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Abstract: 

Introduction: 

Unravelling the health effects of multiple pollutants presents scientific and computational 

challenges. CorEx is an unsupervised learning algorithm that can efficiently discover multiple 

latent factors in highly multivariate datasets. Here, we used the CorEx algorithm to perform a 

hypothesis free analysis of demographic, biochemical, and toxic metal biomarker data. 

 

Methods: 

Our data included 77 variables from 2,750 adult participants of the National Health and Nutrition 

Examination Survey (NHANES 2015-2016). We used an implementation of the CorEx algorithm 

designed to deal with the features of bioinformatic datasets including mixed data-types. Models 

were fit for a range of possible latent variables and the best fit model was selected as that which 

resulted in the largest Total Correlation (TC) after adjustment for the number of parameters. 

Successive layers of CorEx were run to discovered hierarchical data structure. 

 

Results: 

The CorEx algorithm identified 20 variable clusters at the first layer. For the majority clusters, the 

associations between variables were consistent with known associations – e.g. gender and the 

hormones, estradiol and testosterone were included in the first cluster; blood organic mercury 

and blood total mercury were grouped in cluster 4, and cluster 6 included the liver function 

enzymes ALT, AST and GGT. At the second layer, 3 branches of were identified reflecting 

hierarchical structure. The first branch included numerous physiological biomarkers and several 

exogenous biomarkers. The second branch included a number endogenous and exogenous 

variables previously associated with hypertension, while the third branch included mercury 

biomarkers and some related endogenous biomarkers.  

 

Discussion: 

We have demonstrated the CorEx algorithm as a useful tool for hypothesis free exploration of a 

biomedical dataset. This work extends previous implementations of CorEx by allowing mixed data-

types to be modelled and the results showed that CorEx detected meaningful hierarchical 

structure. CorEx may facilitate exploration of novel datasets in future.  
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Introduction: 

Pollution and exposure to toxic chemicals is associated with a wide range of health effects, and 

disease linked to pollution were estimated to be responsible for 9 million deaths worldwide in 

2015
[1]

. Exposure to low doses of toxic metals (and other chemicals) is almost ubiquitous amongst 

the population. Historically, the effects of toxins on health were studied individually and advances 

in knowledge have led to progressive controls on chemicals associated with toxic effects. This is 

perhaps most evident in the case of lead, for which progressively lower ‘safe levels’ were defined 

across decades until it was recognised by the CDC in 2012 that no safe level exists
[2–4]

. Despite 

advances in the understanding of the links between chemical exposures and disease at lower 

exposure levels, our understanding of the health effects of exposure to chemical mixtures has 

evolved more slowly. This has been due to a number of factors including the previous successes of 

examining one pollutant at a time, the costs associated with measuring multiple pollutants, and 

the fact the pollutants are typically highly correlated within individuals, which poses challenges for 

statistical modelling
[5,6]

. However, interest in assessing and understanding multiple exposures has 

grown in recent years and a variety of diverse approaches have arisen. 

 

Shared biological pathways and pharmacokinetic factors affecting different toxins might be an 

unrecognised factor reflected in biomarker correlations. For example lead absorption is 

competitively inhibited by calcium
[7]

, and, while several toxic metals are in large part excreted via 

the kidneys (inorganic mercury, lead, cadmium, arsenic), some undergo significant hepatic 

excretion (manganese, organic mercury, copper), with other routes possible too (for example 

elemental mercury can be exhaled). Nevertheless some metals retain mostly independent 

metabolic steps such as the long-term storage of lead in bone, or the respiratory excretion of 

elemental mercury. Therefore, in an individual with for example mild kidney or liver dysfunction, 

levels of selected metals could be simultaneously affected while others are not. Thus the tendency 

for some toxic metal biomarkers to be correlated might in part be explained by shared metabolic 

pathways. A number of statistical approaches have been developed to deal with such complexity. 

Sophisticated physiologically based pharmacokinetic models (PBPK), which have a long history of 

use for single pollutants have been generalised to model multiple exposures
[8]

. however this 

approach requires detailed scientific understanding of the underlying physiological and 

pharmacological properties of each chemical of interest
[8]

.  On the other hand a number of 

machine learning based approaches have arisen with BKMR (Bayesian Kernel Machine Regression), 

in particular, emerging as a popular method for evaluating multiple environmental exposures as 
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risk factors for a given outcome
[5,9]

. BKMR regresses an outcome on a flexible mixture function of 

proposed environmental pollutants using Bayesian kernel regression and can select from exposure 

variables using a hierarchical extension, however BKMR is computationally demanding. Another 

approach is the use of environmental risk scores (ERS)
[6,10]

, a two-step method which may use 

BKMR (or other machine learning approaches) as the first step to select variables which are then 

used to compute a risk score, before this in turn is regressed against the outcome of interest. 

