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Abstract 

Purpose: In order to accurately accumulate delivered dose for head and neck cancer patients 
treated with the Adapt to Position workflow on the 1.5T magnetic resonance imaging (MRI)-
linear accelerator (MR-linac), the low-resolution T2-weighted MRIs used for daily setup must be 
segmented to enable reconstruction of the delivered dose at each fraction. In this study, our 
goal is to evaluate various autosegmentation methods for head and neck organs at risk (OARs) 
on on-board setup MRIs from the MR-linac for off-line reconstruction of delivered dose. 
 
Methods: Seven OARs (parotid glands, submandibular glands, mandible, spinal cord, and 
brainstem) were contoured on 43 images by seven observers each. Ground truth contours were 
generated using a simultaneous truth and performance level estimation (STAPLE) algorithm. 20 
autosegmentation methods were evaluated in ADMIRE: 1-9) atlas-based autosegmentation 
using a population atlas library (PAL) of 5/10/15 patients with STAPLE, patch fusion (PF), 
random forest (RF) for label fusion; 10-19) autosegmentation using images from a patient’s 1-4 
prior fractions (individualized patient prior (IPP)) using STAPLE/PF/RF; 20) deep learning (DL) 
(3D ResUNet trained on 43 ground truth structure sets plus 45 contoured by one observer). 
Execution time was measured for each method. Autosegmented structures were compared to 
ground truth structures using the Dice similarity coefficient, mean surface distance, Hausdorff 
distance, and Jaccard index. For each metric and OAR, performance was compared to the 
inter-observer variability using Dunn’s test with control. Methods were compared pairwise using 
the Steel-Dwass test for each metric pooled across all OARs. Further dosimetric analysis was 
performed on three high-performing autosegmentation methods (DL, IPP with RF and 4 
fractions (IPP_RF_4), IPP with 1 fraction (IPP_1)), and one low-performing (PAL with STAPLE 
and 5 atlases (PAL_ST_5)). For five patients, delivered doses from clinical plans were 
recalculated on setup images with ground truth and autosegmented structure sets. Differences 
in maximum and mean dose to each structure between the ground truth and autosegmented 
structures were calculated and correlated with geometric metrics. 
 
Results: DL and IPP methods performed best overall, all significantly outperforming inter-
observer variability and with no significant difference between methods in pairwise comparison. 
PAL methods performed worst overall; most were not significantly different from the inter-
observer variability or from each other. DL was the fastest method (33 seconds per case) and 
PAL methods the slowest (3.7 – 13.8 minutes per case). Execution time increased with number 
of prior fractions/atlases for IPP and PAL. For DL, IPP_1, and IPP_RF_4, the majority (95%) of 
dose differences were within ±250 cGy from ground truth, but outlier differences up to 785 cGy 
occurred. Dose differences were much higher for PAL_ST_5, with outlier differences up to 1920 
cGy. Dose differences showed weak but significant correlations with all geometric metrics (R2 
between 0.030 and 0.314). 
 
Conclusions: The autosegmentation methods offering the best combination of performance and 
execution time are DL and IPP_1. Dose reconstruction on on-board T2-weighted MRIs is 
feasible with autosegmented structures with minimal dosimetric variation from ground truth, but 
contours should be visually inspected prior to dose reconstruction in an end-to-end dose 
accumulation workflow. 
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Introduction 
 
Novel magnetic resonance imaging (MRI)-linear accelerator (MR-linac) devices have enabled 
the clinical adoption of on-board adaptive radiation therapy (RT) [1–4] for head and neck 
cancers. While MR-linac systems improve soft tissue visualization and allow a new RT 
treatment plan to be created during every treatment fraction to better target the tumor and avoid 
healthy tissues, current systems do not have mechanisms for accumulating delivered dose over 
the entire course of RT. 
 
Furthermore, on the 1.5T MR-linac system, the Adapt to Position workflow (virtual isocenter 
shift) is used for the majority of fractions in standard-fractionation head and neck RT [4], which 
minimizes treatment times compared to the Adapt to Shape (full adaptive replan) workflow and 
is appropriate when day-to-day anatomical variations are small [5]. However, this workflow 
reduces the time required for adaptive replanning by estimating dose on the previously 
segmented reference image rather than calculating dose directly on the setup image, which 
reflects the anatomy at the time of beam delivery. Thus, there remains an unmet need for a 
method to not only accumulate dose across multiple fractions but also to accurately reconstruct 
the delivered dose on the anatomy at the time of treatment for Adapt to Position plans. 
 
Our approach for dose accumulation for head and neck adaptive RT on the MR-linac involves 1) 
autosegmenting the structures on each fraction’s setup image, 2) recalculating the delivered 
dose on the setup image, 3) deformably registering each setup image to a common time point 
(i.e. the pre-RT or post-RT anatomy), 4) deformably mapping doses to that same common time 
point, and 5) summing the mapped doses. In this paper, we are focusing on the first two steps 
to determine the optimal method for automatically segmenting the T2-weighted setup images 
used in our head and neck workflow [4] and to evaluate the impact of autosegmentation on dose 
calculation accuracy. 
 
