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Abstract 

Heart rate variability is a robust biomarker of emotional well-being, consistent with the shared 

brain networks regulating emotion regulation and heart rate. While high heart rate oscillatory activity 

clearly indicates healthy regulatory brain systems, can increasing this oscillatory activity also enhance 

brain function? To test this possibility, we randomly assigned 106 young adult participants to one of 

two 5-week interventions involving daily biofeedback that either increased heart rate oscillations (Osc+ 

condition) or had little effect on heart rate oscillations (Osc- condition) and examined effects on brain 

activity during rest and during regulating emotion. In this healthy cohort, the two conditions did not 

differentially affect anxiety, depression or mood. However, the Osc+ intervention increased low-

frequency heart rate variability and increased brain oscillatory dynamics and functional connectivity in 

emotion-related resting-state networks. It also increased down-regulation of activity in somatosensory 

brain regions during an emotion regulation task. The Osc- intervention did not have these effects. 

These findings indicate that heart rate oscillatory activity not only reflects the current state of 

regulatory brain systems but also changes how the brain operates beyond the moments of high 

oscillatory activity.  
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People with higher heart rate variability tend to regulate their emotions more effectively1,2. But 

the variability associated with effective emotion regulation is not just random noise; instead, it is the 

degree to which heart rhythms synchronize with breathing. When inhaling, heart rate typically speeds 

up, and when exhaling, heart rate typically slows down, due to signals transmitted between the brain 

and the heart via the vagus nerve.  

Why should having a heart rate that responds more to breathing be associated with emotion 

regulation? One potential explanation is that many of the same brain regions are involved in 

coordinating heart rhythms and in regulating emotions3. However, heart rate oscillations may go 

beyond signaling the functioning of regulatory brain regions. They may improve the brain’s capacity to 

regulate emotion4. Indeed, recent findings from biofeedback studies in which people increase their own 

heart rate oscillatory activity suggest that episodes of high amplitude heart rate oscillations reduce 

stress and anxiety5. In the typical heart rate oscillation biofeedback intervention, people slowly breathe 

at around 10s/breath or 0.1 Hz while receiving feedback on how much their current heart rate is 

oscillating in response to their breathing during daily training sessions for a few weeks6. Breathing at 

this pace creates especially high amplitude heart rate oscillations because 0.1 Hz is a resonance 

frequency for the baroreflex system, which also produces oscillations in heart rate7.  

Intriguingly, ~0.1 Hz oscillations in heart rate and breathing are also seen during some 

meditative practices8-10, including during reciting either a yoga mantra or the rosary Ave Maria11. Varied 

cultural practices may have converged on this resonance breathing frequency that creates high 

oscillations in heart rate because of its positive impact on well-being.  

Why would daily time spent in a high physiological oscillatory state benefit the brain’s emotion 

regulation ability? First consider what occurs during the experience of emotions or feelings. At each 

moment, the brain receives diverse input about current body states, with the vagus nerve serving as a 

primary conduit of visceral information12-14. Mapping these body states in the brain is necessary to 
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generate feelings15. But the actual body state need not be present. People can simulate body state 

changes in insula and somatosensory cortices, influencing current feeling states16,17. This system allows 

for top-down modulation over feelings and emotions, as prefrontal, anterior cingulate and anterior 

insula regions both respond to and modulate activity in brain regions mapping visceral and somatic 

sensations. 

Cortical brain regions involved in autonomic control including the insula and ventromedial 

prefrontal cortex respond to increasing or decreasing heart period intervals, supporting feedback loops 

that control blood flow to different areas of the body, modulate heart rate, and provide rapid responses 

to arterial blood pressure changes. Inducing large oscillations may strengthen the ability of autonomic 

control processes to respond to changes in somatosensory inputs, which in turn should enhance the 

ability to modulate fluctuations in one’s own feelings. If inducing heart rate oscillations strengthens 

dynamic control over emotion regulation in this way, the effects should be evident during times when 

the system is challenged by stimuli that induce emotions. These same feedback loops likely contribute 

to resting-state oscillatory activity in emotion-related brain regions. Thus, daily sessions spent in a high 

physiological oscillatory state may also increase the coordinated activity of emotion-related resting-

state brain networks4.  

Our study (ClinicalTrials.gov NCT03458910; Heart Rate Variability and Emotion Regulation or 

“HRV-ER”) tested the hypothesis that daily biofeedback sessions stimulating heart rate oscillatory 

activity in baroreflex frequencies affect the function of brain networks involved in emotion regulation, 

even when people are not engaged in the biofeedback. We randomly assigned 106 young adult 

participants to receive either ‘increase-oscillations’ (Osc+) or ‘decrease-oscillations’ (Osc-) biofeedback 

in daily training sessions for five weeks in a 7-week study involving pre- and post-intervention 

assessments (see Fig. 1 for study schedule and Supplementary Tables 1-2 and Supplementary Fig. 1 for 
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participant information). We also recruited an older adult cohort whose results will be reported in a 

subsequent paper. 

 

 

Figure 1. Overview of the schedule of weekly activities participants completed during the study. 

 

In the Osc+ condition, participants tried out several breathing paces around 10s/breath to see 

which induced the largest oscillations in their heart rate (their own resonance frequency; see Methods 
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for details)6. During their daily sessions at home, they breathed to a pacer set to this frequency while 

receiving biofeedback on their heart rate oscillatory activity via a ‘coherence’ score and a real-time plot 

of their heart rate (Fig. 2a). They returned to the lab each week to receive coaching and check again 

which breathing frequency produced the strongest heart rate oscillations. Participants’ assigned 

breathing paces ranged from 9-14s/breath. 

An ideal comparison to this Osc+ intervention would be another condition with similar 

biofeedback information, participant expectations and time spent training but no increases in heart 

rate oscillatory activity during the training sessions. However, most relaxing states increase heart rate 

oscillations18. To address this, we designed a decrease-oscillations comparison condition (Osc-) in which 

participants received heart rate biofeedback aimed at reducing their heart rate oscillations 

(summarized for them with a ‘calmness’ score and real-time feedback on their heart rate) during the 

training sessions (Fig. 2b). In addition, to try to avoid having them discover that they could reduce HRV 

simply by increasing physical activity19, we asked them to also try to reduce their heart rate during the 

training sessions. During lab sessions, they tried out different strategies to maximize their ‘calmness’ 

scores during biofeedback and were advised to use their most successful strategy in their home training 

sessions that week.  

While we expected that, during training sessions, the Osc+ condition would increase oscillations 

in both heart rate and blood oxygenation level dependent (BOLD) signal at the breathing frequency 

significantly more than the Osc- condition, the main targets of our investigation were the more 

enduring effects of the biofeedback during normal breathing. We tested our hypotheses that the Osc+ 

intervention would affect both the connectivity of emotion networks during rest and these networks’ 

responsiveness to acute challenges by comparing post-pre resting-state connectivity in emotion-

related networks as well as brain activity during an emotion regulation task. We also examined whether 
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the interventions would have enduring physiological effects, influencing oscillations in heart rate and 

BOLD signal when participants were not training.  

When preregistering our outcomes, we focused on amygdala-related effects of the 

intervention, due to our prior findings of relationships between amygdala functional connectivity and 

HRV20 and findings that the amygdala is the primary target of emotion regulation control processes21. 