 

CorEx is an information theoretic unsupervised learning algorithm that uses total correlation 

explanation to discover structure in high dimensional data and can efficiently discover multiple 

latent factors when provided with input variables with high multivariate information
[11–13]

. CorEx 

can also order those latent factors by the Total Correlation (TC) of the multivariable information of 

the variables assigned to each latent factor, and successive CorEx runs can be used to discover 

hierarchical structure
[11–13]

. CorEx has been used to discover biologically interpretable subgroups 

gene expression groups in ovarian tumour samples
[13]

. Our aim is to apply the CorEx algorithm to 

NHANES (The National Health and Nutrition Examination Survey) routine biochemical and toxic 

metal biomarker data in an exploratory analysis to discover hierarchical latent structure within the 

dataset. 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 5

Methods: 

Study Population: 

The National Health and Nutrition Examination Survey (NHANES) is a long running surveillance 

project that combines interviews, clinical assessments, clinical measurements and laboratory 

testing in a representative sample of the US population (https://www.cdc.gov/nchs/nhanes/). It has 

received ethical approval from the National Center for Health Statistics Ethics Review Board and 

the participants provided their written informed consent to participate in this study. The study 

now runs on a continuous basis, although the exact measurements performed vary from year to 

year. Our analysis includes all adult NHANES participants from the 2015-2016 NHANES data 

release for whom toxic metals measurements were performed (N = 2,750). Data files including 

age, BMI and variables relating to blood and urine toxic metals, urinary iodine, and standard 

haematological assays, biochemical assays including liver and kidney function tests, blood 

cholesterol and blood glucose were included in the analysis. Data from adults only was included 

(ages 20 and up) since not all measurements were performed on children. 

 

Total Correlation Explanation: 

BioCorEx is an implementation of total correlation explanation designed to model data with 

characteristics typical of biomedical datasets – i.e. missing data, continuous variables, and severely 

under-sampled data
[11–14]

. The CorEx algorithm aims to reconstruct latent factors optimised to 

explain as much of the dependence in the data as possible. Total Correlation (TC), also known as 

multi-information or multivariate mutual information quantifies dependence amongst a group of 

variables
[15]

. Given a set of multivariate random variables X � X�, … , X� with an associated 

probability distribution ��� 	 
� we can write the marginal probability for a single variable as 

���� 	 
��, total correlation can be defined both in terms of the Shannon Entropy, �, or as a 

Kullback-Liebler divergence, 
�� 
[11–13]

: 

 

 

TC��� � � �����
�

� H���
 

	 D�� �p�x� || � p�x��
�

�	�

� 

(1) 

 

This definition of TC implies that TC is non-negative and can take the value zero only if the 

variables ��, … , �
 are independent.  
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The CorEx algorithm extends the concept of total correlation to facilitate the reconstruction of the 

set of latent factors � 	 �� , … , �� that minimise the value of TC after condition X on Y
[11–13]

. Thus, 

we can define the correlation of X explained by Y as the difference between the TC of X and the TC 

of X given Y as follows: 

 

 TC��; ��� 	 ������ � ����, �� (2) 

   

(Note that the semicolon indicates that ����; �� is not symmetric in its arguments – i.e. 

TC��; �� � TC��; �� ). CorEx maximises this expression in a computationally efficient manner 

given user supplied parameters, m and k, where m defines the number of latent factors 

� 	 ��, … , �� , and k defines the number of discrete values each hidden factor can take, or in 

other words how flexible the Y factors can be. Results from differently parameterised CorEx 

models can be compared via the resulting value of ����; ��, with higher values for ����; �� 

indicating a greater amount of explained correlation
[11–13]

. The labels output from CorEx can in 

turn be used as the input to another layer of analysis via CorEx and in this way a deeper hierarchal 

correlation structure in the data can be discovered (Fig 1). The BioCorEx implementation of the 

algorithm extends CorEx to accommodate continuous variables, missing data and to include 

Bayesian smoothing for under-sampled datasets typical of biomedical datasets 
[12–14]

. 