Various autosegmentation methods that have historically been applied to computed tomography 
(CT) images have shown promise on MRI [6], including deformable image registration (DIR)-
based structure propagation [4,7], atlas-based autosegmentation [8–10], and deep learning [11–
13]. While several studies have shown that deep learning can improve organ-at-risk (OAR) 
segmentation accuracy compared to atlas-based autosegmentation on CT for head and neck 
[14–16] and other treatment sites [17–20], to our knowledge, only a single study thus far has 
directly compared these methods on MRI for any treatment site [21]. As MR-guided adaptive RT 
becomes more accessible, evaluating these autosegmentation methods on MRI is crucial. We 
are also interested in leveraging images from previous MR-linac fractions to contour future 
fraction images for the same patient. Images from multiple prior fractions can be used as 
atlases in an individualized patient prior atlas-based autosegmentation approach, which has 
been shown to improve segmentation accuracy over deformable structure propagation from a 
single prior image [22]. 
 
Our aim in this paper is to evaluate the geometric accuracy of these autosegmentation methods 
for head and neck OARs and to test permutations with various sets of parameters, including 
different label fusion methods and numbers of atlases. We will also explore the feasibility of 
recalculating daily fraction doses on autosegmented setup images from the MR-linac and 
understand how differences in geometric accuracy affect the recalculated dose. 
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Materials and Methods 
 
Patients and Informed Consent 
 
18 head and neck cancer patients and 3 healthy volunteers were included in this study. For 
patients, the disease sites included 9 oropharynx (8 human papilloma virus (HPV)+ and 1 HPV-
), 3 larynx, 2 nasopharynx/nasal cavity/orbit, 2 oral cavity, and 1 hypopharynx. The age range 
for all subjects was 22 to 81 (median: 60). All patients provided written informed consent to 
participate in the IRB-approved MOMENTUM observational clinical trial [23] (National Clinical 
Trial Identifier: NCT04075305; MD Anderson Cancer Center IRB study ID: PA18-0341), and all 
healthy volunteers provided written informed consent to participate in an internal IRB-approved 
volunteer imaging study (MD Anderson Cancer Center IRB study ID: PA14-1002). 
 
 
Images and Manual Segmentation 
 
A total of 41 T2-weighted MRI scans were used as the primary data set in this study (5 each for 
5 patients and 1 each for the remaining 16 patients/volunteers, as explained below), and an 
additional 45 image sets from the same patients were added for the deep learning model. All 
images were acquired on a 1.5 T MR-linac (Unity; Elekta AB; Stockholm, Sweden). The T2-
weighted sequence is a low-resolution 2-minute scan used for setup and treatment plan 
reoptimization in the Unity Adapt to Position workflow, as described previously [4,5], with the 
following scan parameters: 3D spin echo acquisition, 1535 ms repetition time, 278 ms echo 
time, 0.83 mm in-plane resolution, 2 mm slice thickness, 1 mm slice gap, 400 x 400 mm2 field of 
view, 300 slices; 117 second acquisition time. 
 
Each image in the primary data set was manually segmented by 7 individual observers 
(postgraduate year 4 radiation oncology residents who were specifically trained on head and 
neck anatomy and MRI by an experienced head and neck radiation oncologist). The following 
OARs were segmented: brainstem, mandible, left and right parotid glands, left and right 
submandibular glands, and spinal cord. Ground truth contours were generated from the 7 
observer contours using a multi-label simultaneous truth and performance level estimation 
(STAPLE) algorithm [24] constrained to prevent overlapping contours (ADMIRE software v3.26, 
Elekta AB, Stockholm, Sweden). All STAPLE contours were reviewed by two additional 
observers (one radiologist and one radiation oncologist with at least 5 years of experience) for 
quality, and all were considered sufficient for further use as ground truth. These ground truth 
contours from this primary cohort were used as atlases/training data for the atlas-based and 
deep learning autosegmentation methods as well as the ground truth contours used to evaluate 
the autosegmentation methods. The 45 additional image sets that were added to the deep 
learning model were contoured by a single observer (radiologist).  
 
 
Autosegmentation Methods 
 
A total of 20 autosegmentation methods in ADMIRE were evaluated, divided into three primary 
categories: 1) population atlas library (PAL), 2) individualized patient prior (IPP), and 3) deep 
learning (DL). 
 