Our main outcome measure was pre-to-post intervention changes in resting-state right amygdala 

functional connectivity with a medial prefrontal cortex region associated with HRV3. As secondary 

emotion-related outcomes, we examined changes in up- and down-regulation of amygdala activity and 

self-reported emotion regulation effectiveness during viewing emotional pictures, as well as changes in 

ratings of emotional well-being. Secondary outcome measures also included HRV during rest and 

measures of cerebral blood flow. Other secondary outcome measures (e.g., decision making, stress 

responsivity and cognition) will be reported elsewhere. In the current report, in addition to the 

amygdala-focused fMRI outcomes, we also report on the broader context of how the biofeedback 

affected resting-state BOLD activity in canonical resting-state networks and brain activity throughout 

the brain during emotion regulation.  

Results 

Participants in the Osc+ vs. Osc- conditions (NOsc+ = 56; NOsc- = 50) did not significantly differ in 

the average percent of weekly assigned session time they completed (M = 78.32%, SE = 3.43 and M = 

82.74%, SE = 3.74, respectively), t(104) = -0.87, p = .39, r = .09, nor in their post-intervention self-rated 

difficulty of training, effort, expectations, or plans to continue the intervention techniques 

(Supplementary Fig. 2). There was also no significant effect of condition on heart rate during home 

training sessions, F(1,95) = .73, p = .39, r = .09.  However, as intended, the Osc+ participants increased 

their heart rate total spectral frequency power during training, t(51) = 9.26, p < .001, r = .54; Figs. 2c and 

2e), whereas the Osc- participants did not significantly influence this metric compared to their own 
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baseline rest (log transformed autoregressive power difference, t(44) = 1.39, p = .17, r = .11; Figs. 2d and 

2f), leading to a significant interaction of session type (baseline vs. training) and condition, F(1,95) = 

30.37, p < .001, r = .49. In the resonance breathing frequency range (8-16s; .063 Hz~0.125 Hz), the two 

conditions showed even larger differences in power during training, F(1,95) = 43.45, p < .001, r = .56. 

Prior research using sympathetic versus parasympathetic blockade indicate that such increases in 

spectral power during slow-paced breathing are almost entirely vagally mediated22. 

The intervention also affected resting heart rate variability. Examination of heart rate during 

rest revealed a significant interaction effect between time-point (pre- vs post-intervention) and 

condition on total power, F(1,95) = 6.48, p = .01, r = .25, as well as when examining just the resonance 

frequency range, F(1,95) = 9.03, p = .003, r = .30 (Figs. 2g-h). Within the resonance frequency range, the 

Osc+ participants had greater power after than before the intervention, t(51) = 2.50, p = .02, r = .18, 

whereas the Osc- participants had a non-significant decrease in power in that range, t(44) = -1.79, p = 

.08, r = .18. Consistent with this, as shown in Supplementary Fig. 3 and detailed in the Supplementary 

Information, low frequency (LF) HRV (0.04-0.15 Hz, a range covering resonance breathing frequencies 

and the range showing spectral power changes in Fig. 2g) showed a significant interaction of condition 

and time-point; the Osc+ group showed a marginally significant increase in LF-HRV from pre- to post-

intervention whereas the Osc- group showed a non-significant decrease in LF-HRV. Heart rate and 

measures reflecting high frequency HRV showed no significant condition differences in change across 

the study (see Supplementary Fig. 3). Studies comparing sympathetic and parasympathetic blockade 

during rest indicate that nearly all of the HRV components, including LF-HRV, are predominantly under 

vagal control23, thus the low frequency changes likely reflect differential changes in vagal activity during 

rest in the two intervention conditions.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264206doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9

 

 

 

9 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264206doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 
 

Figure 2. Comparisons of heart rate oscillatory activity during pre-intervention rest vs. training 

sessions in the two conditions.  a-b: Participants received similar motivating background explanations for 

both conditions; c-d: Example heart rate over time during pre-intervention rest vs. home biofeedback 

training for an Osc+ (c) vs. an Osc- participant (d); E-F: Autoregressive (AR) spectrum shows large within-

condition differences between heart rate oscillatory power during pre-intervention rest vs. home 

biofeedback training, for Osc+ condition (e) but not Osc- (f) condition; g-h: Comparisons of heart rate 

oscillatory activity during rest before and after the 5-week intervention showed a significant interaction 

effect between time-point (pre-intervention vs post-intervention) and condition on total power. Note that 

pre-intervention and post-intervention resting-state heart rate was measured in single sessions in the lab 

(participant N = 97) whereas training data in e-f was averaged across many sessions in participants’ homes 

(training session N = 5437). 

 

We examined BOLD oscillatory dynamics during resting-state scans conducted pre- and post-

intervention as well as when engaging in their biofeedback technique during a “training-mimicking” 

post-intervention scan (see Table 1). During training-mimicking scans, participants in the Osc+ 

condition showed significantly greater spectral frequency total power than those in the Osc- condition, 

t(81) = 4.79, p < .001, r = .47 (Fig. 3a). Those in the Osc+ condition showed significantly greater power 

from pre-intervention rest to training, t(42) = 6.09, p < .001, r = .48, whereas those in the Osc- condition 

did not, t(39) = 0.50, p = .62, r = .05 (Fig. 3a). Grouping Osc+ participants by their instructed paced 

breathing rates during the training-mimicking scans shows a clear relationship between the pace at 

which they breathed and their BOLD oscillation peak (Fig. 3b).  

The training-mimicking scan was at the end of the post-intervention scan session to avoid 

influencing physiology during the rest of the scans, during which participants breathed naturally. 

Indeed, there was not a significant time-point (Weeks 2 and 7) by condition interaction of breathing 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264206doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 
 

rates during the resting-state fMRI scan, nor during the emotion-regulation task (see Supplementary 

Table 3 for means and statistical comparisons). In addition, during these two resting-state scans, 

neither exhaled carbon dioxide (CO2) levels nor the average variability in CO2 for the duration of the 

scan showed significant time-point by condition interactions. In contrast, as expected, breathing 

frequency and CO2 variability differed by condition during the training-mimicking scan (see 

Supplementary Table 3 for means and statistical comparisons). Likewise, a 2 (time-point: pre, post) X 2 

(condition: Osc+, Osc-) ANOVA on whole-brain cerebral blood flow (CBF) during pseudo-continuous 

arterial spin labeling (pCASL) resting-state scans showed no significant effects, whereas a 2 (scan type: 

pre-intervention rest, post-intervention training mimicking) X 2 (condition: Osc+, Osc-) ANOVA yielded 

a significant main effect of scan type, F(1,51) = 9.48, p = .003, r = .40, as CBF was lower during training 

mimicking (M = 39.33, SE = 1.08, SD = 7.88) than during rest (M = 42.45, SE = 1.14, SD = 8.32) across 

conditions. There was no significant main effect of condition, F(1,51) = .91, p = .35, r = .14, and the 

interaction of scan type and condition was not significant, F(1,51) = 1.30, p = .26, r = .17. Thus, in 

summary, although there were changes in breathing, CO2, and blood flow during training-mimicking 

protocols, pre- and post-intervention resting states did not differ significantly on these metrics. 

