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23 Abstract

24 Background: Rift Valley fever virus (RVFV) is a lethal threat to humans and 

25 livestock in many parts of Africa, Arabia, and the Indian Ocean. This systematic review’s 

26 objective was to consolidate understanding of RVFV epidemiology during 1999-2021 

27 and highlight knowledge gaps relevant to plans for human vaccine trials.

28 Methodology/Principal Findings: The review is registered with PROSPERO 

29 (CRD42020221622). Reports of RVFV infection or exposure among humans, animals, 

30 and/or vectors in Africa, the Arabian Peninsula, and the Indian Ocean during the period 

31 January 1999 to June 2021 were eligible for inclusion. Online databases were searched 

32 for publications, and supplemental materials were recovered from official reports and 

33 research colleagues. Exposures were classified into five groups: 1) acute human RVF 

34 cases, 2) acute animal cases, 3) human RVFV sero-surveys, 4) animal sero-surveys, 

35 and 5) insect infections. Human risk factors, circulating RVFV lineages, and surveillance 

36 methods were also tabulated. In meta-analysis of risks, summary odds ratios were 

37 computed using random-effects modeling. 1104 unique human or animal RVFV 

38 transmission events were reported in 39 countries during 1999-2021. Outbreaks among 

39 humans or animals occurred at rates of 5.8/year and 12.4/year, respectively, with 

40 Mauritania, Madagascar, Kenya, South Africa, and Sudan having the most human 

41 outbreak years. Men had greater odds of RVFV infection than women, and animal 

42 contact, butchering, milking, and handling aborted material were significantly associated 

43 with greater odds of exposure. Animal risk was linked to location, proximity to water, 

44 and exposure to other herds or wildlife. RVFV was detected in a variety of mosquito 

45 vectors during interepidemic periods, confirming ongoing transmission.
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46 Conclusions/Significance: With broad variability in surveillance, case finding, 

47 survey design, and RVFV case confirmation, combined with uncertainty about 

48 populations-at-risk, there were inconsistent results from location to location. However, it 

49 was evident that RVFV transmission is expanding its range and frequency. Gaps 

50 assessment indicated the need to harmonize human and animal surveillance and 

51 improve diagnostics and genotyping. Given the frequency of RVFV outbreaks, human 

52 vaccination has strong potential to mitigate the impact of this now widely endemic 

53 disease. 

54

55 Author Summary 

56 Rift Valley fever virus (RVFV) is a globally important mosquito-transmitted 

57 zoonosis that is also directly transmissible via aerosolization of body fluids from infected 

58 animals. RVFV outbreaks cause mass mortality of young livestock and pregnancy 

59 losses in both humans and animals. Severe human cases also result in hemorrhagic 

60 fever, encephalitis, and death. Loss of livestock additionally threatens the livelihood of 

61 people who depend on animals for income and food. In endemic areas, initiation of 

62 RVFV outbreaks is connected to weather events that cause excess rainfall, leading to 

63 flooding and subsequent mosquito blooms. However, the natural cycle of RVFV 

64 transmission is complex, requiring congregation of susceptible mammalian hosts and 

65 mosquito vectors in suitable environments. Several human vaccine candidates are in 

66 different stages of development, but none are yet licensed for use in human 

67 populations. In this systematic review, we assessed the 1999-2021 frequency and 

68 distribution of RVFV outbreaks among humans, animals, and vectors to identify 
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69 potential locations and population targets for a human RVFV vaccine efficacy trial. It 

70 focuses on current understanding of RVFV epidemiology and the identification of gaps 

71 that pose critical barriers to controlling expansion of RVFV and implementing new 

72 protective measures including human vaccination.

73

74

75 Introduction

76 Rift Valley fever virus (RVFV) remains an important emerging arboviral pathogen 

77 due to its recent geographic spread and its combined disease and financial impacts on 

78 vulnerable human populations [1]. Specifically, RVFV is listed as a priority pathogen by 

79 the World Health Organization (WHO), the Food and Agriculture Organization of the 

80 United Nations (FAO), and the U.S. Centers for Disease Control and Prevention (CDC) 

81 because of its ability to cause life-threatening hemorrhagic fever and encephalitis in 

82 humans [2, 3], its epidemic potential to cause severe harm to livestock [4, 5], and its 

83 potential for non-vector aerosol spread during epizootics and epidemics [6, 7]. The RVF 

84 virus is a member of the Phlebovirus genus, with three main lineages, with East African, 

85 West African, and Southern African groupings. 

86 RVFV was first identified in 1931 during an investigation into an epidemic of 

87 fatalities among sheep on a farm in the Rift Valley Province of Kenya [8]. Since that 

88 time, its spatial range has continued to expand from East Africa into southern Africa, 

89 West Africa, and North Africa, and more recently outside Africa to the Arabian Peninsula 

90 [6, 7, 9]. RVFV can infect a wide range of mammalian hosts [10] and can be carried by 

91 many insect vectors. Floodwater Aedes spp. are important in maintenance during 
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92 interepidemic periods, whereas other Diptera serve as secondary vectors during 

93 outbreaks in sub-tropical and temperate regions of the world [11-15]. RVFV results in 

94 lower case fatality rates (CFR) compared to other hemorrhagic fever viruses [4], but its 

95 outbreaks have profound compounding effects on human subsistence (from loss of 

96 livestock) and on national economies, related to livestock export bans [16-19]. 

97 The critical environmental reservoir of RVFV is presently unknown. Humans 

98 become infected either through the bite of an infected vector or through exposure to 

99 infectious animal tissues or bodily fluids such as abortus, birthing fluids, meat, milk, or 

100 blood aerosolized during slaughtering. Other than in utero transmission, there is no 

101 evidence for human-human transmission of RVFV [4]. Those infected either remain 

102 minimally symptomatic or develop a mild form of the disease Rift Valley fever (RVF) 

103 (96% of patients), which is characterized by a febrile syndrome with sudden onset of flu-

104 like fever, muscle pain, joint pain, and headache [4]. Some patients develop neck 

105 stiffness, sensitivity to light, loss of appetite and vomiting and therefore RVF can be 

106 mistaken for meningitis [20]. While most human cases are relatively mild, a small 

107 percentage of patients will develop a much more severe form of the disease [21]. This 

108 usually appears as one (or more) of three distinct syndromes: ocular (eye) disease 

109 (0.5–2% of patients), meningoencephalitis (fewer than 1% of patients) or hemorrhagic 

110 fever (fewer than 1% of patients) [4]. 

111 Equally important is the lethal threat to peoples’ livestock. RVFV spread into 

112 naïve ecosystems is driven by infected animal movement and potentially via infected 

113 vectors [22], and can result in death of between 70-90% of young ruminants with sheep 

114 the most affected, and loss of pregnancy in nearly 100% of pregnant animals [23].
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115 Outbreaks in humans and in animals do not occur at random. Instead they are 

116 strongly linked to excess rainfall and to local flooding events [24] and the consequent 

117 rise in mosquito abundance [25-32]. In addition, there is mounting evidence that 

118 suggests that there is continuing low-level RVFV transmission to humans and to 

119 animals between recognized epidemic periods [33-49]. Undetected infections, 

120 particularly in livestock, provide an important reservoir for recurrent outbreaks, leading 

121 to a continuing threat of disease in economically marginal communities and risk of 

122 further geographical expansion.

123 The specific objective of this study was to consolidate the understanding of 

124 recent RVF epidemiology over the recent 1999-2021 period. We sought to catalogue 

125 the variability of national/regional incidence and prevalence, human risk factors and 

126 populations at risk, the geospatial distribution of RVF serotypes/lineages, and the 

127 present day national and regional human and animal RVF/viral hemorrhagic fever 

128 surveillance systems. The systematic review also highlighted current knowledge gaps in 

129 RVFV epidemiology to establish the major challenges remaining for current efforts in 

130 development and testing of human vaccine. 

131

132 Methods

133 To meet our study goals, we performed a systematic review of the available 

134 published literature as well as governmental monitoring and media reports of RVF 

135 activity during the period 1999-2021. The study results are reported according to the 

136 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 

137 2020) guidelines [50]. See S1 Table for details.
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138 Inclusion/exclusion criteria. Studies included in the review were those that 

139 contained reports of human, animal, and/or vector RVFV infection or exposure among 

140 individuals (of any age) in countries across Africa, the Arabian Peninsula, and the Indian 

141 Ocean where RVFV transmission was detected during the period January 1st 1999 to 

142 June 1st 2021, including historical, observational, and prospective studies. Serosurveys 

143 from outside this target area (Spain [51, 52], Poland [53], Korea [54], and Jordan [55]) 

144 were also catalogued, although not formally included in our analysis. Reports containing 

145 primary human seroprevalence or incidence data, reported RVF outbreaks or cases, 

146 details of RVF transmission, RVFV lineage distribution, and/or risk factors were 

147 included. Reports of infections among regional livestock and wildlife during the same 

148 period were also included. 

149 The primary objective was to obtain population-based survey data. However, 

150 georeferenced location-specific case reports were also included in spatiotemporal 

151 analysis. There was no restriction according to the language of publication. 

152 Excluded studies were those that reported laboratory-based studies or 

153 intervention trials among experimental animals in controlled settings. Reports, reviews, 

154 or opinion articles without primary data were also excluded.

155 Information sources and search strategy. To maximize detection of eligible RVFV 

156 transmission studies, we searched the online databases PubMed, Web of Science, 

157 African Journals Online, The Cumulative Index to Nursing and Allied Health Literature 

158 (CINAHL), The Scientific Electronic Library Online (SciELO), Elsevier, ResearchGate, 

159 and the Program for Monitoring Emerging Diseases (ProMED) listserv site. Animal 

160 outbreak data recorded by the World Organization for Animal Health (OIE) was 
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161 recovered from their databases, the 2005-2021 WAHIS (https://wahis.oie.int/#/home), 

162 and the older Handistatus II database (https://web.oie.int/hs2). Other sources of papers 

163 and reports that were also retrieved included: i) polling colleagues involved in RVF 

164 research or control for any non-indexed ‘grey literature’, ii) using Google Scholar 

165 referrals for ‘similar papers’, iii) scanning of literature found in personal archives, and iv) 

166 obtaining non-indexed citations found among the reference lists of the papers reviewed 

167 in our study. Unpublished data from a recent survey study in Nigeria was also included 

168 (Bonto Faburay and colleagues, personal communication). Details of the information 

169 sources and search strategy used are available in S1 Text.