Population Atlas Library (PAL) 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.21264327doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264327


PAL is conventional multi-atlas-based autosegmentation where all the atlases (i.e. image and 
structure set pairs) are from different patients so that the atlas library is representative of a wide 
range of anatomies and can be generalized to other patients. In multi-atlas-based 
autosegmentation, each atlas is deformably registered to the image to be segmented, resulting 
in one intermediate structure set per atlas. Next, a label fusion step is performed to generate a 
final consensus contour from all of the intermediate contours. Three label fusion methods were 
used: STAPLE, patch fusion (PF), and random forest (RF) (described below). For each label 
fusion method, the autosegmentation was run using 5, 10, and 15 atlases, resulting in 9 total 
PAL-based autosegmentation methods for evaluation. 
 
STAPLE estimates the sensitivity and specificity of each intermediate segmentation as 
compared to the remaining segmentations (on a structure-by-structure basis), then it weights 
each segmentation based on its relative performance and generates a consensus segmentation 
based on the weighted average [24,25]. Unlike STAPLE, which uses only the label data, PF 
uses the intensity values of the image to create the weights for the weighted average. 
Specifically, the similarity between each atlas and the image to be segmented is estimated by 
computing the local cross-correlation coefficient (LCC) for every voxel, and the atlas weights are 
determined on a voxel-by-voxel basis based on the LCC [26,27]. Finally, the RF 
autosegmentation method uses the atlases to train a RF model—a supervised machine learning 
algorithm based on decision trees—to create a binary classifier to determine whether or not 
each voxel in an image belongs to a given structure [28]. The RF classifier is applied only to the 
voxels where the intermediate segmentations mapped from each atlas do not fully agree. 
 
 
Individualized Patient Prior (IPP) 
 
IPP is atlas-based autosegmentation using images from the same patient as atlases. With the 
MR-linac, an image is acquired at every fraction, so if a small number of image sets from the 
first few fractions are contoured, we can leverage that data to segment images from the 
remaining fractions. In this study, IPP was evaluated using 1, 2, 3, and 4 prior fractions. Images 
from the patient’s 5th fraction were used for evaluation, and the fraction(s) immediately prior 
were used as atlases (i.e. the 4th fraction was used for 1 prior fraction, the 3rd and 4th were used 
for 2 prior fractions, etc.). When one prior fraction is used, IPP is simply a DIR-based structure 
propagation and requires no label fusion. When multiple prior fractions are used, IPP works 
similarly to PAL with the same three label fusion methods (STAPLE, PF, RF). A total of 10 IPP-
based autosegmentation methods were evaluated: IPP with 1 prior fraction and IPP with 2, 3, 
and 4 prior fractions each using STAPLE, PF, and RF. 
 
 
Deep Learning (DL) 
 
The DL model used a 3D ResUNet framework [29] trained on 86 image sets (41 with ground 
truth STAPLE consensus contours from the 7 observers plus 45 contoured by a single observer 
to maximize available training data). The network structure consisted of an encoder and 
decoder plus five long-skip connections for a total of five levels between the encoder and 
decoder. A residual block was used in each level of the encoder and decoder, and down-
sampling and up-sampling layers (i.e. max-pooling and up-pooling operators) were used to 
connect each block. The MR images were pre-processed by thresholding the lower and upper 
0.25% pixel values to eliminate potential outliers, normalizing pixel values using Z-score 
normalization, and scaling all image values into the range of [-1, 1] using a linear transform. All 
algorithm modules were developed using the TensorFlow DL library with a Python and C++ 
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interface, and the final deep learning autosegmentation model was implemented into ADMIRE. 
An approach similar to leave-one-out cross validation was used; since multiple image sets per 
patient were included for some patients, all image sets from a given patient were left out for the 
model evaluated on that patient. 
 
 
 
Geometric Evaluation and Statistical Analysis 
 
The results of each autosegmentation method were compared against the ground truth contours 
using the Dice similarity coefficient (DSC) [30], mean surface distance (MSD), Hausdorff 
distance (HD), and Jaccard Index (JI) calculated in ADMIRE. The inter-observer variability of the 
seven observers was measured using pair-wise comparison of each observer’s segmentations 
(i.e. observer 1 vs. 2, 1 vs. 3, … , 6 vs. 7) on each image set in the primary cohort. The same 
four geometric indices were measured for each pair of inter-observer contours. For the spinal 
cord contours, since some observers did not contour the spinal cord in the entire field of view, 
the remainder of the spinal cord contours were cropped at the inferior-most slice for each image 
prior to measuring the inter-observer variability metrics. However, the consensus contours were 
generated from the non-cropped contours, and they were all visually inspected to ensure that 
the consensus contours extended through the entire field of view, which they did in every case. 
 