Comparing the average BOLD spectral frequency power across the brain during pre- vs. post-

intervention rest revealed a significant interaction of condition by time-point, F(1,92) = 5.94, p = .02, r = 

.24 (Fig. 3c). There was a significant increase in total power after the intervention in the Osc+ group, 

t(47) = 3.54, p = .001, r = .16, but not in the Osc- group, t(45) = 0.36 , p = .72, r = .02. When we include 

post-pre change in resting-scan respiration rate as a covariate, the interaction of condition by time-

point on total power was still significant, F(1,81) = 6.67, p = .01, r = .28. Thus, in addition to having 

dramatic effects on BOLD power during training, the Osc+ training sessions had effects on BOLD power 

that extended beyond the training sessions to affect resting-state activity. Analyses of amplitude of low 
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frequency fluctuations indicated that spectral power during rest increased across resting-state 

networks (see Supplementary Fig. 4 and Supplementary Results).   

 

Table 1. Functional magnetic resonance imaging (fMRI) scans and the corresponding measures 

employed in this study. 

 

 Functional magnetic resonance imaging 
(fMRI) scan  

Measures Analyzed  

Pre- and Post-Intervention  

 Blood oxygenation level dependent 
(BOLD) fMRI during rest 

Spectral power (Fig. 2a-b) 
Resting-state networks (Fig. 4) 
Amplitude of low frequency fluctuations 
(Supplementary Fig. 4) 
Amygdala-mPFC functional connectivity (Fig. 5) 
Heart rate variability during scan  
Breathing during scan 

 Pseudo continuous arterial spin labeling 
(pCASL) resting-state  

Whole-brain cerebral blood flow 
 

 BOLD fMRI during emotion regulation 
task 

Whole-brain contrasts of regulation conditions 
(Fig. 6b-c) 

Post Intervention Only  

 BOLD fMRI during training-mimicking  Spectral power 

 pCASL during training-mimicking  Whole-brain cerebral blood flow 
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Figure 3. Blood oxygen level dependent (BOLD) autoregressive signal spectral frequency power 

during training and rest. On average, Osc+ participants showed greater BOLD spectral frequency power 

during post-intervention training-mimicking than during pre-intervention rest session, whereas Osc- 

training did not significantly affect BOLD oscillatory power (a); Participants in the Osc+ condition followed 

breath pacers set to their own pre-determined resonance frequency (frequencies of these pacers indicated 

with vertical dashed lines for each subgroup of Osc+ participants) and peak BOLD power corresponded 

with breathing paces (b); The Osc+ but not the Osc- intervention led to increases in BOLD power during rest 

(c). Note that lower frequencies (<.0.04 Hz) have been removed from the spectra via a detrending 

procedure (see Methods). 

 

Quantification of functional connectivity within 18 canonical resting-state networks revealed 

that the two HRV biofeedback conditions also affected functional connectivity within emotion-related 

networks during rest. A 2 (condition: Osc+, Osc-) X 2 (network category: emotion/interoception, other; 

Fig. 4a) ANOVA yielded a significant interaction of condition and network category, F(1, 94) = 5.24, p = 

.024, r = .23. The Osc+ intervention increased functional connectivity within emotion-related networks 

significantly more than the Osc- intervention (Fig. 4b), whereas there were no significant differences 

between conditions for other categories of canonical resting-state networks (for breakdown of 

intervention effects across all 18 networks separately, see Supplementary Fig. 5).   
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Figure 4. We examined changes in canonical resting-state networks (a) from pre- to post-intervention 

resting scans; Functional connectivity within emotion-related resting state networks also increased 

significantly more in the Osc+ than the Osc- condition (b). *False Discovery Rate (FDR) p<.05. Error bars 

indicate standard error.  

 

Our primary outcome measure was right amygdala-medial prefrontal cortex (mPFC) functional 

connectivity, as this is a key emotion-related circuit24,25 in which functional connectivity relates to 

individual differences in heart rate variability20. Seed-based analyses revealed no significant condition 

by time-point interaction for connectivity between mPFC and the right amygdala, F(1, 94) = 0.68, p = 
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.41, r = .08 (Fig. 5a), but there was a significant interaction of condition by time-point for connectivity 

between mPFC and the left amygdala, F(1, 94) = 5.44, p = .02, r = .24 (Fig. 5b), which was driven by 

increased connectivity in the Osc+ condition at post intervention, t(48) = -2.33, p = .02, r = .26.  

 

Figure 5. Functional connectivity between mPFC and amygdala during rest. MPFC-right amygdala 

functional connectivity did not differ significantly by condition (a) but mPFC-left amygdala connectivity 

increased during the intervention in Osc+ participants more than in Osc- participants (b). 

6 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264206doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 
 

Thus, to summarize so far, the Osc+ intervention acutely increased BOLD oscillations during 

the training sessions while also having longer-term effects on functional connectivity in emotion-

related brain networks.  

Our next question was how the intervention affected the ability to regulate brain activity 

associated with emotional experience during externally induced emotion. To test this, both before and 

after the intervention, participants completed an emotion regulation task during a functional scan of 

their brain. They saw negative, positive and neutral pictures one at a time. Before viewing each picture, 

they were asked to either intensify or diminish the emotional feelings the picture elicited, or to just view 

it (Fig. 6a). They were allowed to regulate emotions using strategies of their choice, but on post-task 

questionnaires over 95% of participants indicated relying on cognitive reappraisal strategies.  
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Figure 6. Trial design and results of the emotion regulation task. After one of the three instructions (i.e., 

intensify, diminish or view) was given, participants viewed each picture, performed the task, and rated the 
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strength of feeling (a). Brain activity during Diminish trials (relative to View) showed significant time-point-

by-condition interactions in somatosensory brain regions including right insula (b); Regions showing 

interaction effects corresponded with regions showing a decrease in activity during Diminish trials (relative 

to View) after the intervention in the Osc+ participants (c, left) but not with the occipital cluster showing a 

significant effect of time-point in Osc- participants (c, right). There were no effects of condition or time-

point on ratings during Diminish trials (d); but for View trials, there was a significant interaction of 

condition and time-point (d). During Intensify trials, there was a main effect of time-point, with 

participants across conditions indicating stronger feelings in the post- than the pre-intervention scan (d). 

 

As a manipulation check, we first confirmed that the emotional pictures affected brain activity 

in emotion-related regions (including the amygdala) during view trials during the pre-intervention 

session (see Supplementary Fig. 6). As outlined in a separate report26, we also examined differences 

between diminishing and intensifying emotions at baseline and found that these two processes do not 

target the same set of emotion-related brain regions. When participants tried to diminish emotional 

reactions, they were more likely to reduce activity in brain regions important for interoception whereas 

when they tried to intensify emotional reactions, they were more likely to increase activity in other 

emotion-related brain regions. Thus, despite a linear effect of down-regulation, control, and up-

regulation (i.e., diminish < view < intensify) in subjective emotional intensity, a different set of emotion-

related brain regions are targeted by the two regulatory processes. Given these marked baseline 

differences in how diminishing and intensifying emotions affect activity in emotion-related brain 

regions, in our fMRI analyses we examined the effects of down-regulation (i.e., view > diminish) and up-

regulation (i.e., intensify > view) separately.    