170 Selection process. Review of titles and abstracts was performed by two trained 

171 reviewers who independently searched for data content meeting study requirements. 

172 The studies found potentially suitable for inclusion after title-abstract review were then 

173 obtained for full-text review from online or library sources. Where a single report 

174 contained data on multiple individual community surveys, each of these surveys was 

175 separately abstracted and given a unique ID number for inclusion in sub-group 

176 comparison analyses. Studies with insufficient details of the incidence or prevalence of 

177 RVFV infection were not included, and cases of duplicate publication or extended 

178 analysis of previously published data were removed from the list of selected references 

179 for this review. Full listings of included and excluded references are provided as 

180 Supporting Information files S2 and S3 Tables.

181 Data collection process. Included papers were abstracted by two independent 

182 reviewers, and their relevant features entered into a purpose-built database created with 

183 Google Forms. The entries were then stored in a shared master spreadsheet in Google 
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184 Sheets. The included papers and data registry downloads were archived in electronic 

185 text (pdf) or spreadsheet formats at the Department of Pediatrics, Stanford University 

186 School of Medicine, and at the Center for Global Health and Diseases, Case Western 

187 Reserve University. 

188 Data items. For the human and animal RVFV exposures or clinical cases reported, 

189 information was entered into the database based on UN geographic region 

190 (https://unstats.un.org/unsd/methodology/m49), country, and the sub-national 

191 administrative location details that were reported. Islands in the Indian Ocean, normally 

192 classified as ‘Eastern Africa’ by the UN, were grouped separately for our analyses. The 

193 beginning and ending month and year of the reported RVF activity or exposure study 

194 were recorded, as well as information about whether the event was a recurrence of 

195 transmission in a previously affected area, whether there had been flooding before the 

196 event, and whether the period involved an El Nino-Southern Oscillation (ENSO) event. 

197 When outbreaks spanned more than one calendar year, the year of onset was used to 

198 classify the event. Study design and the eligible study population were recorded for 

199 each report and whether the report involved human cases, domestic or wildlife animals, 

200 or insect vectors, and the number of affected individuals by species. Where available, 

201 age and gender distributions were captured for both animal and human studies, along 

202 with any potential risk factors that were studied, and which were found to be significant 

203 by that study. Factors evaluated for human exposure risk were age and age class, 

204 gender, occupation, socio-economic status, and participation in the animal care 

205 activities of feeding, herding, sheltering, or milking livestock, as well as assisting birth, 

206 butchering, or skinning, and disposal of aborted material, or consumption of raw milk. 
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207 Factors evaluated for animal RVFV exposure were age and age class, sex, breed, body 

208 condition, herd size, grazing strategy, and environmental conditions including proximity 

209 to water, local vegetation, rainfall, and mosquito control measures. Our data extraction 

210 tool was designed to capture factors related to the area the animal was raised (water 

211 sources nearby, mosquito exposures, rainfall, vegetation), herd factors (grazing 

212 strategy, mosquito control measures, herd size) and individual risk factors such as body 

213 condition and breed. In some animal studies, the age of the animal (by dental 

214 examination) and sex could be objectively assessed at the time of sampling. We 

215 grouped common animal exposures and determined how many studies had assessed 

216 for the risk factor and how many individual studies found statistically significant results 

217 by bivariate or multivariate analyses. Not all studies separated the species of animals 

218 involved within each exposure, and these have been reported as “not subdivided by 

219 species.” Information was recorded on the diagnostic tests used to identify acute cases 

220 or exposures, and on each study’s criteria used to identify suspected and confirmed 

221 animal or human cases of RVF. Available information regarding local RVF surveillance 

222 methods was noted, as well as any information about the RVFV lineage involved in the 

223 reported cases. Where individual outbreaks were reported in more than one publication 

224 or governmental bulletin, case numbers and mortality for that outbreak were taken from 

225 the latest reports.

226 Study risk of bias assessment. We used an abridged version of the Liverpool Quality 

227 Appraisal Tool (LQAT) [56, 57] to assess study quality and risk of bias of included 

228 studies because of the tool’s flexibility in accommodating different study designs and in 

229 creating potential bias assessments specific to our diverse set of studies. Scoring 
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230 involved assessment of possible subject selection bias, response bias, follow up bias, 

231 bias in risk factor assessment, bias in outcome assessment, or possible bias in 

232 reporting the outcome. Scoring also included whether the study’s analysis involved 

233 adjustment for potential confounders. The LQAT score, combined with recorded 

234 information about study design and power, were used to classify reports as weak (score 

235 1-5), moderate (score 6-8), or strong evidence (score 9 or 10) regarding local risk for 

236 disease or exposures. Each study was assessed independently by two reviewers with 

237 discrepancies resolved in consultation with a third reader. 

238 Effect measures. We enumerated the cumulative number of outbreaks reported within 

239 national and sub-national borders over time, and the observed incidence or period 

240 prevalence by location. However, because of significant heterogeneity created by 

241 reporting bias, relative risk comparisons among the multiple locations were considered 

242 unreliable. Continent-wide RVF risk assessment for Africa, based on climate, weather, 

243 population, and landscape factors has been recently well studied [58-63] and so was 

244 not repeated here. We have, however, updated prior meta-analysis assessment [64] of 

245 individual human risk factors to provide evidence regarding specific sub-groups who 

246 might serve as suitable high-risk subjects for a human vaccine trial. Because the 

247 chances of infection were based on post hoc determination of exposures, summary 

248 odds ratios, derived by random effects statistical modeling, were used to determine the 

249 strength of these associations in the meta-analysis. 

250 Synthesis methods. Outbreaks and exposures were classified into five groups: 1) 

251 acute human RVF cases, 2) acute animal cases, 3) human RVFV exposure data (based 

252 on sero-surveys), 4) animal exposure data, and 5) insect infection data. These were 
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253 tabulated over time and space using frequency measures and geo-located, when 

254 necessary, using Google Earth Pro software (available at 

255 https://www.google.com/earth/versions/). The two decades of inclusion (1999-2010 and 

256 2001-2021) were assessed jointly and then separately to determine the evolution of 

257 disease, changes in detection of disease through improved diagnostics, and the effects 

258 of more robust surveillance. Regional maps at the national and sub-national level were 

259 then prepared using QGIS software (https://www.qgis.org/en/site/) using base maps 

260 supplied by the Database of Global Administrative Areas (GADM) (version 3.4, (April 

261 2018, www.gadm.org, licensed for non-commercial purposes). Surveillance systems in 

262 animals, humans, and vectors were categorized either as early warning systems, 

263 detection in hospital-based surveys, use of sentinel herds for surveillance, or farmer 

264 reported syndromic surveillance. For meta-analysis of individual human level risk 

265 factors, results from those included studies with relevant human exposure data were 

266 entered into Comprehensive Meta-Analysis software, v.3 (CMA, Biostat, Englewood, 

267 NJ) for calculation of pooled summary estimates of exposure effects, along with their 

268 confidence intervals. Heterogeneity levels were scored using Higgins’s and Thompson’s 

269 I2 statistic [65]. Summary estimates of intervention effects were computed using Der 

270 Simonian and Laird random-effects modeling [66] implemented by the CMA software. 

271 Summary data were presented visually by Forest plots showing the respective odds 

272 ratio and 95% confidence interval (CI95%) for the pooled analysis. Assessment for 

273 potential publication bias was carried out by visual inspection of funnel plots, and 

274 statistically by calculating the Egger test. To explore heterogeneity and factors that 

275 could potentially modify the summary estimates of effect, we performed subgroup 
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276 analyses stratified by study risk of bias, and by year of publication. For the sensitivity 

277 analysis, each meta-analysis was retested with the exclusion of one study at a time to 

278 assess the possibility of a disproportionate impact of any individual study on summary 

279 estimates.

280

281 Results 

282 Studies and RVFV reports selected for inclusion

283 Initial screening of online publication databases yielded 7097 listings for RVF or RVFV 

284 during the period January 1999-June 2021 for our initial review (Fig 1). These were 

285 supplemented by 771 georeferenced outbreak case reports obtained from OIE 

286 databases World Animal Health Information System (WAHIS, 

287 https://wahis.oie.int/#/home) for events after 2004, and from OIE Handistatus II 

288 (https://web.oie.int/hs2/report.asp?lang=en) for earlier 1999-2003 events. Other 

289 sources, including private archives, governmental reports, ProMed listings, listings from 

290 previous systematic reviews [64, 67], and non-indexed citations (found in Google 

291 Scholar and in bibliographies of papers under review), provided an additional 667 

292 reports for consideration for possible inclusion. After removal of duplicates, 1976 unique 

293 articles or reports were selected for full text review. After the full text review was 

294 performed, 285 events reported in 281 publications, plus the 771 events identified in 

295 OIE databases and 48 from grey literature, identified a total of 1104 unique human or 

296 animal RVFV transmission events for inclusion in the analysis.
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297

298 Fig 1. PRISMA systematic review flow diagram of data collection and evaluation 
299 Online searches for publications and data registers (left side flow) were supplemented 
300 by governmental outbreak reports, non-indexed citations found in local archives, and 
301 citations found within the reference lists of the papers that were reviewed (right side 
302 flow). Data from one unpublished study were also included for evaluation.
303

304 Report characteristics

305 Of the 285 included reports selected from the published literature, 91% were in peer-

306 reviewed journals, 7% were in governmental reports, and 2% were in abstracts or 

307 published correspondence. Following the regional designations of the United Nations, 

308 43% of these papers reported RVF activity in East Africa, 13% in West Africa, 13% in 

309 the Arabian Peninsula, 10% in North Africa, and 10% in Southern Africa. The countries 

310 of Kenya (n= 42 reports), Saudi Arabia (n= 32), Tanzania (n = 24), South Africa (n= 22), 

311 Madagascar (n= 14), Sudan (n= 13), Mauritania (n= 11), and Mozambique (n= 11) were 

312 the most frequent subjects of RVF outbreak reports and surveys. Thirty percent of 

313 reports documented acute outbreaks (epidemics/epizootics), 61% were exposure 

314 studies performed during interepidemic periods, and 7% were post-epidemic survey 
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315 studies. One hundred sixty-five (58%) were cross-sectional surveys of humans or 

316 animals, 60 (21%) were acute case series, 35 (12%) involved prospective cohorts, and 

317 4 (1%) were case-control studies. Forty-two (15%) reported on vector testing in affected 

318 areas. Among published studies, 195 (68%) were non-randomized, 79 (28%) involved 

319 some form of random sampling, and 11 (4%) did not clearly indicate how sampling was 

320 done. In terms of study quality, the median LQAT score for published studies (where 

321 higher scores indicated higher quality studies) was 6 (range = 2-11, IQR 5-7), meaning 

322 the majority of studies had moderate-to-high risk of bias in assessing risk by location or 

323 by sub-population. Details of all included studies, including individual risk-of-bias scores 

324 are provided in S2 Table.