 

Statistical Analysis: 

Data preparation 

Variables included in the CorEx analysis are shown in Supplementary Table 1. While CorEx can be 

run on data with missing values, the sampling strategies of the NHANES project meant that some 

variables are missing for the majority of participants. Therefore we removed any variable with a 

missing percentage higher than 50%. This resulted in the removal of 3 variables (oral glucose 

tolerance test, serum insulin concentration and length of fast from food prior to blood glucose 

measurement). Since, the majority of toxicological and physiological biomarkers are log-normally 

distributed, we log-transformed all variables except for age, gender and body mass index (BMI).  

 

CorEx Analysis: 

The CorEx model was fit using R Statistical Software 4.0.5
[16]

 using an implementation of BioCorEx 

written in R (https://github.com/jpkrooney/rcorex)
[17]

 and additional R packages
[18–25]

. This 

implementation of the CorEx algorithm allows for data to have mixed data types (e.g. Boolean or 
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continuous Gaussian variables), therefore sex and pulse regularity (coded as 0 or 1) were included 

as Boolean and all others were given the Gaussian marginal description. To mitigate a numerical 

issue that rarely occurs in a data dependent manner a minimal value of 1 x 10
-200

 was imposed on 

individual marginal values. The overall marginal was not otherwise limited. In addition, under 

certain circumstances CorEx can produce negative TC which is undefined, therefore if we detected 

this circumstance between 10 and 30 iterations of the algorithm the fit was abandoned to avoid 

redundant computation. 

For our analysis we used CorEx to investigate potentially hierarchical data structure in the NHANES 

variables selected. For layer 1 of the hierarchy we fit CorEx across a range of possible number of 

hidden clusters up to half the number of included variables (e.g. m = 1 to 38) and for each value of 

m for k = 2 to 3 possible dimensions, giving 76 possible combinations of m and k. For each of these 

combinations the CorEx model was fit 25 times and the run which produced the maximal value of 

TC was retained. Since the maximum TC is partially limited by m and k such that: 

 max�TC� " 2 $ m $ k $ log�k� (3) 

To select the optimal number of hidden clusters, m, and dimensions k, we calculated the value of 

�


������
 versus k, stratified by m, thus approximately linearizing 

�


������
 across m and k. Models were 

then ranked by 
�


������
, and the maximal model selected as the preferred model. The graph of TC vs 

iteration for the selected model was then examined. To detect layer 2 of the hierarchical structure 

this process was repeated this time using the cluster labels from layer 1 as discrete input and only 

considering a value for k = 2. This process was iterated to detect deeper layers of structure until 

the number of clusters in a given layer = 1. A network graph of the resultant clusters discovered by 

CorEx was drawn and characteristics of the members of each cluster summarised via descriptive 

statistics.  

Analysis code is available from GitHub: 

https://github.com/jpkrooney/NHANESmetals_corex_Analysis 
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Results: 

Values for (
�


������
 ) for the 76 combinations of parameters for layer 1 of the CorEx model are shown 

in Table 1. From ranked results shown in Table 1 and plots of TC vs iterations we selected the 

CorEx model searching for 20 hidden clusters of dimension 2 as the best-fit model. Figure 1 shows 

TC and (
�


������
) for a selection of m and k values, while figure 2 shows the TC vs iterations plot for 

the selected best fit model. While the selected layer 1 CorEx model had a TC of 4.557 nats (natural 

unit of information), the best layer 2 model had a TC of only 0.391 nats, indicating that layer 2 

accounted for some extra correlation in the dataset addition to layer 1. A third hierarchical layer 3 

had a TC of just 0.9 x 10
-6

 nats with only one hidden unit indicating very little extra correlation was 

discovered at the third hierarchical level. Thus, no further layers of structure were investigated. 

Figure 3 displays a network graph showing the hierarchical structure determined for this CorEx 

model fit. 

 

Table 2 contains details of the layer1 clusters, including the Total Correlation value for each 

individual layer 1 cluster with higher TC indicating greater correlation between cluster members. 