We first used ROI-based analyses to examine amygdala activity during emotion regulation 

trials. At baseline, we found significantly increased left amygdala activity during intensify trials 
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compared with view trials, t(83) = 3.53, p = 0.001, r = 0.39 (M = 0.10, SE = 0.02 for intensify and M = 0.04, 

SE = 0.02 for view) for the left amygdala and t(83) = 1.73, p = 0.09, r = 0.19 (M = 0.06, SE = 0.02 for 

intensify and M = 0.04, SE = 0.02 for view) for the right amygdala. But there were no significant 

differences in amygdala activity between diminish and view trials, t(83) = 0.64, p = 0.53, r = 0.06 (M = 

0.03, SE = 0.02 for diminish and M = 0.04, SE = 0.02 for view) for the left amygdala and t(83) = 1.18, p = 

0.24, r = 0.12 (M = 0.02, SE = 0.02 for diminish and M = 0.04, SE = 0.02 for view) for the right amygdala. 

Next, we examined whether post-intervention change in amygdala activity during emotion regulation 

trials differed between conditions. Change in amygdala activity did not show significant differences 

between conditions for the two contrasts, t(82) = 1.47, p = 0.15, r = 0.32 for view > diminish and t(82) = 

0.03, p = 0.97, r = 0.01 for intensify > view in the left amygdala and t(82) = 0.49, p = 0.63, r = 0.11 for view 

> diminish and t(82) = -0.97, p = 0.34, r = -0.21 for intensify > view in the right amygdala (see 

Supplementary Table 4 for details). 

Next, we compared each participant’s post- vs. pre-intervention whole-brain pattern of brain 

activity during the Intensify trials and during the Diminish trials. We used the View condition as a 

baseline comparison. There were no significant interactions of condition by time-point for the Intensify 

> View contrasts. However, for the View > Diminish comparison, there was a significant interaction of 

time-point and condition in clusters within the right insula, central opercular cortex, parietal operculum 

cortex, postcentral gyrus, supramarginal gyrus, and superior parietal lobule (Fig. 6b). Comparison of 

post versus pre time-points for each group indicated that these interactions were driven by the Osc+ 

group who improved their ability to diminish brain activity in many interoceptive/sensory regions 

relative to View after the intervention (Fig. 6c). The only significant change for this contrast in the Osc- 

group was in the occipital pole (Fig. 6c), but it was a cluster that did not overlap spatially with the 

condition-by-time-point interaction effect shown in Fig. 6b (see Supplementary Table 5 for the list of 

clusters). 
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Subjective ratings during the explicit regulation (diminish and intensify) trials were similar 

across the two intervention conditions and both groups rated pictures as more intense on Intensify 

trials after the intervention than before the intervention, F(1, 81) = 9.03, p = .004, r = .32 (Fig. 6d). 

However, when simply viewing pictures, there was an interaction of time-point and condition, F(1,81) = 

5.65, p = .02, r = .26 (Fig. 6d). This interaction effect appeared to be due to both the Osc+ decrease, p = 

0.10, and the Osc- increase, p = 0.09, in ratings of feeling strength during view trials after intervention, 

although the pairwise comparisons were not significant (see Supplementary Table 6 for details). Thus, 

although the interventions did not differentially influence conscious emotion regulation, they had 

differential effects on spontaneous responses to emotional pictures, potentially indicating changes in 

implicit emotion regulation27. Group differences in change may have emerged during the view but not 

regulation trials due to higher demand effects to give instruction-consistent responses during 

regulation trials than during view trials that constrained our ability to see change. Another possibility is 

that the effects of the intervention were stronger for implicit than for explicit emotion regulation 

processes27, leading to decreased emotional responding during baseline view trials.  

We also examined whether the daily biofeedback affected subjective well-being. Self-rated 

mood became less negative across the course of the intervention (Supplementary Fig. 7a), with no 

significant difference in change between conditions. Self-rated anxiety showed no significant changes 

nor condition differences (Supplementary Fig. 7b), while scores on a depression scale showed 

improvements across the intervention in both conditions (Supplementary Fig. 7c). Most previous 

studies examining the effects of heart rate variability biofeedback have relied on no-intervention 

controls5; our findings highlight the importance of equating factors other than the critical physiological 

manipulations across conditions, as factors in the active intervention other than changes in heart rate 

variability may have an impact. One such factor influencing subjective ratings could be expectations. 

For both groups we framed the study as testing whether their biofeedback intervention would improve 
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emotional well-being (e.g., Fig. 2a-b) and the two groups had similar expectations of improved well-

being (Supplementary Fig. 2).  

Discussion 

Hundreds of previous studies have identified vagal HRV (usually assessed using HF-HRV or 

RMSSD) at rest as one of the best indicators of well-being28-30. In addition, individual differences in 

vagal HRV have been linked with brain structures and circuits associated with emotion 

regulation3,20,31,32. However, we need more than observational correlations to better understand the 

causal dynamics of the relationships. Initial studies do provide causal evidence that the prefrontal 

cortex influences vagal HRV, as perturbing PFC with either a drug blockade33 or non-invasive brain 

stimulation34,35 can influence HF-HRV. In addition, daily sessions involving increasing HRV through 

paced breathing and HRV-biofeedback have long-term effects on well-being4,5,7,36, suggesting that, 

when it comes to the relationship between the brain and the heart, there are likely causal effects in 

both directions as suggested by Darwin about 150 years ago37. 

Our study followed up on these intriguing HRV-biofeedback effects on well-being to test the 

hypothesis that experiencing daily sessions involving increased heart rate oscillation (the Osc+ 

condition) would affect both resting-state functional connectivity within emotion networks as well as 

the responsiveness to emotion regulation attempts in brain regions involved in emotional experience. 

To increase the amplitude of heart rate oscillation, the Osc+ intervention involved slow paced breathing 

at approximately the frequency of the baroreflex to create resonance7. Previous findings indicate 

increases in heart rate oscillatory amplitude during resonance breathing are vagally mediated22.  

When planning this study, we selected changes in right amygdala-mPFC functional connectivity 

as our primary outcome measure because of our observation that right amygdala-mPFC functional 

connectivity was associated with HRV20, and we were interested in whether HRV plays a causal role in 

increasing functional connectivity within this circuit. In the current study, spending 20-40 minutes/day 
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in a high physiological oscillatory state for a few weeks had no significant effect on right amygdala-

mPFC connectivity, thus failing to confirm our main hypothesis. However, this intervention did increase 

left amygdala-mPFC functional connectivity. A prior meta-analysis identified the left (but not right) 

amygdala as showing activity related to HRV3 and our prior study examining the relationship of how 

amygdala functional connectivity relates to individual differences in HRV found that, in younger adults, 

both left and right amygdala connectivity with ventrolateral PFC was related to HRV20. Thus, prior 

studies have identified both right and left amygdala relationships with HRV.  

In a recent review, we proposed that daily time spent stimulating physiological oscillatory 

activity should increase chronic levels of oscillatory activity in emotion-related resting-state brain 

networks4. Indeed, our analyses examining the broader context of functional connectivity within 

canonical resting-state networks indicate that the functional connectivity changes seen in the left 

amygdala are not unique; instead they are part of a general pattern in our study of increased functional 

connectivity in emotion-related networks in the Osc+ condition, an increase in functional connectivity 

that is greater than in non-emotion networks.  