325 Where RVFV transmission or RVF epidemics/epizootics occurred, 1999-2021

326 Overall, 39 countries had evidence of RVFV circulation in humans, animals, or 

327 vectors during the 1999-2021 period, based on detection of probable or confirmed acute 

328 cases, positive PCR testing, or serosurvey results (Fig 2 and S4 Table). Eighty-three 

329 reports documented 124 locations in 19 countries that had 4,353 probable or confirmed 

330 acute human RVF cases and 755 deaths (Fig 3), whereas 107 reports documented 

331 acute RVF animal events (470 OIE confirmed cases) in 31 countries between 1999 and 

332 2021 (Fig 4). The median year of reported events was 2010. Outbreaks of clinical 

333 disease among humans or animals occurred at average rates of 5.8/year and 12.4/year, 

334 respectively, with Mauritania, Madagascar, Kenya, South Africa, and Sudan having the 

335 most human outbreak years. When month of onset was given for acute outbreaks 

336 reports (epizootics or epidemics), in East Africa, 77% (27/35) of outbreaks began 

337 between November and January; for southern Africa, 80% (8/10) began between March 
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338 and June; for West Africa, 92% (12/13) began between July and October; for the 

339 Arabian Peninsula, 93% (13/14) began between August and October; and for North 

340 Africa, 67% (6/9) began between September and October.

341

342 Fig 2. Regional map of countries exposed to RVFV infection based on findings of 
343 studies included in the systematic review. Countries were categorized as to whether 
344 there was evidence of human, animal, or insect RVFV infection during the 1999-2021 
345 era.
346

347 Maps in Figs 3 and 4 show the sub-national administrative regions where acute 

348 human and animal cases were reported during the earlier (1999-2010) or latter (2011-

349 2021) halves of our study period, or both. The countries with multiple repeated human 

350 outbreaks across both early and later time intervals were Kenya (n=4), Mauritania (n=5), 

351 South Africa (n= 4) and Madagascar (n= 2). S5 Table lists dates, place names, GPS 
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352 locations, reported human case counts, incidence rates per 100,000, reported numbers 

353 of deaths, and estimated case fatality risks. 

354

355 Fig 3. Sub-national administrative regions experiencing acute human cases of 
356 RVF during the years 1999-2021 Locations are shaded according to whether they 
357 experienced outbreaks before or after 2011, or if they had outbreaks during both 
358 periods.
359

360 In terms of epizootic activity, Fig 4 highlights the countries that experienced repeated 

361 acute RVF outbreaks among animals during one or both decades of the 1999-2021 

362 period. These were Kenya (n= 4), Madagascar (n= 2), Mauritania (n= 6), Mayotte (n= 

363 2), Mozambique (n=2), Senegal (n=3), and South Africa (n=4).
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364

365 Fig 4. Sub-national administrative regions experiencing acute animal cases of 
366 RVF during the years 1999-2021 Locations are shaded according to whether they 
367 experienced outbreaks before or after 2011, or during both periods of time.
368

369 Serosurveys of human and animal RVFV exposure

370 Of the population surveys performed during interepidemic periods to detect 

371 evidence of prior local RVFV circulation, 50 surveyed human populations, 79 surveyed 

372 livestock populations, and 23 tested local wild animals. Of these, eight jointly surveyed 

373 both humans and livestock, and nine surveyed both wildlife and livestock. A summary of 

374 available diagnostic assays used to identify anti-RVFV antibodies is presented below in 

375 Table 1.

376

377
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378  Table 1. Currently used serologic assays for detection of RVFV exposure in 
379 humans.

In-house Methods

Method Publication Target antibody Brief description

ELISA1 LaBeaud et al. 
2008 [68]

IgG Indirect ELISA for presence of anti-
RVFV IgG antibodies at Stanford 
University School of Medicine using 
inactivated MP-12 strain for coating 
antigen. Validated in humans

ELISA DIVA1,2 McElroy et al. 
2009 [69]

IgM or IgG Two parallel ELISA to distinguish 
naturally infected from vaccination. 
Validated in goat and humans. Does not 
distinguish IgG vs IgM

ELISA1 Paweska et al. 
2005 [70]

IgM and IgG IgG sandwich and IgM capture assay 
that uses irradiated whole virus for 
antigen. Validated in humans

ELISA1 Paweska et al. 
2007 [71]

IgG Antigen made using recombinant N 
protein. Validated in humans

ELISA1 Jansen Van 
Vuren and 
Paweska, 
2009 [72]

IgM and IgG Indirect ELISA for IgG and IgM 
separately. Antigen made using 
recombinant N protein. Validated in 
humans

VNT3 Winchger 
Schreur et al. 
2017 [73]

All neutralizing 
antibodies

Uses a virulent RVFV that expresses 
enhanced green fluorescent protein. Not 
species specific

Optical Fiber 
Infrasound 
Sensor

Sobarzo et al. 
2007 [74]

IgG Sandwich based ELISA and antigens 
are immobilized on an optical fiber that 
makes it more sensitive. Validated in 
humans

Luminex DIVA2 Van der Wal 
et al. 2012 
[75]

IgM and IgG Bead based assay that detects RVFV 
Gn and N proteins

Commercially available methods

Manufacturer
IFA4 EUROIMMUN IgG Approved for clinical testing
IFA4 EUROIMMUN IgM Approved for clinical testing
ELISA1 Biological 

Diagnostic 
Supplies 
Limited

IgM and IgG Approved for clinical testing
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ELISA1 ID-Vet IgG Competitive ELISA kit for the detection 
of anti-RVFV antibodies in serum or 
plasma. Multi-species that includes 
human validation

ELISA1 ID-Vet IgM IgM Antibody Capture ELISA for the 
detection of anti-nucleoprotein IgM 
antibodies. Validated for ruminant 
serum and plasma

380 1ELISA: enzyme-linked immunoassay 2DIVA: Differentiating Infected from Vaccinated 
381 Animals 3VNT: Viral neutralization test; 4IFA: immunofluorescent antibody 
382
383 Adapted from Petrova, et al., BMJ Glob Health 2020,doi:10.1136/bmjgh-2020-002694 
384 [76] under Creative Commons CC BY-NC
385
386 In several animal surveys performed during interepidemic periods, low rates of 

387 livestock and wildlife anti-RVFV IgM seropositivity or IgG seroconversion were detected 

388 in areas of Namibia, Senegal, South Africa, and Kenya [47, 77-79] suggesting 

389 unsuspected ongoing RVFV transmission in those locations without detection of 

390 concurrent clinical RVF cases. Also of note were animal studies that showed serologic 

391 evidence of RVFV circulation among animals or humans within areas that had no prior 

392 evidence of RVFV circulation. These were: among animals only, in Libya [OIE], Tunisia 

393 [80], and Western Sahara [81] in North Africa, but in either humans or animals in Sierra 

394 Leone [36], Côte d’Ivoire [82], Djibouti [83], Rwanda [84, 85], and eSwatini [OIE], i.e., 

395 geographical areas in sub-Saharan Africa with no previously documented transmission. 

396 Anti-RVFV antibody testing of human patients in health centers in Ghana [86] and 

397 Jordan [55] did not detect evidence of local exposure. 

398 RVFV lineage studies

399 Twenty-six papers reported on sequence analysis of RVFV isolates from recent 

400 and more distant outbreaks in an attempt to identify the geographic extent of specific 

401 viral lineages in circulation at the time. Although variants have been seen to cluster in 
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402 East African, West African, and Southern African groupings, the results from different 

403 studies are heterogeneous, and nomenclature for these variants has not yet been 

404 standardized. The included studies on strain and lineage are summarized in S6 Table. 

405 Differences are noted depending on the segment(s) of the viral genome analyzed, the 

406 clustering algorithm used, and the reference isolate used as a ‘type specimen’ for 

407 comparison. 

408 Sub-lineages of the Eastern group were found in the 1997-1998 Kenya/Tanzania 

409 RVF outbreak, as well as the 2000-2001 Saudi Arabia/Yemen outbreak [87, 88]. These 

410 were most similar to the RVFV isolates from humans, animals and insects the Kenya 

411 2006-2007 epidemic (when variants termed Kenya-1, Kenya-2, and Tanzania-1 co-

412 circulated) [87, 89]. Later 2008-2009 isolates from outbreaks in Comoros [90], Mayotte, 

413 and Madagascar [91, 92] were also from the Eastern group. Although Eastern African 

414 group isolates were recovered from Mauritania in 2010 [93] and Senegal in 2013 [94] in 

415 West Africa, outbreaks in these countries in other years have identified a separate West 

416 African lineage grouping of RVFV isolates [95, 96]. Grobbelaar and colleagues [97] 

417 have used the sequence from the viral Gn surface peptide to compare 198 isolates 

418 recovered between 1944-2010 from across Africa and the Arabian Peninsula, and have 

419 defined 15 different lineages, which they have labeled A through O. South African 

420 isolates in 2008 were grouped in the C lineage, related to the Kenya-1 lineage. 