Of the 20 clusters identified, most comprised of a low number of correlated variables. Cluster 1 

contains gender and the sex hormones estradiol and testosterone, while cluster 2 contained 3 

variables pertaining to red cell physiology. Cluster 3 contained serum cotinine and its metabolite 

serum hydroxycotinine which are both biomarkers of smoking. Several more small clusters capture 

toxic metal variables that are closely related: e.g. cluster 4 contains blood organic mercury and 

blood total mercury, cluster 13 contains blood and urinary cadmium, cluster 16 contains blood 

inorganic mercury and urinary mercury. Interestingly, cluster 7 contains blood and urine lead 

concentration and age. Other clusters capture closely related endogenous molecules: e.g. cluster 5 

includes two immune function variables – blood lymphocyte and neutrophil percentage, cluster 6 

includes 3 markers of liver function (serum AST, ALT and GGT), while cluster 9 contains 2 variables 

relating to glucose metabolism (blood glucose and glycohemoglobin percentage). Cluster 17 

contains systolic and diastolic blood pressure along with urinary albumin to creatinine ratio. 

Cluster 10 urinary strontium and barium, cluster 11 urinary caesium, manganese, thallium, cluster 

12 blood manganese, blood and urinary cobalt and serum potassium. 

Cluster 14 is a large cluster containing 16 variables primarily comprising haematological and 

biochemical markers, but also containing serum sex-hormone-binding-globulin(SHBG) urinary 

iodine, molybdenum and tin, as well as heart rate. Cluster 19 and 20 had small negative TC values 

which we interpret to mean there was no correlation between the variables in these clusters. 
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Cluster 20 included blood ethyl-mercury, urinary antimony and 5 other variables of mixed 

category, and had a slightly negative TC indicating that these variables were not correlated. 

At the second hierarchical level of structure, the first branch had a TC of 0.250 nats and included 

clusters 1, 2, 8, 11, 12, 14, 15 and 19, therefore including variables mostly relating to endogenous 

physiology such as gender and sex hormones, routine haematological and  biochemical 

parameters, BMI, manganese and cobalt in blood as well as manganese caesium, thallium, iodine, 

molybdenum and tin in urine. The second branch at the second hierarchical level had a TC = 0.108 

nats, and included clusters 3, 7, 9, 10, 13, 17 and 18, therefore including age and blood glucose 

and numerous exogenous biomarkers including cotinine and hydroxycotinine, blood and urine 

lead, blood and urine cadmium, albumin-creatinine ratio and systolic and diastolic blood pressure. 

Finally, the third branch at the second hierarchical level had a TC = 0.032 nats including clusters 4, 

5, 6, 16 and 20. This branch included all the mercury biomarkers, liver function enzymes, 

lymphocytes and neutrophils and the remaining uncorrelated variables of layer1 cluster 20. 
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Discussion: 

In environmental research the ubiquity of multiple exposures is an ever present challenge. Here 

we have addressed this challenge through the use of CorEx to explore the data structure of toxic 

metal and physiological biomarkers. The learned structure in our analysis reveals numerous small 

variable clusters that include grouped variables with known a-priori biological connections. For 

example gender and sex hormones (cluster 1), related physiological biomarkers like the liver 

function makers ALT, AST and GGT (cluster 6), related exogenous chemical biomarkers such as 

cotinine and hydroxycotinine (cluster 3), or inorganic mercury and urinary mercury (cluster 16). 

Blood and urine lead biomarkers are clustered together with age, which is an association widely 

reported in previous cohort studies
[26–28]

. Similarly, cluster 17 groups together systolic and 

diastolic blood pressure with albumin-creatinine ratio which is again in keeping with previous 

observations
[29,30]

. Of the smaller clusters, only clusters 10, 11 and 12 produced groupings of 

variables without explanation readily available from a-priori knowledge. 

 

TC associated with Layer 2 (0.390 nats) was lower than that of layer 1 (4.557 nats). However, the 

branches of layer 2 also grouped together a mixture of features compatible with known biological 

factors. The first branch at layer 2 included for the large part routine endogenous physiological 

biomarkers and some exogenous biomarkers including: urinary caesium, manganese, thallium, 

cobalt, iodine, molybdenum and tin, as well as blood manganese. The second branch at layer 2 

contains the demographic variable age with endogenous biomarkers such as blood glucose and 

glycol-hemoglobin, platelets and mpv and urinary albumin to creatinine ratio. However this branch 

also contains a number of exogenous biomarkers including blood and urinary lead and cadmium, 

cotinine and hydroxycotinine, urinary barium and strontium, systolic and diastolic blood pressure. 