One of our secondary outcomes examined whether the intervention would influence 

participants’ ability to up- or down-regulate amygdala activity on demand. There were no significant 

effects of the intervention on amygdala activity during emotion regulation. However, when we 

examined whole-brain activity we found that the Osc+ intervention led to more effective down-

regulation of brain regions associated with body states when attempting to regulate emotional 

responses to pictures.  

Why would the intervention affect the ability to down-regulate brain regions associated with 

sensing somatic states but not the amygdala? There are different models of how cognitive appraisal 

(the strategy used by most participants in our study) affects amygdala activity. In one model, cognitive 

control regions (i.e., dorsolateral, ventrolateral and ventrolateral subregions of PFC and posterior 
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parietal cortex) engage ventromedial PFC (vmPFC), which via its anatomical connectivity with the 

amygdala relays the control messages21. This model guided our initial hypothesis that increased 

functional connectivity between mPFC and amygdala would increase Osc+ participants’ ability to 

regulate amygdala activity. However, in another model, prefrontal and parietal control regions affect 

amygdala by altering semantic and perceptual representations in lateral temporal areas when 

reappraising stimuli21. Meta-analyses of emotion regulation studies support the latter model in which 

conscious reappraisal does not rely on vmPFC to influence amygdala activity21,38. Instead, the vmPFC 

may influence the amygdala more during implicit emotion regulation processes20. If the vmPFC is not 

engaged in the reappraisal process, this could explain how the Osc+ intervention could increase 

amygdala-mPFC functional connectivity during rest but not enhance modulation of amygdala activity 

during reappraisal. 

Although decreases in amygdala activity during emotion down-regulation have been the most 

consistently documented outcome, in healthy participants, inferior parietal lobule activity also 

decreases during emotion down-regulation39. In addition, a meta-analysis revealed that, during 

reappraisal of negative stimuli, patients with mood and anxiety disorders show more activity in a set of 

brain regions that overlaps regions that Osc+ participants were better able to down-regulate after the 

intervention, including the right posterior insula, right inferior and superior parietal lobule, right 

postcentral gyrus, and right operculum40. These brain regions process signals from the body. Large 

oscillations in heart rate may strengthen feedback loops involving these brain regions, making these 

feedback loops more responsive during emotion regulation attempts and increasing participants’ ability 

to down-regulate activity in these brain regions that not only sense body states, but also simulate 

them, such as when viewing pictures of others17. Our findings suggest that daily practice increasing 

heart rate oscillatory activity improved participants’ ability to diminish activity in brain regions involved 

in feeling emotional body states when they wanted to minimize their emotional reactions to stimuli.  
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We also saw effects of the intervention on resting-state physiology. The Osc+ intervention 

increased heart rate oscillatory power in the resonance frequency range that participants had been 

breathing at during training, as reflected in increased LF-HRV at rest. Prior HRV-biofeedback studies 

consistently demonstrate acute changes in HRV during the training sessions, but evidence for long-

term changes in HRV during rest has been more tenuous41. Our study had a larger N than prior HRV-

biofeedback studies and also documented excellent adherence to the intervention, which in most prior 

studies was neither tracked nor rewarded (and so rates of home training in prior studies may have 

tended to be low).  

The Osc+ intervention not only increased heart rate oscillatory activity at rest, but also BOLD 

oscillatory activity (ALFF) at rest, broadly across many brain networks. Thus, one possibility is that the 

ALFF changes stem from systemic neurovascular changes42. In contrast, the Osc+ intervention 

increased functional connectivity significantly only in networks related to emotion/interoception and 

not generally across all resting-state networks. Thus, it was specifically within brain networks that 

respond to and modulate fluctuations in physiology that within-network coordination of activity 

became stronger.     

One of the unique strengths of our study compared to most previous HRV-biofeedback studies 

was the active comparison group (Osc-) who completed an intervention similar to the target Osc+ 

intervention, but with minimal effects on HRV (see Fig. 2). We found that participants in both 

conditions showed significant decreases in negative mood states and in depression scores. Thus, the 

active comparison group was important in revealing that some aspects of the biofeedback protocol 

other than its effects on HRV were associated with improved emotional well-being. One possibility is 

that spending time every day in an awake quiet restful state yields emotional benefits regardless of 

whether the relaxing state increases physiological oscillatory activity. Another is that participants’ 

expectations (which were similarly positive in the two conditions) led to the improvements in self-
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reported emotional states. It is also possible that the CES-D is not the best depression scale to assess 

HRV biofeedback effects36. In any case, these findings point to the importance of including active 

comparison groups with matched expectations in research examining the effects of behavioral 

interventions on well-being43.  

Across both conditions, more than half of the participants in our study were Asian. We recruited 

on campus; our Asian student overrepresentation may reflect ethnic differences in interest in 

participating in a study related to heart rate biofeedback and meditation. As Asians and European 

Americans differ in their ideal affect44 and cardiovascular physiology differs between African Americans 

and European Americans45, future studies should examine whether heart rate variability biofeedback 

effects differ by ethnicity. 

In conclusion, we found that, in young healthy adults, daily sessions involving high amplitude 

heart rate oscillations affected emotion-related brain activity both when resting and when diminishing 

emotional responses. Repeated large heart-rate increases/decreases during biofeedback sessions 

provide a powerful physiological input that may act as a "workout" for cortical regions involved in 

physiological control, enhancing the brain's capacity to respond in goal-consistent ways when later 

confronted with emotional stimuli.  

Methods 

Participants 

We recruited 121 participants aged between 18 and 35 years via the USC Healthy Minds 

community subject pool, a USC online bulletin board, Facebook and flyers (see Supplementary Fig. 1 for 

drop-out rates per condition; see the supplementary methods section for power considerations). 

Participants provided informed consent approved by the University of Southern California (USC) 

Institutional Review Board. Participants were assigned to small groups of 3-6 people, with each group 

meeting at the same time and day each week. After recruitment and scheduling of each wave of groups 
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were complete, groups were randomized to a condition. Upon completing the study, participants were 

paid for their participation and received bonus payments based on their individual and group 

performances (incentives for training were the same across conditions; see Supplementary Information 

for more details). Prospective participants were screened and excluded for major medical, neurological, 

or psychiatric illnesses. We excluded people who had a disorder that would impede performing the HRV 

biofeedback procedures (e.g., coronary artery disease, angina, cardiac pacemaker), who currently were 

training using a relaxation, biofeedback or breathing practice, or were on any psychoactive drugs other 

than antidepressants or anti-anxiety medications. We included people who were taking antidepressant 

or anti-anxiety medication and/or attending psychotherapy only if the treatment had been ongoing and 

unchanged for at least three months and no changes were anticipated. Gender, education, age and race 

were similar in the two conditions (Supplementary Tables 1 and 2).  

Overview of 7-week Protocol Schedule 

The study protocol involved seven weekly lab visits and five weeks of home biofeedback 

training (Fig. 1). Each lab visit began with questionnaires assessing mood and anxiety. 