421 However, during 2009-2011, South African isolates were predominantly found in a new, 

422 separate lineage H [98], while one isolate in Northern Cape Province was from lineage 

423 K. Lineage K was later identified in a small South African outbreak in 2018 [99], and in 

424 an RVFV-infected Chinese expatriate working in Angola in 2016 [100]. 
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425 Table 2. Rift Valley fever virus lineage determinations for isolates recovered in 
426 recent epidemics, based on cluster analysis of gene sequences for the viral Gn 
427 surface protein. (Based on Grobbelaar, et al. 2011 [97])
428

Grouping Grobbelaar 
System

Year Country Species Lineage 
Notes 

Reference

East 
African

lineage C 2000-01 Saudi Arabia, 
Yemen 

Human Very similar to 
1997-98 
isolates/varian
ts Kenya-1, 
Kenya-2, and 
Tanzania-1 

[87, 88]

lineage C 2006-07 Kenya Humans,
Livestock,
Vectors 

[87, 89]

N/A 2007 Comoros Humans Similar to 
Kenya 2006-7

[90]

lineage C Madagascar [91, 92]
West 
African

Mauritania,
Senegal,
Niger

Related to 
Kenya-1 
lineage 

[95, 96]

Southern 
African 

lineage C 2008-09 South Africa [97]

lineage H 2009-11 South Africa [101]
lineage K 2009-11 South Africa [101]
lineage K 2018 South Africa [99]
lineage K 2016 Angola/China [100]

429

430 Human outbreak characteristics 

431 During human outbreaks, surveillance and reporting efforts varied greatly from 

432 location to location. We observed that among human outbreak reports, the calculated 

433 incidence rates of probable or confirmed human RVFV infections among local or 

434 regional residents varied between 0.01 and 91 per 100,000 population, with a median 

435 value of 2.5. Case fatality risks for these probable or confirmed cases varied from zero 

436 to 65% (median = 14.3%) in locations where more than one case was reported (n= 107 

437 locations from 41 publications, see S5 Table).
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438 The cumulative human exposure to RVFV infection is also heterogeneous across 

439 locations. In endemic areas, this cumulative exposure is usually estimated based on the 

440 population prevalence of human anti-RVFV IgG seropositivity. Among the 25 well-

441 designed population-based serosurveys (scored as having low risk-of-bias) among our 

442 included reports (n= 44), IgG seroprevalence during interepidemic periods ranged from 

443 (0.15%) in Madagascar in 2014-2015 [40] to 22% in eastern Kenya in early 2006 [102] 

444 and again in 2013-2014 [103], with an overall median intra-epidemic value of 5.2% (IQR 

445 1.8% - 13%) seropositivity across all 25 surveys. 

446
447

448

449 Fig 5. Acute human RVF events per year during 1999-2021, by geographic regions 
450 across Africa, the Indian Ocean, and the Arabian Peninsula 
451
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452 Acute human RVF outbreaks were reported across Africa, the Arabian Peninsula, and 

453 the Indian Ocean from 2000-2021 (Fig 5). The highest number of reported human RVF 

454 events occurred in 2006-7, starting in East Africa, moving to Sudan (North Africa) and 

455 then to the islands in the Indian Ocean during 2007-2008, as part of an evolving 

456 epidemic and epizootic of the East African RVFV lineage. In East Africa, new RVFV 

457 outbreaks have recurred annually since 2016, whereas no new human cases have been 

458 reported in the Arabian Peninsula since 2001. RVF flared in southern Africa in multiple 

459 episodes between 2008 and 2011 and West African countries Mauritania and/or 

460 Senegal have reported cases across multiple years, 2003. 2010, 2012-3, 2015-6, and 

461 again in 2020. 

462

463
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464 Fig 6. Acute animal RVF events per year during 1999-2021, by geographic regions 
465 across Africa, the Indian Ocean, and the Arabian Peninsula 
466

467 A larger number of acute animal RVF events (N = 273), compared to human events (N 

468 = 132), was reported during the 1999-2021 period studied. The reported animal events 

469 in southern Africa (N= 31) and in the Indian Ocean islands (N= 19) were concentrated 

470 during the 2008-2011 period (Figs. 5 and 6). By contrast, animal events in West Africa 

471 and East Africa were reported during most years of the targeted time interval 

472 (cumulative N= 80 and N=118, respectively), with the highest yearly tally being 41 

473 reported events in 2018 (Fig 6). No animal event was reported in the Arabian Peninsula 

474 after 2010, while only a low number of events were reported in Central and North 

475 African countries between 2002-2019 (cumulative N= 8 and N= 9, respectively; Fig. 6).

476 Of 28 papers that reported both human and livestock data, 17 contained 

477 information on concurrent co-local RVF epidemic and epizootic activity. These reports 

478 documented combined human/animal RVFV transmission events in Saudi Arabia [104, 

479 105] and Yemen [106] in 2000-2001; in Egypt [107] and Mauritania [108] in 2003; in 

480 Kenya [5, 89] and Tanzania [89, 109] in 2006-2007; in Mauritania in 2010 [93, 110] and 

481 again in 2012 [111]; in Senegal in 2013-2014 [94]; in Niger [96] and in Uganda [112] in 

482 2016; and in Kenya [113] , Mayotte [114], and South Africa [115] in 2018.  

483 Evidence of vector presence and competence for interepidemic RVFV 

484 transmission. In S7 Table we summarize 31 published studies from 1999-2021 that 

485 tested insect vector species for RVFV infection potential. Our systematic review 

486 identified 21 locations with RVFV-positive vectors, including mosquitos from Aedes, 

487 Culex, Anopheles, and Mansonia spp. and from Hyalomma spp. ticks (Fig. 2). Notably, 
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488 in 6 out of 10 trapping surveys performed during interepidemic years in endemic zones, 

489 live RVFV or RVFV RNA was detected in captured vector mosquitoes or ticks [116-121]. 

490 As the lifespan of mosquito vectors is relatively short, the presence of RVFV viral RNA 

491 in these vectors likely represents sustained circulation in each of the given locations. 

492 Human risk of RVFV-related disease. Among our included studies from the 

493 systematic review, 84 reports assessed human risk factors for RVFV exposure. The 

494 factors most commonly assessed were occupation (33 papers), gender (30), age (89), 

495 contact with animals (38), travel (15), as well as proxies for mosquito exposure such as 

496 work or residence in proximity to water sources (12), and personal behaviors related to 

497 mosquito avoidance (29). 

498 Quantitative assessment of the role of gender involved estimation of chances for 

499 RVFV exposure by men and women in endemic settings. There were 31 studies that 

500 reported RVFV exposure (cases or anti RVFV seropositivity) according to gender (Fig 

501 7). There was moderate heterogeneity among these studies (I2 = 39%), and random 

502 effects modeling estimation yielded a summary pooled OR estimate of 1.41 (CI95% 1.24, 

503 1.60, p < 0.001) for males vs. females in their exposure rates (Fig 7). This value, based 

504 on studies from 1999-2021, remained very similar to that calculated by Nicholas and 

505 colleagues [64] (OR = 1.36) in their meta-analysis of studies from 1984-2011.
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506

507 Fig 7 Meta-analysis of the impact of human gender on odds of RVFV exposure in 
508 at-risk populations
509

510 Greater human risk associated with animal contact.  Eleven well-structured 

511 human surveys (having moderate to low risk of bias, i.e., LQAT scores ≥ 6) compared 

512 rates of RVFV exposure among local residents according to the extent of their daily 

513 contact with animals, particularly ruminant livestock. Heterogeneity was high among 

514 these studies (I2 = 68%). However, random effects meta-analysis, summarized in the 

515 Forest plot in Fig 8, yielded a summary OR estimate signifying a 46% increase in the 

516 odds of RVFV exposure among people with regular animal exposure (random effects 

517 model pooled OR = 1.46, CI95% = 1.09, 1.94, p= 0.01) in at risk populations. In separate 
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518 task analyses, S1-S3 Figures show Forest plots for summary estimates of associations 

519 between butchering, sheltering, and milking livestock activities and risk of RVFV 

520 exposure among at-risk populations. The estimates were: for butchering, OR = 3.7 

521 (CI95% = 2.5, 5.4, p < 0.001, I2 = 75%); for sheltering, OR = 3.4 (CI95% = 2.1, 5.4, p < 

522 0.001, I2 = 57%); and for milking, OR = 5.0 (CI95% = 2.8, 8.8, p < 0.001, I2 = 77%), 

523 indicating significantly higher risk with these exposures. Among these pooled studies, 

524 there was no evidence of publication bias (by funnel plot or by Eggar’s statistic). There 

525 were no yearly trends in exposure effects, nor did sensitivity analysis indicate evidence 

526 of any single dominant study for each exposure-related outcome.

527

528 Fig 8 Meta-analysis of the impact of animal exposure on odds of RVFV exposure 
529 in at-risk populations.
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530   

531 Fig 9 Meta-analysis of the impact of handling RVF-related animal abortions on 
532 odds of human RVFV exposure in at-risk populations
533
534 Thirty-nine included studies assessed human RVFV-infection risk factors related 

535 to different animal exposures and 17 of those studies linked animal exposures to acute 

536 human RVFV infections (S8 Table). In meta-analyses performed according to specific 

537 animal contact tasks, handling aborted material during an RVF outbreak had the 

538 greatest pooled odds ratio of human infection (random effects model pooled OR = 3.65, 

539 CI95% = 2.32, 5.73, p < 0.001, I2 = 73%). 

540 Our survey also provided individual reports of an additional 21 significant animal 

541 contact risk factors that had not been commonly assessed. In a study in Tanzania 

542 during the 2006-2007 East Africa outbreak, 40% of 115 RVFV cases reported having 

543 contact with animal products including meat and milk from sick animals, compared to 

544 just 28% of the cases reporting having slaughtered an animal [122]. Specifically, 
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545 consumption of meat from sick animals was associated with a nearly four-fold increased 

546 risk of RVF-associated death during the 2006-7 outbreak in Kenya [68]. 

547 Occupational and socioeconomic factors associated with RVFV exposure. 

548 Our systematic review identified seven studies overall that found statistically significant 

549 risks related to socioeconomic factors such as education level, ethnicity, and household 

550 size. Briefly, the less wealthy and less educated were overrepresented among RVFV 

551 exposed people (S9 Table). 