The results of each autosegmentation method were compared to the inter-observer variability 
using Dunn’s test with control [31,32] using the inter-observer variability distribution as the 
control. Dunn’s test with control is a non-parametric test to compare multiple distributions to a 
single control distribution. Reported p-values are Bonferroni corrected p-values. The test was 
performed separately for each structure. Each autosegmentation method was also compared 
pair-wise using the Steel-Dwass test for multiple comparisons [33]. The Steel-Dwass test for 
multiple comparisons is a non-parametric equivalent to the Tukey all-pairs comparison with 
cumulative experimental error correction. The comparisons were performed pooled over all 
structures. All statistical analyses were performed in JMP Pro (v15.0.0, SAS Institute Inc., Cary, 
NC). The execution time per case of each autosegmentation method was also recorded, and 
the mean and standard deviation execution time were calculated. 
 
 
Dosimetric Analysis 
 
To evaluate the impact of the differences in autosegmentation performance on the 
reconstructed dose, the dose from the 5th Adapt to Position (ATP) fraction was recalculated on 
the T2-weighted image for 5 patients using the contours from 4 select autosegmentation 
methods and the STAPLE ground truth contours (5 total plans per patient). Four 
autosegmentation methods were selected for further evaluation based on their geometric 
performance and execution time: IPP with RF and 4 prior fractions (IPP_RF_4), DL, IPP with 
one prior fraction (IPP_1), and PAL with STAPLE and 5 atlases (PAL_ST_5). IPP_RF_4 
performed best overall for all four geometric metrics, while DL and IPP_1 demonstrated the best 
tradeoff between geometric performance and execution time. PAL_ST_5 was the worst 
performing method across all four geometric metrics and was included to demonstrate the 
degree to which poor autosegmentation can affect the calculated dose. 
 
The doses from the 5th fraction (all Adapt to Position plans) were reconstructed in Monaco 
(Research v5.59.13; Elekta AB; Stockholm, Sweden) on the setup image set for the 5th fraction 
using the following methodology: First, a duplicate copy of the setup image was imported for 
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each patient with contours for the seven OARs (parotid glands, submandibular glands, 
mandible, spinal cord, brainstem) from each of the four autosegmentation methods and the 
ground truth contours. The setup image was then aligned to the reference image for the ATP 
plan (i.e. the planning CT) using the same isocenter shift used clinically. Next, all contours that 
were not included in this autosegmentation study were propagated from the reference image to 
the setup image using the Adapt Anatomy function in Monaco, with OAR contours registered 
deformably and any target volumes registered rigidly. It was verified that these contours were 
identical across all copies of the same image so that the only difference in the structure sets 
would be the seven autosegmented OARs. Bulk electron densities were assigned to each 
structure based on the average electron density value of each structure from the CT. Next, the 
beams and segments were transferred from the clinically delivered ATP plan onto the setup 
image by creating an Adapt to Shape plan. However, instead of reoptimizing the segments 
and/or fluence, the dose was recalculated directly without any modification to the original beams 
and segments. This workflow was repeated for each of the autosegmentation results, resulting 
in a unique dose distribution for each autosegmentation method and the ground truth contours 
per patient. 
 
To compare the dosimetric performance of each autosegmentation method, the mean dose 
(Dmean) for and maximum dose (Dmax) were calculated for each of the seven structures on each 
recalculated dose distribution. For both Dmean and Dmax, the difference between the ground truth 
contours and each of the four autosegmentation method contours was calculated (ΔDmean and 
ΔDmax). 
 
Next, we investigated whether any of the geometric metrics (DSC, HD, MSD, JI) between each 
autosegmented contour and the ground truth contours are correlated with the absolute value 
dosimetric differences (|ΔDmean| and |ΔDmax|) between the autosegmented and ground truth 
contours. Linear regression was performed between |ΔDmean| and each of the four metrics and 
between |ΔDmax| and each of the four metrics. The correlation coefficient (R2) of each linear fit 
was measured, and an F-test of overall significance was performed for each fit (α=0.05). 
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Results 
 
Execution Time and Autosegmentation Failures 
 
The mean execution time per case is shown in Figure 1. DL was the fastest method with an 
execution time of 33 ± 0 s (mean ± standard deviation). For all IPP and PAL cases, execution 
time increased with the number of prior fractions/atlases for the same autosegmentation type 
and label fusion method. No clear trends were observed for the execution times of the STAPLE, 
RF, and PF label fusion methods when the autosegmentation type and number of prior 
fractions/atlases were held constant. 
 
PF methods often failed in the spinal cord, meaning that no spinal cord contour could be 
generated despite repeated attempts. It failed in all cases for IPP_PF_2, IPP_PF_3, and 
IPP_PF_4. Only 4, 3, and 2 cases were successful in PAL_PF_5, PAL_PF_10, and 
PAL_PF_15, respectively. There were no autosegmentation failures for any other structures. 
 