The first lab visit involved the non-MRI baseline measurements, including a number of 

questionnaires. The second lab visit involved the baseline MRI session followed by the first biofeedback 

training session. Each of the lab biofeedback training sessions started with a 5-min baseline rest period. 

The weekly lab visits (except for weeks with MRI sessions) were run in small groups in which 

participants shared their experiences and tips about biofeedback training with other participants from 

the same condition, while 1-2 researchers facilitated the discussion. Outside the lab, participants used a 

customized social app to communicate with other members of their group and researchers about their 

progress on daily biofeedback training. The Week 6 lab visit repeated the assessments from the first lab 

visit. The final (7th) lab visit first repeated the baseline MRI session scans in the same order. Then, 
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additional training-session scans were collected at the end of the scan protocol. Finally, after the scan, 

participants completed a post-study questionnaire.  

Biofeedback Training 

 

Osc+ Condition. Participants wore an ear sensor to measure their pulse. They viewed real-time 

heart rate biofeedback while breathing in through the nose and out through the mouth in synchrony 

with a visual pacer. The software46 provided a summary ‘coherence’ score for participants that was 

calculated as peak power/(total power – peak power). Peak power was determined by finding the 

highest peak within the range of 0.04 – 0.26 Hz and calculating the integral of the window 0.015 Hz 

above and below this highest peak. Total power was computed for the 0.0033 – 0.4 Hz range. 

During the second lab visit, we introduced participants to the device and had them complete 

five minutes of paced breathing at 6, 6.5, 5.5, 5 and finally 4.5 breaths/min6. Next, we computed various 

aspects of the oscillatory dynamics for each breathing pace using Kubios HRV Premium 3.1 software47 

and assessed which one had the most of the following characteristics: highest LF power, the highest 

maximum LF amplitude peak on the spectral graph, highest peak-to-trough amplitude, cleanest and 

highest-amplitude LF peak, highest coherence score and highest RMSSD. Participants were then 

instructed to train at home with the pacer set to this frequency that appeared to best approximate their 

resonance frequency and to try to maximize their coherence scores.  

During the third visit, they were asked to complete three 5-min paced breathing segments: the 

best condition from the last week’s visit, half breath per minute faster and half breath slower than the 

best condition. They were then instructed to train the following week at the pace that appeared most 

likely to be a resonance frequency based on the characteristics listed above. In subsequent weekly 

visits, during 5-min training segments, they were asked to try out abdominal breathing and inhaling 

through nose/exhaling through pursed lips as well as other strategies of their choice. 
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Osc- Condition. The same biofeedback ear sensor device was used in this condition. However, 

we created custom software to display a different set of feedback to the Osc- participants48. During 

each Osc- training session, a ‘calmness’ score was provided as feedback to the participants instead of 

the coherence score. The calmness score was calculated by multiplying the coherence score that would 

have been displayed in the Osc+ condition by -1 and adding 10 (an ‘anti-coherence’ score). The net 

result was that participants got more positive feedback (higher calmness scores) when their heart rate 

oscillatory activity in the 0.04 – 0.26 Hz range was low. 

We also wanted to avoid having participants figure out that one way to reduce their HRV and 

get positive feedback would be to do something like get up and do jumping jacks (physical activity 

typically decreases HRV19). Thus, we told Osc- participants to try to lower their heart rate in addition to 

lowering their heart rate oscillations and we intended to build into the feedback a minor point penalty 

when heart rate was the highest it had been in a short while. However, due to a coding error not 

detected until the study was over, this point adjustment did the opposite, giving a penalty when heart 

rate was the lowest it had been in the most recent 15 s.  Specifically, every 5 s, a local maximum IBI was 

set based on the maximum IBI from the past 15 s. If, at that point, the participant’s current IBI was 

longer than this local maximum, the calmness score displayed for the next 5 s was the anti-coherence 

score - 2. Naturally, most of the time, current IBI was lower than the local maximum, and in those cases, 

the calmness score was the anti-coherence score +1. Thus, there was a penalty in their calmness score 

for moments when their heart rate was slower than it had been in any of the past 15 s. As reported in 

the results, average heart rate during biofeedback sessions did not differ significantly across conditions. 

Thus, this additional feedback appeared to have had little impact on heart rate, consistent with prior 

findings that biofeedback to increase or decrease heart rate has no significant impact49. 

During the initial calibration session at the end of the second lab visit, each participant was 

introduced to the device and feedback and was asked to come up with five strategies to lower heart 
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rate and heart rate oscillations. The participant was asked to wear the ear sensor and view real-time 

heart rate biofeedback while they tried each strategy for five minutes. We analyzed the data in Kubios 

and identified the best strategy as the one that had the most of the following characteristics: lowest LF 

power, the minimum LF amplitude peak on the spectral graph, lowest peak trough amplitude, multiple 

and lowest-amplitude LF peak, highest calmness score and lowest RMSSD. Participants were then 

instructed to use this strategy to try to maximize their calmness scores in their home training sessions. 

On the third visit, they were asked to select three strategies and try each out in a 5-min session. 

The strategy identified as best (based on the same characteristics used in the initial calibration session) 

was selected as the one to focus on during home training. In subsequent weekly visits, during 5-min 

training segments, they were again asked to try out strategies of their choice. 

Post-Study Questionnaire 

After the Week-7 post-intervention scan, participants completed a questionnaire surveying 

their experience during the study. They provided self-ratings of difficulty of daily heart rate biofeedback 

training, level of effort to complete the training, expectations of the training impact on well-being, and 

likelihood of continuing the training after the study’s conclusion. 

MRI Scan Session Order 

 In both the pre- and post-intervention MRI sessions, scans were conducted in the following 

order: 1) rest during blood oxygen level dependent (BOLD) fMRI; 2) rest during pseudo-continuous 

arterial spin labeling (pCASL); 3) emotion regulation task during fMRI; and 4) structural scan. The post-

intervention session included an additional BOLD fMRI scan followed by a pCASL scan conducted after 

these four initial scans so as not to influence them. During these two additional training-mimicking 

post-intervention scans, participants engaged in their now-daily training practice (see below for 

details). 

MRI Scan Parameters 
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We employed a 3T Siemens MAGNETOM Trio scanner with a 32-channel head array coil at the 

USC Dana and David Dornsife Neuroimaging Center. T1-weighted 3D structural MRI brain scans were 

acquired pre and post intervention using a magnetization prepared rapid acquisition gradient echo 

(MPRAGE) sequence with TR = 2300 ms, TE = 2.26 ms, slice thickness = 1.0 mm, flip angle = 9°, field of 

view = 256 mm, and voxel size = 1.0 x 1.0 x 1.0 mm, with 175 volumes collected (4:44 min). Functional 

MRI scans during the emotion-regulation task and resting-state scans were acquired using multi-echo-

planar imaging sequence with TR= 2400 mm, TE 18/35/53 ms, slice thickness = 3.0 mm, flip angle = 75°, 

field of view = 240 mm, voxel size = 3.0 x 3.0 x 3.0 mm. We acquired 250 volumes (10 min) for the 

emotion-regulation task and 175 volumes (7 min) for the resting-state scans. PCASL scans were 

acquired with TR = 3880, TE = 36.48, slice thickness = 3.0 mm, flip angle = 120°, field of view = 240 mm 

and voxel size = 2.5 X 2.5 X 3.0 mm, with 12 volumes collected (3:14 min; 1st volume was an M0 image, 

2nd volume was a dummy image, and the remaining 10 volumes were 5 tag-control pairs) both during 

resting-state (pre and post) and training-mimicking (post) scans. This ASL approach provides high 

precision and signal-to-noise properties and has better test-retest reliability than pulsed or continuous 

ASL techniques50. 