552 Forty-five of the 506 papers assessed occupation as a human risk factor and 14 

553 references found occupation to be a statistically significant factor (S10 Table). For 

554 clarification, those who were classified as ‘herders’ may not necessarily live a pastoralist 

555 lifestyle, so they have been given separate status. We found three studies that reported 

556 high seroprevalence among “housewives”, which might be explained by their frequent 

557 handling of raw meat and animal products for cooking. 

558 Risk Factors for RVF severity. Out of the 135 included papers assessing 

559 human RVFV exposure and disease, 12 presented data on human risk factors 

560 associated with more severe RVF disease presentation (S8 Table). Persons with animal 

561 contact were usually more likely to have had severe disease, [21, 123, 124]. In 

562 outbreaks in Kenya [123, 124], specific animal contact activities such as handling or 

563 consuming products from obviously sick animals (OR for more severe disease = 2.53, 

564 CI95% = 1.78, 3.61, population attributable risk percentage [PAR%] = 19%) and touching 

565 an aborted animal fetus (OR = 3.83, 95% CI95% = 1.68, 9.07, PAR% = 14) were strongly 

566 linked to risk of severe rather than mild human RVF disease. Older age and death of a 

567 family member were also linked to more severe human disease [123]. In Sudan, males 
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568 aged 15-29 years were overrepresented among patients who presented with severe 

569 disease, as compared to females of the same age [125]. Environmental factors, such as 

570 excess rainfall and muddy soil linked to emergence of mosquito blooms have also been 

571 linked to severe human disease in both Sudan and Kenya [126, 127]. 

572 Severity of human RVF was associated with the presence of concomitant co-

573 infections. A fatal outcome in a travel related case was attributed to the presence of 

574 concurrent hepatitis A virus infection [45]. Additionally, a study in South Africa during the 

575 2010 RVFV outbreak indicated that existing HIV-positive infection status was associated 

576 with risk of the encephalitic form of RVF disease [128], a finding similar to experience 

577 among HIV-infected patients in Tanzania in 2007, where all patients with HIV-positive 

578 status developed encephalitis, and of whom 75% died [122]. 

579 Four studies performed in three countries (Kenya, Sudan, Saudi Arabia), 

580 examined the risk factors linked to death from RVF. In Kenya in 2007, consuming and 

581 handling products from sick animals and village and district location were linked to risk 

582 of death (OR = 3.67, CI95% = 1.07, 12.64, PAR% = 47%) [124, 129]. In Saudi Arabia, a 

583 retrospective analysis of the 2000-2001 outbreak showed that specific clinical signs 

584 were independently linked to death. These included jaundice, bleeding, and neurologic 

585 symptoms (P < 0.0002) [130]. One study demonstrated an increased level of RVFV 

586 replication in fatal RVFV [131]. 

587 Risk factors for animal RVFV outbreaks. Because human risk of RVFV 

588 exposure is closely associated with the local presence of infected livestock, we 

589 reviewed factors related to animals’ risk of RVFV infection.
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590 Herd Immunity Levels. Our systematic review included results from 174 animal 

591 studies, in which 144 tested domestic livestock and 26 tested wild animals for RVFV 

592 exposure and/or acute infection. Of all livestock studies included, 32 were conducted 

593 during an active epizootic, 10 were conducted just after an outbreak in the post-

594 epidemic phase, and 97 were conducted during interepidemic years. For wildlife 

595 surveys, 5 were carried out during an active epizootic, 5 were done in the post-epidemic 

596 phase, and 14 were performed during interepidemic periods. Of all animal risk factors, 

597 sex and age were the most studied, and older animals and those that had lived through 

598 outbreaks were more likely to have been exposed. A summary of livestock risk factors is 

599 presented in S11 Table.

600 Herd Level Risks. For herd level risks, the observed effects of herd size has 

601 varied across studies. A 2013-2014 study in a high risk area of Kenya showed that 

602 medium sized herds of 50-100 animals had a significantly higher seroprevalence 

603 compared to small herds (< 50 animal) or very large herds (>100 animals) [132], though 

604 this did not account for the differences in animal rearing strategies dependent on herd 

605 size. The statistical significance of herd size was lost when village was accounted for as 

606 a random effect [74]. In Tunisia, the first assessment of serology in camels in 2017-

607 2018 showed that camels living in smaller herds intended for meat production had a 

608 higher seroprevalence than those used for military purposes or tourism. Additionally, 

609 this study found that camels that had contact with ruminants had significantly higher 

610 rates of RVFV exposure [80]. 

611 The differing levels of RVFV susceptibility across livestock species (S11 table) 

612 further complicates the herd immunity threshold related to animal-to-human RVFV 
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613 spillover. Additionally, livestock had variable contact with other livestock from 

614 neighboring herds and regions. An extensive social contact analysis from the 2008-

615 2009 Madagascar outbreak showed that bartering practices, in which cattle can have 

616 multiple contacts within a village, was a significant seroconversion risk factor [133]. 

617 Such bartering practice can support for inter-village RVFV circulation, whereas formal 

618 trade networks or cross-border smuggling were more likely to be responsible for trans-

619 national spread [134, 135].

620 Individual Animal Risks. For individual-level animal risk, studies examining cattle 

621 had the most significant findings. Abortion was the most recognized clinical sign 

622 associated with RVFV infection and recent abortion was significantly associated with 

623 RVFV exposure [136]. This experience was the first to identify the 2018 RVFV 

624 outbreaks in Kenya when farmer-reported surveillance was implemented [126]. None of 

625 the included studies found an association between underlying animal body condition 

626 and RVF risk. 

627 Wild animals’ role in RVFV transmission. RVFV has been found in a variety of 

628 wild mammals [48]. Wild ruminants, especially buffalo, have been found to have 

629 significant herd seroprevalence during inter-epidemic period in endemic areas [46, 137, 

630 138]. For species-specific risk factors, interspecific network centrality, home range and 

631 reproductive life-history traits were associated with RVFV occurrence. S12 Table 

632 summarizes the wild animal seropositivity and acute infections identified in our literature 

633 review. 

634 Animal Vaccination. Among the included papers in this review, we identified 17 

635 studies in six countries that included vaccinated animals. Countries that had vaccinated 
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636 cattle, sheep, or goats for RVFV were Kenya, Tanzania, South Africa, Egypt, and Saudi 

637 Arabia [5, 139-143]. In Egypt, between 2013 and 2015, seroprevalence of anti-RVFV 

638 was 14.9% among immunized cattle, compared to 7.9% among unimmunized cattle 

639 [144]. Although livestock are required to be vaccinated before they are exported to 

640 Saudi Arabia, a study at a livestock quarantine facility in Djibouti found an anti-RVFV 

641 IgM-positive seroprevalence of 1.2% in sheep and goats (small ruminants grouped as 

642 ‘shoats’) and 0.3% in cattle [139, 145]. A 2009 study in Mecca, Saudi Arabia found 

643 55.8% anti-RVFV IgG in ostensibly vaccinated sheep, but still found a 2.6% rate of IgM 

644 positivity, indicating possible ongoing circulation (despite herd vaccine status) or recent 

645 vaccination[146]. 

646 Additional considerations for RVF risks. The range of RVFV is expanding, 

647 and it appears to travel well [39, 147, 148]. In endemic countries, internal travel to or 

648 from outbreak epicenters is typically included in suspect case definitions. A recent 

649 review by Grossi-Soyster and LaBeaud [149] has highlighted the risk of RVFV 

650 transmission to travelers, and although most travelers will not have direct contact with 

651 livestock, their mosquito exposure behavior needs to be assessed. 

652 Reported surveillance methods in animal, humans or vectors are summarized 

653 in S13 Table. Our review revealed 52 papers specifically reporting on RVFV 

654 surveillance. Their methods are not uniformly implemented, but include: i) leveraged 

655 RVFV testing of samples taken during surveillance for other diseases such as malaria, 

656 dengue, HIV, and Lassa fever [38, 150-152]; ii) the use of sentinel livestock herds in 

657 high-risk areas; iii) increased case surveillance based on monitoring of weather-related 

658 early warning signs; and iv) international collaborations with neighboring regions to 
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659 conduct surveillance. These surveillance systems do not necessarily operate in parallel, 

660 but instead may overlap and may only be implemented at times of perceived increased 

661 risk.

662 Fig 10 depicts the different types of early warning and surveillance systems and 

663 their relative certainty.  S13 table further summarizes available information from open-

664 source platforms on the early warning and surveillance systems used for RVFV 

665 transmission during 1999-2021. 

666
667  Fig 10 Progressive scale of surveillance that can used to indicate an impending RVFV disease 
668 outbreak
669 Republished with permission of The National Academies Press, from Under the Weather: 
670 Climate, Ecosystems, and Infectious Disease (2001), Chapter 7: Towards the Development of 
671 Disease Early Warning Systems. P. 87; permission conveyed through Copyright Clearance 
672 Center, Inc. under license ID #1142222
673
674 RVFV Diagnostics. When implementing surveillance for detecting RVFV 

675 transmission, one major constraint is the limited availability of accurate diagnostics in 

676 places where RVF disease occurs. For both human and animals, reliance on a clinical 
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677 presentation to prioritize RVFV testing is complicated by the significant clinical 

678 diagnostic overlap with other febrile infection syndromes.  

679 Although detection of circulating RVFV RNA by RT-PCR can be a definitive 

680 diagnosis of active infection, because the human and livestock viremic period is typically 

681 only 4-6 days (up to 14 days if hemorrhagic human disease), serologic testing is more 

682 extensively used to investigate the epidemiology of recent and past infection. We 

683 extracted data from 207 included review reports on the type of assays recently 

684 employed for diagnosis of acute RVF. No studies tested livestock and wild animals 

685 together for acute infection. The assays used to detect acute RVFV infections are 

686 summarized in Table 3. 

