groups, incidence rates in women are approximately equal to or even higher than in men (Virani, 219 

2020).  (Table 1). 220 

Analyses of GWAS results 221 

Genetic correlation with the MEGASTROKE study results 222 

All 12 UKB stroke definitions were significantly correlated with the MEGASTROKE summary GWAS 223 

results, with genetic correlations (rg) ranging from 0.81 to 1, and confidence intervals overlapping. 224 

The p-values for difference from 1 were not significant, compatible with perfect correlation. 225 

However, the Bonferroni corrected CIs were wide, especially for 5 of the 12 tests, where the lower 226 

confidence limit was <0.7, limiting the precision of some of these results (Figure 1, Figure 2, S4 227 

Table).  228 

Genetic correlation within our study definitions 229 

The UKB summary definitions in our study were all significantly correlated with each other (all p-230 

values significantly different from 0), with rg ranging from 0.4 to 1. Again, the Bonferroni corrected 231 

CIs were wide, with the lower confidence limit even suggesting the possibility of a negative 232 

correlation for two comparisons. (Figure 1, Figure 2, S5 Table).  233 

Replicating the MEGASTROKE study stroke-significant loci 234 

Within our GWASs, 6 of the 32 previously reported stroke-associated loci were replicated by one 235 

or more definitions. Analyses using stroke-specific codes and analyses using any code or self-236 

reported event both replicated the biggest number of known stroke loci (5 of 32). The power from 237 

additional cases for the latter category did not result in replicating more loci than stroke-specific 238 

codes alone. However, for three of the five replicated loci, the p-values were smaller in the larger 239 

dataset (analyses using any code or self-reported event) suggesting a more robust replication 240 

when using the broadest definition of stroke in UKB.  Within our data, effect sizes (expressed as 241 
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odds ratios) were similar across the stroke definitions, with overlapping Bonferroni corrected 242 

confidence intervals.  243 

For two of the six replicated loci (PITX2 and HDAC9–TWIST1), the effect size of the association 244 

(odds ratio) was bigger in the MEGASTROKE dataset than in our data (across all five summary 245 

stroke definitions). These two loci are known to be associated with particular stroke subtypes – 246 

PITX2 with cardioembolic and HDAC9–TWIST1 with large artery stroke [10]. (Figure 3, Table 2, S6 247 

Table). 248 

Power calculations suggested we had  ≥80% power to replicate all 32 loci for the any code or self-249 

reported event definition, while having ≥80% power for only 11/32 loci for the   definition 250 

including a stroke-specific code from any medical setting. (S7 Table).   251 
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Discussion 252 

Our analyses show, that depending on the code source and type used for identifying stroke cases 253 

in the UKB, the currently achieved maximum case-sample size can range from ~4,000 to ~20,000 – 254 

a remarkable 5-fold difference. We go on to demonstrate, that regardless of the code source and 255 

type used, the resulting GWAS summary results are significantly genetically correlated with the 256 

largest stroke GWAS to date. Finally, when we try to replicate known stroke-significant loci in our 257 

data, both stroke-specific codes from any medical setting as well as a broad definition including 258 

any code or self-reported event, replicate 5 of the 32 loci. Replication generated broadly similar 259 

effect sizes for all but 2 stroke subtype specific loci, which is likely explained by our dataset 260 

including a mix of stroke subtypes. Another possible explanation is the “winner's curse” 261 

phenomenon (i.e. the estimated effect of a marker allele from the initial study reporting the 262 

marker-allele association is often exaggerated relative to the estimated effect in follow-up 263 

studies).   264 

The correlation of all definitions with the MEGASTROKE study results suggests one or more of the 265 

following: (i) all definitions retrieve true-positive acute stroke cases, meaning that broad CVD 266 

codes include additional true-positive cases not identified by stroke-specific codes; (ii) cases coded 267 

with a broad CVD code have not necessarily suffered an acute stroke, but represent a range of 268 

phenotypes with a similar genetic architecture to acute stroke (e.g. previous research has shown 269 

at least one overlapping locus for carotid artery disease and acute stroke (Malik, 2018)); (iii) the 270 

MEGASTROKE study includes some misclassified broad CVD cases as false-positive acute stroke 271 

cases.  It is most likely that a combination of these factors is contributing to our findings, but we 272 

are unable to dissect their separate contributions in the current study.  273 

Previous case-note validation studies suggested that broad CVD codes are better at identifying the 274 

broad conditions they signify as opposed to ascertaining acute stroke cases (McCormick, 2015), 275 
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supporting a role for option two above. An example of this would be a case-note review of 276 

patients with a code for an unruptured intracranial aneurysm or carotid artery stenosis confirming 277 

that the diagnosis was also most likely an unruptured intracranial aneurysm or carotid artery 278 

stenosis, rather than rather than the reviewing clinician deciding it was an acute stroke that had 279 

been miscoded as an unruptured intracranial aneurysm or carotid artery stenosis. 280 