Pre- and Post-Intervention BOLD Resting-state Scan 

Participants were instructed to rest, breathe as usual and look at the central white cross on the 

black screen. 

Pre- and Post-Intervention pCASL Resting-state Scan 

 To assess whether the intervention affected blood flow during rest, in both MRI sessions 

participants completed a second short resting-state scan. Participants were instructed to rest while 

breathing normally with their eyes open. To make visual inputs similar to those viewed during the 

training scan (for our analyses comparing rest vs. training scans), we presented red and blue circles 
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alternately at a random rate (see Training sessions during BOLD and pCASL section below). Participants 

were asked not to pay attention to these stimuli. 

Training-Mimicking Sessions During BOLD and pCASL  

In the post-intervention scan session after the resting-state and emotion-regulation scans, 

participants completed their daily training without biofeedback during BOLD and pCASL scans. By this 

point, participants were well-trained, having each completed on average 57 training sessions at home. 

For the Osc+ group, a red and blue circle alternated at their resonance frequency. For example, if their 

resonance frequency was 12 sec, the red circle was presented for 6 sec followed by the blue circle for 6 

sec. Participants were asked to breathe in with the red circle and breathe out with the blue circle. For 

the Osc- group, the stimuli were the same as the Osc+ group; however, the red and blue circles 

alternated at a random rate and participants were told not to pay attention to them.  

Emotion Regulation Task 

 Participants completed an emotion regulation task51 in the MRI scanner, which lasted for about 

10 min. Each trial consisted of three parts: instruction (1s), regulation (6s), and rating (4s). First, 

participants were given one of three instructions: “view”, “intensify,” or “diminish.” Then, during the 

regulation phase, they saw a positive, neutral or negative image. Finally, they were asked to rate the 

strength of the feeling they were experiencing on a scale ranging from 1 (very weak) to 4 (very strong).  

Before the task, we instructed participants that the cue “intensify” would indicate they should 

escalate the emotion evoked by the subsequent image to feel the emotion more intensely. On the 

other hand, we instructed them that the cue “diminish” would indicate they should moderate the 

emotion elicited by the image in such a way that they felt calmer. We instructed them that the cue 

“view” meant they should simply look at the image without trying to change the emotion. We asked 

them to come up with their own methods to accomplish these emotion regulation goals. If participants 

had a hard time doing so during practice trials, we provided them with examples such as reinterpreting 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264206doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 
 

the situations in the image and adjusting the distance between the objects in the picture and 

themselves. We also instructed them not to generate an emotion opposite to the one they were 

experiencing. For example, they were not supposed to substitute a positive emotion for a negative one 

to moderate their emotion. After MRI scans, we had participants rate their confidence in accomplishing 

the four emotion regulation conditions (e.g., diminish negative) and report their emotion regulation 

strategies.  

Trials from each condition were nested in groups of three within mini-blocks. A fixation cross 

with a jittering interval separated the same-condition events within each block such that two jittering 

intervals summed up to 4s. The blocks were separated by 5-s inter-block intervals, during which a 

fixation cross was displayed. This resulted in 14 blocks and 42 event-related trials in total. The blocks 

were presented in a pseudo-random manner such that no blocks with identical instruction nor blocks 

with same-valence images were presented consecutively. We selected six counterbalanced sets of 18 

positive, 18 negative, and 6 neutral images from the International Affective Picture System52 such that 

within each of the six sets, each picture valence type subset had the same average valence and arousal 

scores (positive images: mean valence = 7.2, mean arousal = 5.4; negative images: mean valence = 2.8, 

mean arousal = 5.4; neutral images: mean valence = 5.0, mean arousal = 2.8). Each participant was 

presented with one of these sets during the task scan before training and a different set after training. 

Weekly Questionnaires 

During each lab visit, participants completed the profile of mood states (POMS53) and the state 

anxiety inventory (SAI54). We used the 40-item version of POMS. Participants reported how much each 

item reflected how they felt at the moment using a scale from 1 (not at all) to 5 (extremely). Total mood 

disturbance was calculated by subtracting positive-item totals from negative-item totals. A constant 

value (i.e. 100) was added to the total mood disturbance to eliminate negative scores. Higher scores 

indicate greater negative affect. The SAI measures state anxiety using 20 statements. Participants 
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indicated how they felt at the moment on a scale from 1 (not at all) to 4 (very much so). Scores range 

between 20 and 80 and higher scores indicate greater anxiety. We also administered the Center for 

Epidemiological Studies Depression Scale (CES-D55) in Weeks 1, 2, 6 and 7. Positive scores indicate 

greater symptoms of depression. 

Rewards for Performance  

In addition to receiving compensation of $15 per hour for each lab visit, participants were 

eligible to receive rewards based on individual and group performance.  For individual performance 

rewards, each week participants had the opportunity to earn $2 for each instance (up to a maximum of 

10) they exceeded their assigned target score (target scores were assigned each week, and were the 

average of the top 10 scores earned from the previous week’s training sessions plus 0.3). Group 

performance rewards were earned when members of a participant’s group completed a minimum of 

80% of their assigned biofeedback training minutes. For example, if a participant completed 100% of 

their training, they received an additional $3 for each group member who also completed 100% of their 

training. If a participant completed 80% of their training, they received an additional $2 for each group 

member who also completed at least 80% of their training. Rewards were calculated weekly, and 

participants received weekly updates on their earnings at their lab visit. 

Analyses 

Heart Rate Oscillations During Training 

We used Kubios HRV Premium 3.147 to compute autoregressive spectral power for each training 

session. Heart rate data from ear sensors failed to save for the first four participants in the Osc- 

condition because of technical issues with the first version of the Osc- biofeedback software, leaving 

102 participants’ data across the two conditions (5827 sessions). We averaged the autoregressive total 

spectral power from all training sessions for each participant. We excluded five outliers who on a box-

and-whisker plot were above Q3 + 3 * the interquartile range on total power on pre-intervention rest 
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(N=3), post-intervention rest (N=1), or average training (N=1), leaving an N of 97 (NOsc+ = 52; NOsc- = 45; 

see Fig. 2e-f). In addition, we extracted the summed power within the 0.063~0.125 Hz range for each 

participant (corresponding with 8-16s, a range encompassing breathing paces used by Osc+ 

participants) to obtain a measure of resonance frequency oscillatory activity during biofeedback. 

Before conducting statistical analyses, we log transformed the power values.  

Heart Rate Oscillations During Seated Rest 

We compared autoregressive spectral power during the baseline rest sessions (5-min sessions 

before lab training sessions) in the lab in Weeks 2 vs. 7 (Fig. 2g-h), using the same processing steps and 

outlier removals as detailed above for the training data.  