687

688 Table 3: Summary of acute diagnostic assays employed in included studies, by 

689 species

Number of Included Studies that Used the Following Methods for Detection of Acute RVFV Infection

Species IgM IgM, 
direct1

IgM,
PCR

IgM, 
PCR, 
direct1 

IgM, 
PCR 
IgG 
SC2

IgM, 
IgG 
SC2

PCR 
IgG 
SC2

Direct1 
only

PCR 
only

PCR, 
direct
1

IgG 
SC2  
only

Total

Livestock 26 0 4 0 1 3 2 0 5 0 3 44

Humans 21 2 23 4 2 0 0 2 9 1 0 64

Humans, 
livestock

1 1 5 3 1 0 0 0 1 0 0 12

Humans, 
livestock, 
wildlife

0 0 0 1 0 0 0 0 0 0 0 2

Wildlife 0 0 1 0 0 0 0 1 0 1 1 4

Method 
Total

48 3 33 8 4 3 3 15 2 4
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690 1Direct: Direct detection methods include immunofluorescence assay, cell culture (virus 
691 isolation), electron microscopy, and immunohistochemistry
692 2SC: IgG Seroconversion of IgG (positive IgG during the study period AND a previously 
693 documented negative status from the same individual)
694
695
696
697 DISCUSSION

698 During RVF epidemics, assessment of incidence, prevalence, and associated 

699 risk factors for infection are often based on case series of suspected patients, rather 

700 than well-designed, population-based surveys that enumerate laboratory-confirmed 

701 cases vs. non-cases. Epidemic and epizootic outbreak surveys are further hampered by 

702 limited access to the affected rural communities, which are often experiencing severe 

703 flooding caused by excessive rainfall, and very limited access to diagnostic testing. In 

704 addition, survey incidence/prevalence calculations may be imprecise because of lack of 

705 accurate census information. As a result of these factors and the irregular frequency of 

706 disease outbreaks, the epidemiology of RVFV transmission and the risk factors for 

707 RVFV-related human disease are not well defined. In some endemic areas, post-

708 epidemic serosurveys have shown high community exposure to RVFV [68, 103, 151-

709 156], even though symptomatic RVF had been only rarely reported by local health care 

710 services. Based on our consolidated picture of recent RVFV epidemiology and the 

711 knowledge gaps we have identified, future operational research and clinical trial design 

712 should consider the factors discussed below, with the understanding that currently 

713 available data have some significant limitations in accurately defining human risk for 

714 RVF. 

715 Our review indicated that during the last two decades, new patterns of RVF 

716 epidemiology have emerged. The virus continues to expand its range across Africa 
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717 countries and into new regions within endemic countries [58, 157]. It should be noted 

718 that among studies that were technically excluded from our review, there were several 

719 completely negative serosurveys of animals performed in Spain [51], the Canary Islands 

720 [52], Mauritius [158], Zanzibar [159], South Korea [54], and Poland [53]. Expansion of 

721 RVFV transmission has been aided by livestock movement [34, 160-163] and the 

722 increasing frequency of extreme weather events involving heavy rainfall and flooding 

723 [59]. The discovery of vertical transmission within insect vector species other than 

724 floodwater Aedes spp. mosquitoes [164] indicates the existence of multiple pathways for 

725 local RVFV persistence in different ecosystems during time periods that are in between 

726 recognized outbreaks. An additional non-vector route of RVFV transmission to humans, 

727 i.e., maternal-fetal transmission, has also been identified recently [165-167], and it has 

728 been established that RVFV can be an abortifacient in humans [168]. Thus, treating 

729 RVF as a concern only during large scale outbreaks in known hotspots fails to capture 

730 the full burden of disease and its underlying transmission, and fails to detect new areas 

731 of emergence. 

732 The limited understanding of transmission persistence during interepidemic 

733 periods is a major gap affecting our ability to control continued expansion of RVFV, both 

734 within and between countries. Prospective studies during interepidemic periods are 

735 needed to provide a deeper understanding of how RVFV survives then subsequently 

736 thrives in an endemic area. Study findings could then suggest how mitigation efforts, 

737 such as vaccination of high-risk humans, can be implemented even before existing 

738 surveillance systems detect an outbreak. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.21264307doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.29.21264307
http://creativecommons.org/licenses/by/4.0/


39

739 Gap 1: Defining the likely interval between significant RVF outbreaks is 

740 challenging, because without active case finding, passive detection is an imperfect 

741 trailing indicator of transmission, as it requires a large enough case number of RVF 

742 clinical syndromes (e.g., abortions in livestock) to identify events. Over the last two 

743 decades, increased availability and sensitivity of RVFV diagnostic assays, including 

744 genotyping, have contributed to increased recognition of viral transmission. However, 

745 without baseline interepidemic surveys in both high and low risk areas it is not possible 

746 to determine whether RVF outbreak waves are due to persistence or to re-introduction 

747 of RVFV transmission. As the outbreak intervals for RVFV remain undefined, the lack of 

748 studies during interepidemic periods limit our ability to understand viral maintenance 

749 and make it difficult to qualify endemicity in support of mitigation efforts such as 

750 vaccination. More useful data would include concomitant active surveillance of vectors, 

751 livestock, and humans, and information on rainfall, temperature, mosquito larval 

752 sources, and the frequency of risk-related human behaviors. Because RVF livestock 

753 outbreaks are up to five times more likely to occur where outbreaks have previously 

754 occurred, and human outbreaks are more likely to occur in the same locations as 

755 livestock outbreaks [5, 169], areas with prior RVFV transmission shown in Figs. 3 and 4 

756 would be best locations to characterize interepidemic transmission. 

757 Kenya, South Africa, Madagascar, and Mauritania have had recurrent human 

758 and domestic animal RVF outbreaks in the last two decades and are thus most likely to 

759 experience additional outbreaks in the near future. Notably, areas with recurrent 

760 outbreaks tend to have more robust surveillance which may account for the higher 

761 frequency of RVF detection in those locations (i.e., ascertainment bias). Based on 
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762 findings identified in this systematic review, RVF can be more likely in a given location, 

763 compared to a similar nearby location due to many factors, including the total number of 

764 susceptible hosts (influenced by herd immunity), the presence of wildlife reservoirs 

765 [170], the water retention properties of the soil and rainfall patterns [62], local cultural 

766 practices that may increase (consumption of blood) or decrease risk (refusing to eat 

767 meat from dead animals) [171], and mitigation efforts that persist between outbreaks. 

768 As these factors can be confounded, an in-depth understanding of RVFV epidemiology 

769 is needed to design investigations so that resources for operational research can be 

770 maximized. 

771 Gap 2: The unpredictability of livestock herd immunity Current prevention 

772 and readiness efforts for RVFV outbreaks rely mostly on early warning prediction and a 

773 rapid livestock vaccination response, both of which occur with variable reliability. 

774 Recovery from infection and vaccination with live-attenuated vaccines are thought to 

775 result in lifelong neutralizing antibodies in livestock [172] and indeed, if enough livestock 

776 could be vaccinated for RVFV, then human spillover would be unlikely [173]. However, 

777 livestock within and between herds have a rapid turnover rate as animals are 

778 slaughtered and sold, or arrive naïve into the herd from new births or purchases. 

779 Additionally, livestock in RVFV endemic countries often live in close proximity to wild 

780 ruminant species that also acquire many naïve animals each breeding season. The 

781 logistics and current intermittent nature of domestic livestock vaccination campaigns, in 

782 the face of unknown baseline herd immunity levels, makes full reliance on reactive 

783 livestock vaccination a risky approach to RVFV public health control.
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784 Most livestock animal studies have focused on cattle, sheep, and goat 

785 seroprevalence. Although some surveys have used power analysis to determine how 

786 many animals to sample from each species, many surveys have still opted for 

787 convenience sampling, focusing either on sheep and goats, which are easier to handle, 

788 or on just cattle alone. The interpretation of such livestock prevalence surveys should 

789 be viewed with caution. Animal age is also likely to influence the results-- cattle and 

790 dairy animals tend to live longer than sheep or goats, so it can appear that their 

791 cumulative burden of exposure is higher. However, evidence of infection among 

792 younger animals does provide evidence for recent RVFV transmission activity, and 

793 increased seroprevalence between years can indicate an unrecognized outbreak. When 

794 multiple species are surveyed, rates should be calculated based on animal-years at risk 

795 and better attempts should be made to age animals based on their dentition. Factors 

796 that confound RVFV exposure risk should be captured, such as the wealth and 

797 knowledge of the farmer [113], area livestock density, and location-specific climate 

798 factors. We suggest factors such as nearby temporary and permanent water bodies, 

799 land use, mobility at peak mosquito biting times, housing conditions, and rearing 

800 strategy be combined with climate data to better discern spatial and temporal high-risk 

801 periods for livestock.  This will be important in defining optimal locations for human 

802 vaccination trials.

803 As the previous systematic review by Clark, et al. [67] has highlighted, and as we 

804 found in our review, there are few studies that assess both human and animals from the 

805 same site at the same time. The high-risk periods for livestock and humans may not 

806 necessarily overlap, as livestock infections are undoubtedly driven by rainfall and 
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807 mosquito blooms, but human outbreaks can also expand with increased slaughtering of 

808 sick animals and the increased presence of secondary mosquito vectors.

809  It is understood that livestock viral amplification is an important predecessor of 

810 human outbreaks. The greater number of acute animal events (N=273), compared to 

811 human events (N=132) identified in this review could be due to our increasing ability to 

812 detect smaller animal outbreaks or could represent our inability to reliably detect acute 

813 human cases associated with smaller animal outbreaks [174, 175]. After animal 

814 outbreaks are established, we recommend broad-based human outbreak investigations 

815 that include all community members, not just the high-risk individuals, i.e., all individuals 

816 who may have had contact with animal products from the affected herd, as well as 

817 those who do not own livestock but reside in areas within vector flight range. 

818 Gap 3: Differences in seasonality across endemic/enzootic locations. As 

819 climate change modifies seasonal weather patterns, differences in outbreak incidence 

820 are becoming more prominent among at-risk locations, but these changes may make 

821 epidemics harder to predict. Eighty-nine (31%) of our included studies specifically 

822 mention flooding at the outbreak site. A defined “rainy season” and “dry season” in 

823 tropical locations can guide risk assessment, but it is not just rain that makes an 

824 outbreak more likely. Congregation of many susceptible hosts and large volume 

825 slaughtering of animals (for example, as part of religious or community festivals [146, 

826 176, 177]), an abundance of mosquito breeding containers (for example, in plastic 

827 trash) [178], large-scale animal movement [179], and low baseline herd immunity will 

828 increase the chance of RVFV outbreaks. Recent data-driven modeling efforts by 

829 Hardcastle and colleagues [58], incorporating environmental and human and animal 
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830 census data at the district level, predict that outbreaks in southern and eastern Africa 

831 are most likely to occur in December through July, whereas risk in the Sahelian zone 

832 will be higher in September through November [180]. Even within countries, seasonal 

833 rainfall can vary widely. For example, in western Kenya, August typically has above 

834 average rainfall while the remainder of the country remains dry [181]. Real-time regional 

835 level weather information must be considered to obtain adaptive implementation of 

836 mitigation efforts. 