Interestingly, of the variables included in branch 2 many have been previously associated with 

blood pressure including cotinine
[31,32]

 (smoking is a well-established risk factor for 

hypertension
[33–35]

), blood glucose
[36,37]

, lead
[38,39]

, cadmium
[40,41]

, and albumin to creatinine 

ratio
[29]

. In addition, smoking is source of cadmium and lead exposure in humans
[42–44]

. The third 

branch at layer 2 included blood total mercury, inorganic mercury and methyl mercury, urinary 

mercury adjusted for creatinine, lymphocytes and neutrophils and the liver function enzymes AST, 

ALT and GGT. Correlation of mercury biomarkers is expected since inorganic mercury is calculated 

from total mercury and methyl-mercury, and mercury biomarkers have previously been associated 

with lymphocyte and neutrophil counts
[45]

. Furthermore, methyl-mercury undergoes 

enterohepatic excretion
[46]

 and therefore correlation with liver function is unsurprising.  
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It is difficult to directly compare our results to that of other machine learning approaches to the 

NHANES dataset, partly because previous studies included different NHANES variables or used 

different methodological approaches. For example the Environmental Risk Score (ERS) method has 

been applied to NHANES environmental exposure variables in several studies and uses a two-stage 

method to first relate exposure to ERS’s, which are in turn related to outcome(s) of interest
[6,10]

. 

However these results are difficult to compare to ours due to this two-stage structure. Luo et al. 

used the BKMR method to examine associations between metal mixtures and markers of kidney 

function after adjusting for confounders
[47]

. They found that cadmium and lead were associated 

with both eGFR (calculated from serum creatinine) and albumin-creatinine ratio
[47]

. Interestingly in 

our study the albumin-creatinine ratio was grouped in the same layer 2 branch as lead and 

cadmium biomarkers, but serum creatinine was not. However, while methods such as ERS or 

BKMR apply machine learning within a restricted range of hypotheses determined by pre-defined 

outcomes, risk factors and adjustment variables, a major strength of CorEx is that it is a fully 

unsupervised method (as applied here). Additionally, our implementation of CorEx extends on 

previous versions to allow the inclusion of data of mixed types, that is both Boolean and 

continuous variables. 

 

Conclusions 

We have demonstrated the application of Total Correlation Explanation to epidemiological data 

with mixed data types using the CorEx algorithm. The results we obtained after fitting CorEx in a 

hypothesis-free manner to a typical biostatistical dataset demonstrated that the CorEx algorithm 

could detect structure consistent with previously established biological relationships typical of the  

demographic, endogenous and exogenous biomarkers included. This work extends previous 

implementations of CorEx by allowing mixed data-types to be modelled, and therefore has 

potential to facilitate exploration of novel datasets in future. 

 

 

Acknowledgements 

We would like to acknowledge the assistance of Dr Greg Ver Steeg, Information Sciences Institute, 

University of Southern California for explanations of the Python implementation of CorEx. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 12

References: 

 1.  Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, et al. The Lancet Commissions 

The Lancet Commission on pollution and health. 2017;6736(17).  

2.  Needleman HL, Jackson RJ. Lead toxicity in the 21st century: will we still be treating it? 

Pediatrics 1992;89(4 Pt 1):678–80.  

3.  Lanphear B. Still Treating Lead Poisoning After All These Years. Pediatrics 

2017;140(2):e20171400.  

4.  Cory-Slechta DA. Low Level Lead Exposure Harms Children:  A Renewed Call for Primary 

Prevention. Report of the Advisory Committee on Childhood Lead Poisoning Prevention of the 

Centers for Disease Control and Prevention [Internet] 2012;Available from: 

https://www.cdc.gov/nceh/lead/acclpp/final_document_030712.pdf 

5.  Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel 

machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 

2015;16(3):493–508.  

6.  Park SK, Zhao Z, Mukherjee B. Construction of environmental risk score beyond standard linear 

models using machine learning methods: application to metal mixtures, oxidative stress and 

cardiovascular disease in NHANES. Environmental Health [Internet] 2017 [cited 2020 Nov 

4];16(1). Available from: https://ehjournal.biomedcentral.com/articles/10.1186/s12940-017-

0310-9 

7.  Rădulescu A, Lundgren S. A pharmacokinetic model of lead absorption and calcium 

competitive dynamics. Scientific Reports [Internet] 2019 [cited 2020 Dec 12];9(1). Available 

from: http://www.nature.com/articles/s41598-019-50654-7 

8.  Sarigiannis DΑ, Karakitsios SP, Handakas E, Gotti A. Development of a generic lifelong 

physiologically based biokinetic model for exposome studies. Environmental Research 

2020;185:109307.  