Despite the definition using any code or self-reported event increasing the sample size by more 281 

than two-fold compared to the definition using only stroke-specific codes from a medical setting, it 282 

did not replicate a higher number of known stroke-associated loci. This could suggest that there is 283 

still insufficient power to replicate additional loci using any of our definitions despite power 284 

calculations suggesting ≥80% power for all loci. Also, associations for nine of the 32 loci in 285 

MEGASTROKE were only found for specific stroke subtypes and 11 of the 32 loci were significant in 286 

analyses including only ischaemic stroke cases, the proportions of which are unlikely to be 287 

identical between the two datasets. For example, the MEGASTROKE study sample included 90% 288 

confirmed ischaemic stroke cases. The stroke subtype breakdown among the UKB participants is 289 

available only for stroke-specific codes from hospital, death record and self-reported data (UK 290 

Biobank datafields ‘42009’, ‘42011’ and ‘42013’) and shows a proportion of confirmed ischaemic 291 

stroke cases of 47%, with 10% cases being intracerebral haemorrhage and 11% subarachnoid 292 

haemorrhage and the remainder of unspecified stroke subtype. Alternatively, it could also suggest 293 

that the additional cases identified by using any code or self-report are not true-positive stroke 294 

cases or that some of these known stroke-associated loci are false-positive findings.  295 

Self-reported cases (both stroke-specific and broad CVD) also showed a close genetic correlation 296 

with the MEGASTROKE study, supporting the use of self-report as a means of identifying additional 297 

stroke cases in the UKB. This was so despite the highly variable results from previous case-note 298 

based validation studies of self-report for ascertaining stroke cases. Studying this by case-note 299 
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validation in UKB itself would be challenging, given the difficulties accessing NHS records which 300 

predate recruitment by many years and the fact that participants may have moved between UK 301 

regions during their life-course. Other studies have also reported a close genetic correlation 302 

between a wide range of self-reported diseases and medical setting diagnoses. Examples include 303 

both acute and chronic conditions (e.g. depression, myocardial infarction, rheumatoid arthritis) 304 

(Wray, 2018; Howard, 2019; DeBoever, 2020). 305 

For some of our definitions, the rg was >1. The estimated rg is a combination of the true rg and 306 

variation. When the true rg is close to the boundary (-1 or 1) and/or variation is large, the 307 

estimated rg can go beyond the boundary (Ning, 2020). In rg estimation, some common reasons 308 

for generating large variation are:  (i) at least one of the h2 estimates is very low; (ii) small sample 309 

size; (iii) many SNPs in the reference panel are absent in one of the two GWASs; (iv) there is a 310 

severe mismatch between the GWAS population and the population for computing reference 311 

panel. We can exclude the last two options, and the small sample size is therefore the likely 312 

explanation. 313 

In our analyses, the case-control groups were partially overlapping and a specific UKB participant 314 

could therefore be a stroke case for one definition and a control for another definition. We used 315 

this study design to mimic the ‘real world’ situation, creating binary case-control definitions based 316 

on each code list. In theory this could reduce the power of some of the analyses, since it means 317 

controls can end up including some true-positive stroke cases. However, in reality it is unlikely to 318 

have a significant effect given the overall large number of controls. For example, for analyses using 319 

stroke-specific codes from any medical setting, just over 2% of controls have a broad CVD code 320 

and/or have self-reported a stroke event.  321 

We used BoltLMM for running the GWAS (Loh, 2015). Our case-fraction ranged from 1% to 5% 322 

depending on the case-definition and we limited our analyses to SNPs with a minor allele 323 
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frequency of at least 1%. Based on simulations done using BoltLMM, the authors of the software 324 

suggest that with these case-fraction and minor allele frequency parameters, they did not find a 325 

statistically significant inflation of type I error rates (Supplementary table 8 in Loh, 2015).  326 

The strengths of our study are: (i) we included - and have made available to re-use - a clinically 327 

informed, comprehensive set of codes across all relevant coding systems; (ii) we compared our 328 

results against the largest stroke GWAS to date; (iii) we used multiple methods for comparison 329 

accounting for both GWAS significant loci but also SNPs across the whole genome – i.e. correlation 330 

and replication; (iv) we have added novel data to what is already known from case-note validation.  331 