837 Pastoralist herds tend to have higher RVFV exposure, and this is influenced by 

838 the types of ecozones where the herds circulate. Pastoralists follow water and pasture 

839 availability as they become available in a seasonal cycle, which may involve movement 

840 through high-risk zones. As animal protein demand increases, mostly in urban centers, 

841 more livestock will be passing through areas that have previously experienced RVF 

842 cases, and in the presence of competent mosquito vectors. Recent infections are more 

843 common in nomadic herds compared to agro-pastoralist herds [182] and in herds with 

844 longer distance to travel to their night pens or to the nearest permanent water [82]. 

845 Modeling of data from Senegal suggested that nomadic herd movements are sufficient 

846 to account for endemic circulation of RVFV, although the co-existence of Aedes vertical 

847 transmission cannot be ruled out [183].

848 In addition to climate, the variety of suitable hosts present in those areas will also 

849 vary from location to location. All potential wildlife reservoir species should be 

850 considered when comparing incidences between two geographically distinct areas 

851 because wild animals’ behaviors and range is intimately tied to topography and 

852 resource availability. In Botswana, wildlife hunters’ seroprevalence was 27% compared 
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853 to a 3% community level exposure [35], showing that wildlife exposure may contribute 

854 directly to human burden independent of domestic livestock presence. This is further 

855 illustrated by human case exposure in Angola without documented livestock exposure 

856 [100]. As RVFV can adapt to new ecological niches and utilize a wide variety of 

857 mammals to amplify itself, including common white-tail deer [184, 185], we caution not 

858 to make the assumption that wild animals’ role in RVFV transmission will be similar 

859 between locations. All suitable wild animals, particularly wild ungulates, should in 

860 included in calculations of regional herd immunity and their interface with humans 

861 should be considered as a likely risk factor.

862 Gap 4: Data challenges related to bias based on limited study designs and 

863 inconsistent reporting. A systematic review by Bron and colleagues [186] has 

864 summarized the patchwork of data collected on RVFV epidemiology over the last 

865 century, and has highlighted the lack of standardized reporting as the major challenge in 

866 comparing data between locations. In our current systematic review, which focused 

867 solely on studies from the last two decades, we confirm that uneven reporting remains a 

868 significant problem. Improving study designs and sampling frameworks for RVFV is 

869 challenging, in part due to the lack of funding opportunities during interepidemic periods. 

870 In outbreak reports, uncertain levels of ascertainment bias and possible diagnostic 

871 misclassification, mean that case finding and resulting case counts have unclear 

872 accuracy. ‘Population at risk’ numbers used in incidence and prevalence calculations 

873 are often chosen based on outdated census data without true understanding of who is 

874 at risk within a community. With many smaller, low-budget, short-term studies (rather 

875 than large collaborative long-term efforts) the focus turns to identifying enough cases for 
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876 a meaningful statistical analysis, which means that some studies will test only high-risk 

877 individuals working with animals. This likely excludes vulnerable populations who have 

878 not yet been identified as being at high-risk. 

879 Hospital-based surveys for hemorrhagic fever surveillance are an attractive tool 

880 because they do not require household field visits and blood samples are typically more 

881 available for testing [38, 40, 150-152, 187, 188]. Such sero-surveillance can be 

882 compared from year to year to gain retrospective insight on when transmission has 

883 occurred. However, as with most hospital-based studies, these efforts do not represent 

884 the population at large, so they likely underestimate true incidence and overestimate the 

885 percentage of cases with severe disease.

886 Gap 5: Delineating human risk factors. This meta-analysis of human risk 

887 factors across multiple 1999-2021 studies confirm the increased RVFV infection risk 

888 associated with male gender, general livestock care, contact with animal abortus, 

889 butchering animals, and milking risks, identified in previous reviews and meta-analysis 

890 [64, 189]. Not all of the studies in this systematic review were population-based, thus 

891 the variable reporting of associations having ‘statistical significance’ may be attributed to 

892 differences in study design, low sample size with lack of statistical power, and/or choice 

893 of target populations. 

894 In most places where RVFV outbreaks occur, lack of health care infrastructure 

895 impedes detailed description of human disease signs and performance of laboratory 

896 studies (including assessment of viral load and immunologic responses to infection), 

897 which might be predictive of severe disease or death. It is possible that other health 

898 comorbidities, such as concurrent HIV or hepatitis, can influence the presentation of 
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899 RVFV disease, but these associations have not yet been widely studied. Further 

900 descriptions of the natural history of clinical and laboratory findings in human RVF are 

901 needed, and efforts should be made to fully assess the relative risks from direct (non-

902 vector) animal exposures vs. mosquito vector-borne exposure. Frontline healthcare 

903 workers need to recognize when testing for RVFV infection is appropriate, based on 

904 patients’ significant risk factors, and they should communicate frequently with local 

905 veterinary colleagues to identify high-risk transmission periods. 

906 Most risk factor analyses rely on participant recall, risking recall bias, and it has 

907 been difficult to discriminate the risk of living in the presence of susceptible livestock 

908 from risk due to direct participation in husbandry activities or from risk due to local 

909 mosquito exposure (including variably zoophilic and anthropophilic mosquito species). 

910 Aside from animal rearing activities, the association of human risk with consumption of 

911 infected animal products is concerning, as this is practiced by a majority of human 

912 populations and the true infectivity by consumption is still not well understood. For 

913 example, consumption of raw milk is a now well recognized as an RVFV exposure risk 

914 factor [64, 189], but no previous studies have isolated RVFV from milk during outbreaks. 

915 Ongoing studies in Kenya (Gerken et al, unpublished), are conducting risk assessments 

916 in urban areas to distinguish consumption risk factors versus risk from livestock rearing 

917 activities common to rural areas.

918 RVF has been perceived as a disease of poverty, but this is likely due to its 

919 greater incidence recognized in rural areas. It is not known whether RVFV has an urban 

920 transmission cycle, and so far, the risk of RVF related to socioeconomic status (aside 

921 from having a pastoralist lifestyle) is poorly defined. Choice of occupation is intimately 
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922 connected to socioeconomic status and this systematic review confirmed that the 

923 highest-risk occupations are associated with livestock exposure. Even within 

924 occupational categories, differences in assigned tasks can carry differential risks [190]. 

925 We combined common terminology for the same profession, for example, 

926 slaughterhouse and abattoir workers for our analysis; however, more specific factors 

927 such as size of the slaughterhouse, species slaughtered, and available personal 

928 protective equipment (PPE) are likely strong confounding factors. 

929

930 Gap 6: Need for consistent naming of RVFV lineages and strains. A possible 

931 explanation for variation in RVF attack rates and disease severity, noted between 

932 locations and among different hosts, could be differences in RVFV strain virulence. 

933 Laboratory studies suggest some strain-specific differences in mortality in experimental 

934 animals [191]. However, the variability observed during natural outbreaks is likely due to 

935 site-related diagnostic misclassification of RVFV infection with erratic failure to detect 

936 milder cases of disease. Our systematic review aimed to capture strain- and lineage-

937 specific effects; however, a meaningful analysis was obscured by inconsistent naming 

938 of lineages due to differences in the genetic sequences chosen to be studied and 

939 different approaches to sequence homology analysis. International harmonization of 

940 lineage identity and nomenclature will help to determine differential effects, if any, of 

941 individual RVFV lineages and strains. As with SARS-CoV2 variants, a naming scheme 

942 that does not rely on location may help to alleviate some of the disincentive and stigma 

943 for national governments to report acute cases and identify sequences of circulating 

944 genomes to identify sources of local introduction. 
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945 Gap 7: Need for consistent RVFV testing frameworks. As highlighted earlier, 

946 identification of RVFV outbreaks and determination of the endemic state of a country 

947 require consideration of the efficacy of surveillance efforts in place. Well organized and 

948 implemented surveillance systems provide the basis for understanding the epidemiology 

949 of RVFV and provide an opportunity to provide early warning and an opportunity to fill 

950 the gaps in current knowledge. 

951  As RVFV diagnostics become more widely available, physicians in 

952 hyperendemic regions will be able to consider co-infection with RVFV in their differential 

953 diagnoses, especially for pregnant mothers who are at risk for abortion [168]. 

954 Additionally, if hospitals are aware of current RVFV circulation in livestock, they can go 

955 on high-alert and intensify their screening of patients for RVF. However, the lack of 

956 specific medical therapeutics may dissuade clinicians from testing for RVFV and favor 

957 testing for more treatable conditions, notably malaria. As the recent experience with 

958 Ebola virus in West Africa has taught, compassionate care must be the cornerstone of 

959 outbreak response in order for the at-risk population to buy into control measures. 

960 Public health messaging that fuels despair results in massive underreporting, 

961 particularly if outbreaks become political [192].  

962 There are concerted efforts to create a pan-viral hemorrhagic fever diagnostic 

963 assay. The Uganda Virus Research Institute (UVRI) in Entebbe has been implementing 

964 laboratory-based surveillance for viral hemorrhagic fevers (VHF) in Uganda since 2010, 

965 which includes testing for RVFV [193]. While this may help differentiate RVFV from 

966 other concerning viruses, we caution about the grouping of RVFV with other 

967 hemorrhagic fevers for surveillance purposes, as RVF-related hemorrhage in humans is 
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968 the rarest clinical manifestation, and the risk factors for other forms of RVFV-related 

969 disease are different. 