 

Figure 1: Execution time per case for each autosegmentation method. Data is represented as 
mean and standard deviation (error bars). 
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Geometric Evaluation and Statistical Analysis 
 
DSC and MSD values for each autosegmentation method and the pair-wise inter-observer 
variability analysis are shown in Figure 2. (HD and JI are shown in Appendix A.) In general, all 
IPP methods had a greater median DSC and JI and lower median MSD and HD compared to all 
PAL methods for all structures (except the DSC and JI for the mandible). PAL methods 
generally showed greater variability in performance among the test cases compared to IPP 
methods. For IPP and PAL, for a given autosegmentation type and label fusion method, no clear 
trends in performance were observed as the number of prior fractions or atlases increased. For 
PAL, PF and RF appeared to have comparable performance, but ST had poorer performance. 
No clear trends were observed among the label fusion methods for IPP. For most structures, DL 
had similar median DSC and MSD values compared to all IPP methods but had much greater 
variability across test cases. All IPP methods and DL had higher median DSC values, lower 
median MSD values, and less variability compared to the inter-observer variability for all 
structures. Differences between each PAL method and the inter-observer variability were less 
pronounced. The highest performing method overall was IPP_RF_4, which had the highest 
median DSC and JI and lowest median MSD and HD for all structures. The worst performing 
was PAL_ST_5, which demonstrated the poorest median values for nearly every metric and 
structure. Segmentation results for all 20 autosegmentation methods are shown on an example 
patient in Figure 3. 
 
 

 
Figure 2: Dice similarity coefficient (DSC) and mean surface distance (MSD) in mm for the 
autosegmentation methods compared to ground truth contours and the pair-wise comparison of 
inter-observer variability. Distributions are shown as box plots, with the five horizontal bars in 
each distribution representing the minimum, first quartile, median, third quartile, and maximum. 
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Figure 3: Segmentations for six of the seven OARs (excluding the brainstem since it cannot be 
visualized in the same plane as all the other segmentations) for one example patient. Ground 
truth segmentations are in green, and each set of autosegmented contours is in red. The spinal 
cord contour is missing in the IPP_PF methods because the segmentation failed. 
 
 
 
Results of Dunn’s test to compare each method to the inter-observer variability are shown in 
Figure 4. Most IPP methods performed significantly better than the inter-observer variability for 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.21264327doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.30.21264327


the DSC, JI, and MSD. Exceptions included the DSC and JI of IPP_1 for the mandible and MSD 
of all IPP_PF and IPP_RF iterations for the right submandibular gland. PAL methods were not 
significantly different than the inter-observer variability in most cases. There were several 
exceptions, mainly including the DSC and JI of the brainstem and mandible for several PAL 
methods with 10 and 15 atlases. Most PAL methods differed significantly from the inter-observer
variability in the HD for the parotid glands. DL was significantly different than the inter-observer 
variability in the DSC and JI for all structures except the left submandibular gland, but it was not 
significantly different in the HD or MSD for all structures except the brainstem and right parotid 
gland. 
 
Results of the Steel-Dwass test for pair-wise comparison between each method are shown in 
Figure 5. None of the IPP methods or DL were significantly different from each other in any of 
the four metrics. Most PAL methods were not significantly different from each other with a few 
exceptions. Notably, PAL_ST_5 (the worst performing method overall) significantly 
underperformed PAL_PF_10, PAL_RF_10, PAL_PF_15, and PAL_RF_15 in most metrics. 
PAL_RF_15 (the best performing method overall) performed significantly better than 
PAL_ST_5, PAL_PF_5, and PAL_ST_10 in all metrics but HD. Most PAL methods were 
significantly different than all other IPP methods and DL except for PAL_RF_10 and 
PAL_RF_15. 
 
 
 

Figure 4: Heat map of p-values for Dunn’s test with the inter-observer variability as a control. 
Reported values are Bonferroni adjusted p-values. Red boxes indicate non-significant results 
(p>0.05), and blue boxes indicate significant results (p<0.05). White represents missing values 
(IPP_PF methods failed for the spinal cord for every test case). (Abbreviations: DL = deep 
learning, IPP = individualized patient prior, PAL = population atlas library, ST = STAPLE, PF = 
patch fusion, RF = random forest. 1, 2, 3, and 4 represent the number of prior fractions in IPP. 
5, 10, and 15 represent the number of atlases in PAL. Glnd_Submand = submandibular gland. L
= left, R = right.) 
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Figure 5: Heat map of p-values for the Steel-Dwass test for pair-wise comparison between 
autosegmentation methods pooled over all ROIs. Red boxes indicate non-significant results 
(p>0.05), and blue boxes indicate significant results (p<0.05). (Abbreviations: DL = deep 
learning, IPP = individualized patient prior, PAL = population atlas library, ST = STAPLE, PF = 
patch fusion, RF = random forest. 1, 2, 3, and 4 represent the number of prior fractions in IPP. 
5, 10, and 15 represent the number of atlases in PAL.) 
 