Our study also has some limitations: (i) some of our definitions included relatively small case 332 

numbers compared to the MEGASTROKE study, reducing our power to replicate known loci; (ii) 333 

uneven numbers across definitions not allowing direct comparisons, but rather reflecting the real-334 

world situation; (iii) our definitions included the subarachnoid haemorrhage stroke subtype codes, 335 

whereas the MEGASTROKE study did not, resulting in a slightly different mix of stroke cases; (iv) 336 

the UKB participants’ demographic characteristics differ from those of the UK general population 337 

with evidence of a healthy-volunteer selection bias, which needs to be considered when 338 

extrapolating these results to other settings (Fry, 2017).  339 

We have shown that the selection of codes and code sources used to ascertain stroke cases has a 340 

major impact on the overall stroke case numbers in the UKB. Given the close genetic correlation 341 

between stroke cases identified using broad CVD codes, self-report, and physician-confirmed 342 

stroke cases, we suggest that for studies accepting of more crude stroke and cerebrovascular 343 

disease outcomes, researchers may wish to include all codes and self-reported events for 344 

increased power. Alternatively, this information is also helpful in informing the selection of 345 

controls for various studies. Including a large number of broad CVD coded cases among controls 346 

might weaken any association seen for certain study designs. However, since we cannot exclude 347 
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the effects of a shared genetic control of broad CVD phenotypes and acute stroke, this evidence is 348 

not sufficient to support using broad CVD codes in studies that need to define acute stroke 349 

outcomes very accurately (e.g. clinical trials).  350 

Further research is needed: to better understand the underlying reasons for the close genetic 351 

correlation between stroke-specific and broad CVD codes; to dissect the underlying explanation 352 

for our results with targeted case-note validation; and to replicate our results in other datasets. In 353 

addition, more data is needed on the accuracy of different coding systems for identifying specific 354 

pathological stroke subtypes (ischaemic stroke versus intracerebral haemorrhage versus 355 

subarachnoid haemorrhage) and aetiological stroke subtypes (e.g., small vessel disease versus 356 

large artery disease versus cardioembolic stroke versus other / unknown cause).  357 
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Table 1. Number and demographic characteristics of stroke cases identified in UKB 448 

STROKE DEFINITION 
NUMBER OF  

CASES 
NUMBER OF 
CONTROLS 

Mean (median) age at 
recruitment (years) 

Mean (median) age; 
age range at stroke 

(years) 

Sex  
(% female) 

Stroke-specific code from hospital/death records 6,887 401,323 61 (63) 63 (64); 31 to 79 40 

Stroke-specific code from primary care 3,976 404,234 61 (63) 59 (61); 1 to 79 41 

Stroke-specific code from any medical setting 8,665 399,545 61 (63) 61 (63); 1 to 79 41 

Broad CVD code from hospital/death records 5,725 402,485 62 (63) 64 (65); 31 to 79 43 

Broad CVD code from primary care 4003 404,207 62 (63) 62 (63); 1 to 79 41 

Broad CVD code from any medical setting 8,085 400,125 62 (63) 63 (64); 1 to 79 44 

Stroke-specific or broad CVD code from 
hospital/death records 

12,612 395,598 61 (63) 63 (64); 31 to 79 41 

Stroke-specific or broad CVD code from primary 
care 

7,979 400,231 62 (63) 60 (62); 1 to 79 41 

Stroke-specific or broad CVD code from any 
medical setting 

16,750 391,460 62 (63) 62 (63); 1 to 79 42 

Specific self-reported stroke event 5,915 402,295 61 (62) 53 (55); 0 to 70  41 

Specific or non-specific self-reported stroke 
event 

7,536 400,674 61 (63) 53 (55); 0 to 70 42 

Any code or self-reported event 19,449 388,761 61 (63) 60 (61); 0 to 79 43 

Across all UKB participants 408,210 57 (58) Not applicable 54 

We considered code and self-reported event age missing if it predated the date of birth, contained a negative value, or was recorded by UKB as unreliable or missing – this affected 0.3% to 2.1% 449 
cases depending on the stroke definition.  CVD: cerebrovascular disease; 450 
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Table 2. MEGASTROKE stroke-significant loci replicated using UKB stroke definitions 451 

Known stroke 

genetic locus 

Significantly 

associated 

stroke type in 

MEGASTROKE 

MEGASTROKE 

European meta-

analyses     

N = 40,585* 

MEGASTROKE 

transethnic 

meta-analyses 

N = 67,162 † 

Stroke-specific 

code from any 

medical setting 

N = 8,665 

Broad CVD code 

from any 

medical setting 

N = 8,085 

Stroke-specific 

or Broad CVD 

code from any 

medical setting 

N = 16,750 

Specific or non-

specific self-

reported stroke 

event 

N = 7,536 

Any code or 

self-reported 

event 

N = 19,449 

CHR4: rs13143308 

(PITX2) 