970 Development of robust RVFV surveillance systems is complex, because both 

971 animals and humans display variably detectable disease outcomes when they become 

972 infected. Currently, most RVFV surveillance systems are engaged only in response to 

973 climate early warning systems and are focused on periods with high-risk for large scale 

974 outbreaks. We found that recent re-structuring of the FAO Global Animal Disease 

975 Information System (EMPRESi) has provided an open-source, easy to navigate platform 

976 for tracking reports of RVFV cases in member countries. Since 2004, the system has 

977 recorded 1,186 animal cases of RVFV, of which 1,175 were confirmed. This reporting 

978 system relies on mandatory reporting of acute cases by national authorities, the OIE, 

979 WHO, FAO field officers, and published reports such as those included in this review. 

980 However, this database excludes longitudinal seroconversions, and therefore, excludes 

981 evidence of sub-clinical transmission during interepidemic periods. Modeling 

982 approaches using only these data should consider this key missing piece in their 

983 assumptions. Although RVFV is a reportable disease in many of the affected countries, 

984 a system that relies on passive reporting is likely to miss areas of new emergence when 

985 viral activity is below the threshold to detect excess numbers of patients with the more 

986 obvious clinical signs of RVF. It should be noted that the partnership of a strong national 

987 veterinary service with close ties to a fully equipped national laboratory is crucial to any 

988 successful surveillance effort. If farmer-based cellphone reporting is to be successful at 

989 identifying RVF cases, farmers need to be sensitized to the greater goals of the system 

990 and incentivized to report. Overall, the ideal surveillance system for RVFV would utilize 
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991 aspects of each of the discussed surveillance types (Fig 10), focusing on sentinels and 

992 enhanced active case finding, including during interepidemic periods, and take into 

993 account regional differences in animal and human health systems. Since RVFV is a 

994 vector-transmitted disease, and a large proportion of the world has the potential for 

995 RVFV emergence, the management of RVFV surveillance efforts should be regionally 

996 collaborated and all RVFV-naive countries with large numbers of livestock should take 

997 into account past lessons about recent new geographic introduction as they prepare 

998 prevention and mitigation efforts for themselves [194-199]. 

999 Post-epidemic performance analyses have found that the lead time given by 

1000 early warning systems may not be sufficiently long to prepare and vaccinate enough 

1001 livestock to contain an outbreak.  Just as reliance on a passive surveillance system for 

1002 RVFV is likely to not be enough to detect outbreaks, sole reliance on a remotely sensed 

1003 early warning systems (EWS) should also be avoided. One major limitation of climatic 

1004 EWS is that they do not account for the effect of herd immunity, either through natural 

1005 infection or prior livestock vaccination. Livestock seroprevalence as high as 60% have 

1006 been captured in high risk areas [200] and up to 38% in areas that are not typically 

1007 classified as high risk, such as Chad [201]. The lack of outbreak detection, despite 

1008 seemingly high-risk weather conditions, can be explained both by the effect of herd 

1009 immunity and limitations of existing surveillance systems. With this current level of 

1010 performance, at-risk countries should not rely solely on early warning systems and 

1011 instead use them as part of integrated decision support tools, similar to those developed 

1012 for the greater Horn of Africa [202]. As RVFV outbreaks have often had an insidious 
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1013 onset, we recommend active case finding in high-risk areas in response to any of the 

1014 previously mentioned early warning signals. 

1015 Gap 8: Evolving better approaches to diagnostics. Because arboviral 

1016 infections such as RVF often result in self-limited febrile syndromes with non-specific 

1017 signs and symptoms, isolated cases of infection are frequently misdiagnosed as malaria 

1018 in sub-Saharan Africa. This highlights the critical need for affordable and accurate point-

1019 of-care diagnostics for RVFV [203-206]. In the majority of recent transmission surveys, 

1020 anti-RVFV IgM serology was used alone to define recent infection, and more humans 

1021 than animals were found to be positive. As commercial IgM ELISA tests are now more 

1022 widely available for livestock, this gap likely represents a lack of available resources, 

1023 either financial or logistical, for testing livestock for recent infection. For suspect acute 

1024 cases, IgM allows a wider window of detection than discovery of circulating virus or viral 

1025 RNA [207]. 

1026 Among the 95 studies that reported human serology, the methods for human 

1027 anti-RVFV antibody detection exhibited significant variability, with most studies relying 

1028 on tertiary reference laboratories for final diagnosis. Future efforts should focus on 

1029 increasing the number and capacity of local laboratories so that the burden of shipping 

1030 time and costs can be alleviated. The Covid-19 pandemic response has led to 

1031 expansion of molecular diagnostic capacity in many regions. In the aftermath of the 

1032 pandemic, these important logistical and laboratory resources should be leveraged to 

1033 include other viral diseases such as RVF. 

1034 Serology serves as the basic approach for investigating individual and 

1035 community level risk factors as it can monitor changes in prevalence over time. Both 
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1036 enzyme-linked immunosorbent assays (ELISA) and viral neutralization tests (VNT) have 

1037 advantages and disadvantages. Identifying IgG-positive livestock by ELISA has often 

1038 been the first step in recognizing new areas of emergence [80, 208]. However, follow up 

1039 VNT should be used to confirm positive ELISA results in new locations, especially if the 

1040 seroprevalence is low (less than 1-2%) when misclassification due to false-positive tests 

1041 is of concern. 

1042 Gap 9: The need for One Health approaches for RVFV detection and 

1043 control. Expanding RVFV surveys to include human community populations at-large 

1044 will identify risk associated with socioeconomic standing, while simultaneously detecting 

1045 patients with incident infections but without presently known risk factors. To fully 

1046 understand the ecology of local transmission such broad-based human studies need to 

1047 be conducted concurrently with robust animal surveys. Recent reviews and policy 

1048 papers in the human and animal health RVFV literature call for a greater emphasis on a 

1049 One Health management approach, both in research and control efforts [127, 209, 210]. 

1050 A better understanding of viral transmission to all species during interepidemic periods, 

1051 with an improvement of diagnostic sampling frameworks, are within reach in the next 

1052 decade. Reaching an understanding of the herd immunity threshold for outbreak 

1053 initiation, the variability in case fatality risks, the contributions of vectors to both 

1054 asymptomatic and symptomatic human and animal infections, and the most influential 

1055 transmission pathways will take a collaborative effort among multiple disciplines and 

1056 public health sectors. The gaps presented here are based on a collated estimates of 

1057 recent RVFV transmission. The available case counts and serosurveys in this 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.21264307doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.29.21264307
http://creativecommons.org/licenses/by/4.0/


53

1058 systematic review contribute to a body of evidence that can guide the way forward to 

1059 clinical testing of novel preventive and curative interventions. 

1060 Summary. RVFV continues to transmit across Africa and nearby Indian Ocean 

1061 islands at a high rate, but at an irregular frequency. As previously noted, because of its 

1062 typical mosquito-borne re-emergent transmission, RVFV outbreaks often follow periods 

1063 of excess rainfall and local flooding, particularly in semi-arid regions. During the 1999-

1064 2021 period studied in this review, animal and human outbreaks of RVF occurred at an 

1065 average rate of 5-6 events per year across the region. The range of transmission has 

1066 expanded, with human cases documented for the first time in Saudi Arabia, Yemen, 

1067 Comoros, Mayotte, Burundi, Niger, and Mali, and with re-emergence in Uganda after 

1068 multiple decades of no activity. Reported human RVF events were most common in 

1069 Mauritania, Kenya, Sudan, Madagascar, and South Africa, and each of these countries 

1070 experienced multiple epidemics since 1999. In districts or counties where human cases 

1071 were reported, the median attack rate was 2.6 per 100,000 (range 0.1 to 91), and 

1072 median case fatality was 14.1% of severe cases, highlighting the significant population 

1073 health burden of RVF. 

1074 Experience with veterinary vaccines indicates that pre-event vaccination can 

1075 mitigate the spread of RVFV infection. Now that human vaccines are under 

1076 development, and their clinical testing and implementation should be guided by 

1077 particular focus on the high-risk subgroups (based on location and exposures) identified 

1078 in this review. Effective vaccine trials will depend on achieving accurate outbreak 

1079 predictions combined with efficient animal and human case surveillance systems. 

1080
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1090

1091 Figure legends

1092 Fig 1. PRISMA systematic review flow diagram of data collection and evaluation 
1093 Online searches for publications and data registers (left side flow) were supplemented 
1094 by governmental outbreak reports, non-indexed citations found in local archives, and 
1095 citations found within the reference lists of the papers that were reviewed (right side 
1096 flow). Data from one unpublished study were also included for evaluation.
1097
1098 Fig 2. Regional map of countries exposed to RVFV infection based on findings of 
1099 studies included in the systematic review. Countries were categorized as to whether 
1100 there was evidence of human, animal, or insect RVFV infection during the 1999-2021 
1101 era.
1102
1103 Fig 3. Sub-national administrative regions experiencing acute human cases of 
1104 RVF during the years 1999-2021 Locations are shaded according to whether they 
1105 experienced outbreaks before or after 2011, or if they had outbreaks during both 
1106 periods of time.
1107
1108 Fig 4. Sub-national administrative regions experiencing acute animal cases of 
1109 RVF during the years 1999-2021 Locations are shaded according to whether they 
1110 experienced outbreaks before or after 2011, or during both periods of time.
1111
1112 Fig 5. Acute human RVF events per year during 1999-2021, by geographic regions 
1113 across Africa, the Indian Ocean, and the Arabian Peninsula
1114
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1115 Fig 6. Acute animal RVF events per year during 1999-2021, by geographic regions 
1116 across Africa, the Indian Ocean, and the Arabian Peninsula 
1117
1118 Fig 7 Meta-analysis of the impact of human gender on odds of RVFV exposure in 
1119 at-risk populations
1120
1121 Fig 8 Meta-analysis of the impact of animal exposure on odds of RVFV exposure 
1122 in at-risk populations.
1123
1124 Fig 9 Meta-analysis of the impact of handling RVF-related animal abortions on 
1125 odds of human RVFV exposure in at-risk populations
1126
1127 Fig 10 Progressive scale of surveillance that can used to indicate an impending 
1128 RVFV disease outbreak. Republished with permission of The National Academies 
1129 Press, from Under the Weather: Climate, Ecosystems, and Infectious Disease (2001), 
1130 Chapter 7: Towards the Development of Disease Early Warning Systems. P. 87; 
1131 permission conveyed through Copyright Clearance Center, Inc. under license ID 
1132 #1142222
1133
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