 
 
 
Dosimetric Analysis 
 
The dose differences (ΔDmean and ΔDmax) between plans recalculated with the ground truth 
contours vs. plans recalculated with the various autosegmented contours (IPP_RF_4, DL, 
IPP_1, and PAL_ST_5) are shown in Figure 6. For IPP_RF_4, DL, and IPP_1 (the high-
performing methods geometrically), the majority (95%) of ΔDmean and ΔDmax values across all 
ROIs fell within ±250 cGy. However, a few outlier dose differences occurred even for these 
three high-performing methods, with maximum |ΔDmean| and |ΔDmax| as high as 617 cGy and 785 
cGy, respectively. For these three methods, dosimetric differences greater than ±250 cGy 
occurred in all ROIs except the spinal cord and mandible and occurred most often in the parotid 
glands. Among the five cases, they occurred most often in cases 1 and 3 (treatment sites: left 
supraglottis and left glottis, respectively). Of the three autosegmentation method, they occurred 
most often for DL. For PAL_ST_5 (the poorest performing geometrically), dosimetric differences 
were higher overall compared to the three high-performing methods, with maximum |ΔDmean| 
and |ΔDmax| as high as 1112 cGy and 1919 cGy, respectively. Dosimetric differences greater 
than ±250 cGy occurred in all ROIs except the right submandibular gland, and differences 
greater than ±500 cGy occurred for all ROIs except the spinal cord and right submandibular 
gland. The causes of major outlier dosimetric differences (greater than ±500 cGy) in all four 
autosegmentation methods are explored further in Appendix B. In short, they tend to occur 
when the superior and/or inferior boundary of an ROI falls within a steep dose gradient and is 
placed in the wrong slice by the autosegmentation method. 
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Figure 6: Differences (cGy) in dosimetric performance criteria (ΔDmean and ΔDmax) between 
plans based on ground truth contours and select autosegmentation methods for 5 patient cases. 
Positive/negative values mean that the dose was higher/lower in the autosegmented structure 
than in the ground truth structure, respectively. Treatment sites for the five patient cases are: 
case 1: larynx – left supraglottis; case 2: left hypopharynx; case 3: larynx – left glottis; case 4: 
oropharynx – right tonsil; case 5: oropharynx – right tonsil. (Abbreviations: Dmean = mean dose, 
Dmax = maximum dose, L = left, R = right, Glnd_Submand = submandibular gland, DL = deep 
learning, IPP_1 = individualized patient prior with 1 prior fraction, IPP_RF_4 = individualized 
patient prior with 4 prior fractions and random forest, and PAL_ST_5 = population atlas library 
with 5 atlases and STAPLE.)  
 
 
The results of the correlation between each dosimetric difference (ΔDmean and ΔDmax) and each 
of the four geometric metrics (DSC, MSD, HD, JI) are shown in Appendix C. Although the F-test 
was significant in all cases (p<0.05), correlation coefficients were poor (maximum R2 value 
0.314). Correlations were slightly stronger for ΔDmean than for ΔDmax (R

2 between 0.128 and 
0.314 for ΔDmean and R2 between 0.030 and 0.096 for ΔDmax). Of all geometric metrics, HD 
demonstrated the best correlation with both ΔDmean and ΔDmax. 
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Discussion 
 
In this study, we evaluated the geometric and dosimetric performance of several 
autosegmentation methods for the low-resolution T2-weighted MR images used for treatment 
positioning in the ATP workflow for head and neck cancers on the 1.5 T MR-linac [4]. In ATP, 
the reference plan image is aligned with the daily setup image to create a virtual isocenter shift, 
but the dose for the daily adaptive plan is calculated on the reference image rather than the 
daily setup image [5]. This workflow allows for quick plan adaptations to account for small 
changes in the position of the tumor at each fraction without having to segment the setup image 
while the patient is on the treatment table. However, if one wants to accurately accumulate the 
dose delivered over a patient’s entire RT course, then the delivered dose at each ATP fraction 
must be reconstructed on the daily setup images, which represent the anatomy at the time of 
beam delivery. To calculate doses on MR images, the electron density values of each imaging 
voxel must be estimated, which is routinely accomplished by assigning each structure on the 
MR a uniform electron density value, as measured either from that patient’s CT simulation 
image or from population reference values [34–37]. This method, commonly called bulk density 
assignment, requires the MR to be segmented. Thus, our goal in this study was to determine 
the optimal autosegmentation method for these daily setup MRIs and evaluate their impact on 
the calculation of the delivered dose. 
 