9.  Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing the health effects of 

multiple concurrent exposures via Bayesian kernel machine regression. Environ Health 

2018;17(1):67.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 13

10.  Park SK, Tao Y, Meeker JD, Harlow SD, Mukherjee B. Environmental Risk Score as a New Tool 

to Examine Multi-Pollutants in Epidemiologic Research: An Example from the NHANES Study 

Using Serum Lipid Levels. PLoS ONE 2014;9(6):e98632.  

11.  Steeg GV, Galstyan A. Discovering Structure in High-Dimensional Data Through Correlation 

Explanation. Nips 2014;15.  

12.  Steeg GV, Galstyan A. Maximally Informative Hierarchical Representations of High-Dimensional 

Data. arXiv 2014;13.  

13.  Pepke S, Ver Steeg G. Comprehensive discovery of subsample gene expression components by 

information explanation: therapeutic implications in cancer. BMC Medical Genomics [Internet] 

2017 [cited 2019 Sep 30];10(1). Available from: 

http://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-017-0245-6 

14.  Ver Steeg G. Bio CorEx: recover latent factors with Correlation Explanation (CorEx) [Internet]. 

2020. Available from: https://github.com/gregversteeg/bio_corex 

15.  Watanabe S. Information theoretical analysis of multivariate correlation. IBM Journal of 

research and development 1960;4(1):66–82.  

16.  R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, 

Austria: R Foundation for Statistical Computing; 2018. Available from: https://www.R-

project.org/ 

17.  Rooney JP. rcorex: Discover latent structure in high dimensional data [Internet]. 2021. 

Available from: https://github.com/jpkrooney/rcorex 

18.  Wickham H. tidyverse: Easily Install and Load the “Tidyverse”. R package version 1.2.1 

[Internet]. 2017. Available from: https://CRAN.R-project.org/package=tidyverse 

19.  R Core Team. foreign: Read Data Stored by “Minitab”, “S”, “SAS”, “SPSS”, “Stata”, “Systat”, 

“Weka”, “dBase”, ... [Internet]. 2020. Available from: https://CRAN.R-

project.org/package=foreign 

20.  Yoshida K. tableone: Create “Table 1” to Describe Baseline Characteristics. R package version 

0.10.0 [Internet]. 2019. Available from: https://CRAN.R-project.org/package=tableone 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 14

21.  Pedersen TL. patchwork: The Composer of ggplots. R package version 0.0.1. [Internet]. 2017. 

Available from: https://github.com/thomasp85/patchwork 

22.  Bengtsson H. future.apply: Apply function to elements in parallel using futures [Internet]. 

2020. Available from: https://CRAN.R-project.org/package=future.apply 

23.  Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal 

2006;9.  

24.  Pederson TL. ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. 

[Internet]. 2020. Available from: https://CRAN.R-project.org/package=ggraph 

25.  Pederson TL. tidygraph: A Tidy API for Graph Manipulation. [Internet]. 2020. Available from: 

https://CRAN.R-project.org/package=tidygraph 

26.  Nisse C, Tagne-Fotso R, Howsam M, Richeval C, Labat L, Leroyer A. Blood and urinary levels of 

metals and metalloids in the general adult population of Northern France: The IMEPOGE 

study, 2008–2010. International Journal of Hygiene and Environmental Health 

2017;220(2):341–63.  

27.  Cañas AI, Cervantes-Amat M, Esteban M, Ruiz-Moraga M, Pérez-Gómez B, Mayor J, et al. Blood 

lead levels in a representative sample of the Spanish adult population: The BIOAMBIENT.ES 

project. International Journal of Hygiene and Environmental Health 2014;217(4–5):452–9.  

28.  González-Estecha M, Trasobares E, Fuentes M, Martínez MJ, Cano S, Vergara N, et al. Blood 

lead and cadmium levels in a six hospital employee population. PESA study, 2009. Journal of 

Trace Elements in Medicine and Biology 2011;25:S22–9.  

29.  Yadav D, Kang DR, Koh S-B, Kim J-Y, Ahn SV. Association between Urine Albumin-to-Creatinine 

Ratio within the Normal Range and Incident Hypertension in Men and Women. Yonsei Med J 

2016;57(6):1454.  