Cardio-embolic 

stroke 

1.34 (1.28-1.40) 

5.2x10-41 

1.32 (1.27-1.37) 

1.9x10-47 

1.09 (1.05-1.13) 

7.5x10-6 

1.06 (1.02-1.1) 

0.0036 

1.08 (1.05-1.11) 

1x10-7 

1.04 (0.995-1.08) 

0.08 

1.07 (1.04-1.1) 

3x10-7 

CHR7: rs2107595 

(HDAC9–TWIST1) 

Large-vessel 

stroke 

1.27 (1.19-1.35) 

1.4x10-13 

1.21 (1.15-1.26) 

3.7x10-15 

1.07 (1.03-1.12) 

1x10-3 

1.03 (0.99-1.08) 

0.12 

1.05 (1.02-1.09) 

4.7x10-4 

1.08 (1.03-1.13) 

8.9x10-4 

1.06 (1.03-1.09) 

1.1x10-4 

CHR10: rs2295786 

(SH3PXD2A) 
All stroke 

1.05 (1.03-1.07) 

1.4x10-7 

1.05 (1.04-1.07) 

1.8x10-10 

1.07 (1.04-1.11) 

1.5x10-5 

1.01 (0.98-1.04) 

0.59 

1.04 (1.02-1.07) 

4x10-4 

1.04 (1.01-1.08) 

0.021 

1.05 (1.03-1.07) 

5.1x10-6 

CHR12: rs3184504 

(SH2B3) 

All ischaemic 

stroke 

1.08 (1.06-1.10) 

1.2x10-14 

1.08 (1.06-1.10) 

2.2x10-14 

1.04 (1.01-1.07) 

0.0096 

1 (0.97-1.03) 

0.83 

1.02 (1-1.05) 

0.04 

1.06 (1.03-1.1) 

1.9x10-4 

1.03 (1.01-1.05) 

0.0068 

CHR9: rs635634 

(ABO) 

All ischaemic 

stroke 

1.08 (1.05-1.11) 

9.2x10-9 

1.07 (1.04-1.10) 

6.9x10-3 

1.08 (1.03-1.12) 

1.8x10-4 

1 (0.96-1.04) 

0.86 

1.04 (1.01-1.07) 

0.0043 

1.1 (1.05-1.14) 

5.8x10-6 

1.05 (1.02-1.07) 

4.3x10-4 

CHR9: rs7859727 

(Chr9p21) 
All stroke 

1.05 (1.03-1.07) 

7.2x10-8 

1.05 (1.03-1.07) 

4.2x10-10 

1.06 (1.03-1.09) 

8.1x10-5 

1.04 (1.01-1.07) 

0.018 

1.05 (1.03-1.07) 

5.3x10-6 

1.02 (0.98-1.05) 

0.32 

1.04 (1.02-1.06) 

6.3x10-5 

Summary: number replicated loci 5/32 0/32 4/32 3/32 5/32 

Significant associations are in bold in shaded boxes. CVD: cerebrovascular disease; CHR: chromosome; N: number;  452 

† MEGASTROKE transethnic meta-analyses included 60,341 ischaemic stroke cases; 9,006 cardio-embolic stroke cases; 6,688 large-vessel stroke cases. MEGASTROKE European meta-analyses 453 

included 34,217 ischaemic stroke cases; 7,193 cardio-embolic stroke cases; 4,373 large-vessel stroke cases.454 
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Figure 1. Genetic correlation of UKB stroke definitions with MEGASTROKE and each other. 455 

 456 

Legend: Where the rg was >1, we rounded it to 1.  457 

 458 
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Figure 2. Confidence intervals of genetic correlation of UKB stroke definitions with MEGASTROKE 465 

and each other. 466 

 467 

Legend: The upper triangle displays Bonferroni corrected upper confidence intervals, and the 468 

lower triangle displays Bonferroni corrected lower confidence intervals. Where the rg was >1, we 469 

rounded it to 1.   470 
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Figure 3. Megastroke stroke subtype-significant loci replicated using UK Biobank stroke 475 

definitions. 476 

A. 477 
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B.486 

 487 

Legend: MEGASTROKE odds ratio and p-value is shown for the analyses (European or trans-ethnic) 488 

showing the lowest p-value 489 
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