Two recent studies have detailed a framework for daily dose reconstruction for prostate cancer 
RT on the MR-linac using MRI cine imaging and treatment log files [38,39]. This approach 
accounts for intra-fraction motion by synchronizing the motion trajectory and small units of 
delivered fluence based on the time stamps. While intra-fraction motion is a major consideration 
for many treatment sites including prostate, intra-fraction motion is minimized in head and neck 
cancer treatment with the use of an immobilization mask [40]. As such, we have elected to take 
a computationally simpler approach where we reconstruct the dose based on the static anatomy 
represented in the daily setup image. Our workflow is more closely aligned with previously 
reported studies where dose is reconstructed based on on-board setup imaging using cone 
beam CT [41,42] or CT-on-rails [43], with the key difference from these studies being that a 
unique ATP treatment plan is delivered each day rather than delivering the same plan at each 
fraction. 
 
In this study, both the geometric performance and execution time of each autosegmentation 
method were considered in selecting the most favorable method. IPP_RF_4 (IPP with RF label 
fusion and four prior atlases) had the highest median DSC and JI and lowest median MSD and 
HD of all methods. However, it did not perform significantly differently than DL or any other IPP 
method in the Steel-Dwass test for any of the four metrics, and its mean execution time of 6.8 
minutes per case is 12, 4, and 2 times longer than DL, IPP_1, and IPP_RF_2, respectively. DL 
was also not significantly different than any of the IPP methods in terms of geometric 
performance but was the fastest method, with an execution time of 33 seconds per case. 
However, the downside of DL is that it requires many more ground truth image sets for training 
data compared to IPP or PAL. As such, expanding our current model to include all OARs for 
head and neck treatment planning would require many more manual segmentations, which 
would be an extremely time-intensive process. IPP_1 would be a favorable alternative to DL as 
long as one MR image per patient is manually segmented, although any error in the initial 
segmentation is propagated to the next image with IPP_1. As our results have shown, 
increasing the number of prior fractions with IPP does not significantly improve performance but 
increases execution time by roughly 1.5-2 minutes for every added fraction. This study has also 
shown that nearly all PAL methods perform significantly worse than DL and all IPP methods and 
have much longer execution times. Despite these performance limitations, PAL may be a useful 
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method for segmenting the first image for a new patient, as long as the contours are manually 
reviewed and edited if necessary. 
 
To our knowledge, the present manuscript is the first to compare multi-atlas-based 
autosegmentation with a population atlas library (i.e. PAL), multi-atlas-based autosegmentation 
using individualized patient prior images (i.e. IPP), and DL-based autosegmentation. Several 
recent studies have investigated at least one of these methods, and many have focused on 
parameter optimization, as we did in this study. Van de Velde et al. [44] studied the optimal 
number of atlases using the PAL STAPLE and PF algorithms in ADMIRE (the same 
autosegmentation software used in the present study) to contour the brachial plexus on CT 
images. Looking at a range of 2-12 atlases, they found 9 to be the optimal number of atlases for 
both STAPLE and PF based solely on geometric metrics. Lee et al. [45] also tested the optimal 
number of atlases in head and neck CT images using MIM software, but their approach involves 
using a large population atlas library and selecting a small number of atlases that most closely 
match the patient being segmented, followed by DIR and label fusion of the intermediate results. 
They looked at 20, 40, 60, 80, and 100 atlases in the library and found that geometric 
performance generally peaked around 60 atlases, with more atlases either not improving 
segmentation accuracy and even degrading performance in some cases. 
 
Schipaanboord et al. [46] and Van de Velde et al. [47] both showed that when atlas selection 
strategies are used to select atlases most similar to the anatomy of the patient being 
segmented, performance is significantly improved over using a random selection of atlases. 
This concept can logically be extended to support the IPP atlas-based autosegmentation 
method used in the current paper; using prior images from the same patient as atlases achieves 
the maximal similarity between the atlases and the image being segmented. Our results support 
this idea, with all nearly IPP methods performing significantly better than PAL methods. Zhang 
et al. [22] investigated the IPP approach with STAPLE in ADMIRE using MR-linac images of the 
abdomen. They demonstrated that IPP with 7 prior images, both with and without an MRI pre-
processing step, improved autosegmentation quality over both rigid registration and DIR from 
the pre-RT MR sim. They also found that the mean DSC increased as the number of prior 
fractions increased for all OARs, in contrast to our results, which did not show a significant 
improvement with increasing the number of prior fractions in IPP. This discrepancy may be due 
to the fact that there is more deformation from day to day in the abdomen compared to head 
and neck, so the benefit of adding more prior fractions may depend on the treatment site. 
 