30.  Wachtell K, Palmieri V, Olsen MH, Bella JN, Aalto T, Dahlöf B, et al. Urine albumin/creatinine 

ratio and echocardiographic left ventricular structure and function in hypertensive patients 

with electrocardiographic left ventricular hypertrophy: The LIFE study. American Heart Journal 

2002;143(2):319–26.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 15

31.  Kim BJ, Han JM, Kang JG, Kim BS, Kang JH. Association between cotinine-verified smoking 

status and hypertension in 167,868 Korean adults. Blood Pressure 2017;26(5):303–10.  

32.  Alshaarawy O, Xiao J, Shankar A. Association of Serum Cotinine Levels and Hypertension in 

Never Smokers. Hypertension 2013;61(2):304–8.  

33.  Virdis A, Giannarelli C, Fritsch Neves M, Taddei S, Ghiadoni L. Cigarette Smoking and 

Hypertension. CPD 2010;16(23):2518–25.  

34.  Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease. 

Journal of the American College of Cardiology 2004;43(10):1731–7.  

35.  Dikalov S, Itani H, Richmond B, Arslanbaeva L, Vergeade A, Rahman SMJ, et al. Tobacco 

smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial 

dysfunction, and enhances hypertension. American Journal of Physiology-Heart and 

Circulatory Physiology 2019;316(3):H639–46.  

36.  Kuwabara M, Chintaluru Y, Kanbay M, Niwa K, Hisatome I, Andres-Hernando A, et al. Fasting 

blood glucose is predictive of hypertension in a general Japanese population. Journal of 

Hypertension 2019;37(1):167–74.  

37.  Lv Y, Yao Y, Ye J, Guo X, Dou J, Shen L, et al. Association of Blood Pressure with Fasting Blood 

Glucose Levels in Northeast China: A Cross-Sectional Study. Sci Rep 2018;8(1):7917.  

38.  Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease. American 

Journal of Physiology-Heart and Circulatory Physiology 2008;295(2):H454–65.  

39.  Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ. Lead Exposure and Cardiovascular 

Disease—A Systematic Review. Environmental Health Perspectives 2007;115(3):472–82.  

40.  Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krintratun S. Correlations of urinary 

cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages 

in northwestern Thailand: A population study. Environmental Research 2010;110(6):612–6.  

41.  Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E. Cadmium Exposure and 

Hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). 

Environmental Health Perspectives 2008;116(1):51–6.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 16

42.  Pinto E, Cruz M, Ramos P, Santos A, Almeida A. Metals transfer from tobacco to cigarette 

smoke: Evidences in smokers’ lung tissue. Journal of Hazardous Materials 2017;325:31–5.  

43.  Ashraf MW. Levels of Heavy Metals in Popular Cigarette Brands and Exposure to These Metals 

via Smoking. The Scientific World Journal 2012;2012:1–5.  

44.  Bernhard D, Rossmann A, Wick G. Metals in cigarette smoke. IUBMB Life (International Union 

of Biochemistry and Molecular Biology: Life) 2005;57(12):805–9.  

45.  Alcala-Orozco M, Caballero-Gallardo K, Olivero-Verbel J. Biomonitoring of Mercury, Cadmium 

and Selenium in Fish and the Population of Puerto Nariño, at the Southern Corner of the 

Colombian Amazon. Arch Environ Contam Toxicol 2020;79(3):354–70.  

46.  Rooney JPK. The role of thiols, dithiols, nutritional factors and interacting ligands in the 

toxicology of mercury. Toxicology 2007;234(3):145–56.  

47.  Luo J, Hendryx M. Metal mixtures and kidney function: An application of machine learning to 

NHANES data. Environmental Research 2020;191:110126.  

 

  

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 17

Table 1. TC / log(k) for m hidden clusters with k possible dimensions 

Dimensions, k: 2 3 

Num. of clusters, 

m 

  

1 -0.068 -2.325 

2 1.852 1.750 

3 2.384 2.010 

4 2.595 2.858 

5 2.872 0.076 

6 3.132 
 

7 3.261  

8 3.502  

9 3.960  

10 3.613  

11 3.760  

12 4.256 5.377 

13 4.330  

14 4.239 4.769 

15 4.339  

16 4.384  

17 4.245  

18 4.459  

19 4.374  

20 4.558  

21 4.380 5.872 

22 4.246  

23 4.433  

24 4.189  

25 4.482  

26 4.454  

27 4.410  

28 4.278  

29 4.193  

30 4.279  

31 4.310  

32 4.272  

33 4.307  

34 4.166  

35 4.061  

36 4.038 5.109 

37 4.176  

38 4.105  

For m, k combinations that are missing TC, no model converged within 200 iterations 
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Table 2. Summary of cluster assignments 