In our study, we also performed further dosimetric evaluation on contours from IPP_RF_4 (the 
top performing method overall geometrically), DL (the fastest method and one of the high-
performing methods), IPP_1 (the second fastest method and one of the high-performing 
methods), and PAL_ST_5 (the worst performing method overall) to better understand how 
contour geometry affects the dose volume histogram parameters of the recalculated doses. 
Large dosimetric discrepancies between ground truth and PAL_ST_5 were observed, which 
was expected because the geometric performance was quite poor. While dosimetric differences 
were smaller overall for the three high-performing methods, roughly 5% of the all measured 
ΔDmean or ΔDmax data points were greater than 250 cGy and 2% were greater than 500 cGy. 
Appendix B provides a closer examination of outlier ΔDmean or ΔDmax values greater than 500 
cGy for the three high-performing methods and greater than 1000 cGy for PAL_ST_5. In all 
cases but one, the large dosimetric discrepancy was caused by disagreement between the 
ground truth and autosegmented contours about the slice in which the superior and/or inferior 
aspect of the contour begins. When the OAR boundary occurs in a high dose region, the dose 
differences can be substantial. Even a difference as small as 3 slices (with 1 mm slice spacing) 
in one example led to a ΔDmax value of nearly 800 cGy. 
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Our results correlating the geometric and dosimetric metrics in Appendix C showed a significant 
but weak correlation for all metrics (maximum R2 of 0.314). Correlations were stronger for 
|ΔDmax| than for |ΔDmean| for each corresponding geometric metric, and they were slightly 
stronger for the distance-based metrics (HD and MSD) than for the volume-based metrics (DSC 
and JI). These results are in accordance with similar studies that have shown that geometric 
indices are not strongly correlated with various measures of dosimetric plan quality [48–51], 
highlighting the need for autosegmentation methods to be evaluated on dosimetric criteria in 
addition to geometric criteria [52]. 
 
There are a few limitations involved in this study. First, we acknowledge our relatively small 
sample size but employed cross-validation strategies where appropriate to maximize robustness 
of our results. Also, the physicians who manually contoured the images were postgraduate year 
4 radiation oncology residents. While the inter-observer variability among this group may be 
greater than fully board-certified radiation oncologists, the STAPLE consensus contours used as 
ground truth in this study were reviewed and approved by two more experienced observers. 
Finally, although a variety of DL architectures and parameters could have been tested, only one 
DL model was used in this study due to the number of cross-validation models that had to be 
created and the long training time for each model. Thus, the comparison between DL and the 
various PAL and IPP iterations served as a pilot study of DL for this particular clinical 
application, and we anticipate that further refinement of our DL model and including additional 
data may improve performance. 
 
In the era of adaptive RT, there is still a critical need to develop accurate, fully automated dose 
accumulation strategies. Our results demonstrate that several autosegmentation methods in the 
ADMIRE platform, particularly DL and IPP_1, are fast and highly accurate on the low-resolution 
T2-weighted images used for daily positioning on the MR-linac for head and neck cancers and 
can be used to reconstruct daily fraction doses on the anatomy at the time of treatment. Still, 
dosimetric accuracy may be compromised if autosegmentation errors occur in areas with high 
dose gradients, resulting in dosimetric discrepancies as high as 800 cGy even with these 
geometrically high-performing autosegmentation methods. As such, visual inspection and 
manual contour editing are recommended prior to dose recalculation. Alternatively, more 
efficient solutions have been proposed to automatically detect potential autosegmentation 
failures using machine learning models [53–56]. While these tools have shown promise for 
detecting autosegmentation errors and minimizing user intervention, more work is needed at 
this time to support a fully automated dose accumulation workflow. Furthermore, next steps to 
realize an end-to-end dose accumulation solution include autosegmentation of target volumes 
[57–60] and validation of methods for deformable image registration and dose mapping and 
summation [61,62], which were beyond the scope of this paper. 
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Conclusion 
 
Our study has demonstrated the feasibility of implementing autosegmentation for daily dose 
reconstruction in an off-line dose accumulation workflow for MR-guided RT for head and neck 
cancers. The quantitative comparison of IPP, PAL, and DL autosegmentation methods 
demonstrated that DL and IPP_1 both offer the best balance between accuracy and execution 
time. Given highly curated, accurate initial contours, IPP_1 provides the most robust results in 
terms of both geometric and dosimetric accuracy but takes two minutes per case. The use of 
additional atlases did not significantly improve performance in IPP. DL is the fastest method (30 
seconds per case) and offers comparable geometric performance to all IPP methods. Unlike 
IPP, which will propagate any errors in the initial segmentation, DL does not require prior 
segmentations from the same patient but comes at the expense of somewhat random geometric 
and dosimetric outliers. Although DL is less robust than IPP, further parameter optimization and 
inclusion of more cases may improve performance. Furthermore, PAL methods demonstrated 
the worst overall geometric performance, largest number of dosimetric outliers, and longest 
execution times (4-14 minutes), so use of PAL should be reserved for cases where DL models 
or prior segmentations are not available. Finally, results from the dosimetric analysis show that 
even small errors in autosegmentation may substantially impact the calculation of the delivered 
dose if the region of autosegmentation failure occurs in a high dose region. Thus, contours 
should always be visually inspected prior to dose recalculation and manually edited when 
necessary to ensure robust and accurate dose accumulation. 
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