Variable 
Layer

1 

TC - 
layer1 
nats 

Layer
2 category Variable 

Layer 
1 

TC - 
layer1 
nats Layer 2 catego

gender 1 0.939 1 demographic bmi 14 0.109 1 demog
serum_testosterone_ng_dL 1  1 hormone wcc 14  1 haem
serum_estradiol_pg_ml 1  1 hormone monocyte_pct 14  1 haem
rcc 2 0.643 1 haem eosin_pct 14  1 haem
Hb_gdL 2  1 haem basophil_pct 14  1 haem
Hct_pct 2  1 haem serum_alb_gdL 14  1 bioche
serum_cotin_ng_ml 3 0.444 2 smoking alkphos_si 14  1 bioche
serum_hydrocot_ng_ml 3  2 smoking bicarb_mmolL_si 14  1 bioche
bl_total_hg 4 0.418 3 metal-blood globulin_gdL 14  1 bioche
bl_Me_hg 4  3 metal-blood serum_prot_gdL 14  1 bioche
lymph_pct 5 0.338 3 haem ur_iod_uggcrea 14  1 metal
neut_pct 5  3 haem ur_mo_uggcrea 14  1 metal
AST_si 6 0.300 3 biochem ur_sn_uggcrea 14  1 metal
ALT_si 6  3 biochem folate_ng_ml 14  1 bioche
GGT_si 6  3 biochem serum_SHBG_nmol_L 14  1 hormo
age_screen_yrs 7 0.221 2 demographic HR_60s 14  1 heart 
bl_pb 7  2 metal-blood serum_sodium_si 15 0.100 1 renal 
ur_pb_uggcrea 7  2 metal-urine serum_osmol_si 15  1 renal 
mcv_fL 8 0.210 1 haem bl_I_hg 16 0.090 3 metal
rdw_pct 8  1 haem ur_hg_uggcrea 16  3 metal
serum_iron_ugdL 8  1 biochem ur_alb_cr 17 0.085 2 renal 
glycohemo_pct 9 0.188 2 lipid sysBP 17  2 heart 
bl_glucose_mgdL 9  2 lipid diaBP 17  2 heart 
ur_bar_uggcrea 10 0.138 2 metal-urine platelets 18 0.069 2 haem
ur_sr_uggcrea 10  2 metal-urine mpv_fL 18  2 haem
ur_ce_uggcrea 11 0.121 1 metal-urine bl_sel 19 -0.020 1 metal
ur_mang_uggcrea 11  1 metal-urine serum_tot_chol_mgdl 19  1 lipid 
ur_tl_uggcrea 11  1 metal-urine bl_tot_ca_mg_dL 19  1 bioche
bl_mang 12 0.113 1 metal-blood serum_bili_mgdL 19  1 bioche
bl_co_ug_L 12  1 metal-blood ur_tung_uggcrea 19  1 metal
serum_potassion_si 12  1 renal Pulse_regularity 19  1 heart 
ur_co_uggcrea 12  1 metal-urine bl_Et_hg 20 -0.060 3 metal
bl_cd 13 0.112 2 metal-blood bl_cr_ug_L 20  3 metal
ur_cd_uggcrea 13  2 metal-urine BUN_mgdL 20  3 bioche
     CPK 20  3 bioche
     cl_mmolL_si 20  3 bioche
     serum_creat_mg_dL 20  3 bioche
     LDH_si 20  3 renal 
     serum_phos_mgdL 20  3 renal 
     serum_triglyc_mgdL 20  3 lipid 
     bl_uric_acid_mgdL 20  3 bioche
     ur_ant_uggcrea 20  3 metal
     ur_uran_uggcrea 20  3 metal
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Figure 1. Total correlation and total correlation per k dimensions from CorEx models 

 

Figure 1 legend: TC (left) and  (right) vs dim_hidden(k) for CorEx models.  
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Figure 2. Total correlation vs model iterations for the selected best-fit model.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 3, 2021. ; https://doi.org/10.1101/2021.09.30.21264332doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264332
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 3. Network graph of NHANES data 
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