Heart Rate Oscillations, Breathing Rate and End-Tidal CO2 During fMRI Scans 

Both photoplethysmogram (PPG) and breathing data were collected using Biopac MP150 Data 

Acquisition System using MR-compatible sensors during resting-state and emotion regulation fMRI 

scans in Weeks 2 and 7. The breathing belt, TSD201 transducer, converted changes in chest 

circumference to electric voltage signal, which were then 0.05-1Hz bandpass-filtered, amplified with 10 

times of gain, sampled at 10kHz using RSP100C. During analyses using MATLAB, the respiration signal 

was downsampled at 1kHz and smoothed, and two iterations of peak detection were performed to 

obtain an average breathing rate across each scan duration. The PPG data were collected using a Nonin 

Medical 8600FO Pulse Oximeter at 10kHz sampling rate and downsampled at 1kHz using MATLAB. 

PPG data were also analyzed using Kubios HRV Premium Version 3.1 to obtain the frequency value with 

peak power within the high frequency range (0.15-0.4 Hz). The central frequency of the HF component 

derived from autoregressive spectral analysis was used as an alternate estimate of the breathing rate56. 

Among participants who had both breathing belt and PPG estimates of breathing, these two estimates 

were significantly correlated, r(52) = 0.95, p < 0.001, r(56) = 0.95, p < 0.001, r(44) = 0.97, p<0.001, and 

r(44) = 0.94, p<0.001 for the pre- and post-intervention resting-state scans and the pre- and post-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264206doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

36 
 

intervention emotion regulation scans, respectively. Thus, for the subjects whose breathing belt 

respiration data were missing or not of good quality (N = 13 and N = 9 at pre- and post-intervention 

respectively for resting state, N = 10 and N = 6 at pre- and post-intervention respectively for emotion 

regulation, N = 4 for training-mimicking), we used the HF-HRV-derived estimate of their breathing rate. 

Breathing data with sudden signal drops without immediate recovery were categorized as poor quality 

data. For these poor quality cases, breathing rate was then substituted with HF-HRV-derived estimates 

or excluded if the estimates were not available. We also excluded breathing data we could not precisely 

synchronize with fMRI data due to failures of the scan start signal to record in the respiratory 

recordings. Breathing data was available for the analysis of breathing rate changes for 84 participants 

for resting state (NOsc+ = 43; NOsc- = 41), 79 participants for emotion regulation (NOsc+ = 45; NOsc- = 34), and 

80 participants for training mimicking (NOsc+ = 42; NOsc- = 38).  

Exhaled carbon dioxide (CO2) levels were measured using Philips NM3 Monitor (Model 7900) 

with nasal cannula. The CO2 levels were fed to Biopac MP150 Data Acquisition System and sampled at 

10kHz. After the CO2 data were shifted with a 9-second delay and downsampled to 1kHz, peak 

detection was performed at the end of each breath. A time series of detected peaks were used to 

calculate its mean and standard deviation of end-tidal CO2. CO2 data was available only for 73 

participants (NOsc+ = 38; NOsc- = 35) during resting state, 64 participants (NOsc+ = 34; NOsc- = 30) during 

emotion regulation and 80 participants (NOsc+ = 41 ; NOsc- = 39) during training mimicking. Of these, we 

categorized CO2 data as poor quality if they showed sudden signal drops or stayed too low mostly due 

to loosened cannulas. We excluded 27 participants (NOsc+ = 13; NOsc- = 14) during resting state, 18 

participants (NOsc+ = 10; NOsc- = 9) during emotion regulation, 7 participants (NOsc+ = 3; NOsc- = 4) during 

training mimicking. Thus, 46 participants (NOsc+ = 25; NOsc- = 21) for resting state, 45 participants (NOsc+ = 

25; NOsc- = 20) for emotion regulation, and 73 participants (NOsc+ = 38; NOsc- = 35) for training mimicking 

had CO2 data available for the analyses.  
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Heart Rate Variability Spectral Frequency Analyses of Resting-State Scan 

The PPG data from the resting-state scan were downsampled at 1kHz using MATLAB. The 

downsampled PPG data were analyzed using Kubios HRV Premium Version 3.1 to obtain the 

autoregressive power spectrum density. We applied smoothness priors detrending (lambda=500, cut-

off frequency .035 Hz) and selected the automatic-correction option for artifact correction. We visually 

checked the automatic peak detection results and, when occasionally necessary, manually deleted or 

corrected spurious detections or marked undetected peaks. We collected the total power and extracted 

the autoregressive power spectral density vector from individual output files to calculate the power 

within a frequency range (.063~.43 Hz) covering both slow (resonance) and more typical breathing 

rates. 

 For the analysis of spectral frequency power from heart rate data during the resting-state scan, 

among the same participants included in spectral analyses of resting-state scan who had PPG data 

(NOsc+ = 39, NOsc- = 40), we excluded two outliers (NOsc- = 2) who on a box-and-whisker plot showed total 

power changes from heart rate above Q3 + 3 * the interquartile range and four more outliers (NOsc+ = 3, 

NOsc- = 1) who on a box-and-whisker plot showed power within the breathing frequency range above Q3 

+ 3 * the interquartile range, leaving an N of 73 (NOsc+ = 36 ; NOsc- = 37). 

fMRI Data 

Preprocessing. To minimize the effects of motion and non-BOLD physiological effects, we 

employed multi-echo sequences during our fMRI scans. Previous work indicates that BOLD T2* signal is 

linearly dependent on echo time, whereas non-BOLD signal is not echo-time dependent57. Thus, multi-

echo acquisitions allow uncoupling of BOLD signal from movement artifact and significantly improve 

accuracy of functional connectivity analyses58, with between 2-3 times the level of reliability of typical 

single-echo scans59. We implemented a denoising pipeline using independent components analysis 
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(ICA) and echo-time dependence to distinguish BOLD fluctuations from non-BOLD artifacts including 

motion and physiology60.   

BOLD Spectral Analyses of Resting-State and Training Scans. After preprocessing by meICA, 

we performed additional preprocessing steps using FSL, Analysis of Functional NeuroImaging (AFNI), 

and custom code written in MATLAB61. The additional preprocessing steps consisted of: (1) temporal 

despiking; (2) linear detrending; (3) spatial smoothing (full width at half maximum [FWHM] = 6 mm) 

and (4) global intensity normalization. We converted the preprocessed images into ASCII files for 

processing by custom MATLAB code. To remove lower frequencies in the BOLD signal and investigate 

the band linked with respiratory oscillations, we applied smoothness priors detrending with parameter 

lambda = 4, which corresponds to the cutoff frequency 0.04 Hz62. We estimated voxel-wise power 

spectral density (PSD) using the autoregressive (AR) Burg method for each individual scan to capitalize 

on the improved accuracy of autoregressive approaches relative to the conventional fast Fourier63. To 

determine the model order, we first obtained estimates of the best model order using SPSS forecasting 

ARIMA’s Bayesian information criterion (BIC), autocorrelation function (ACF) and partial-

autocorrelation function (PACF) for each participant. Once the best model order for each individual was 

determined, the modal score across participants (model order = 3) was selected. After voxel-wise PSD 

estimation, the individual output files were converted into nifti files and the PSD map images were 

normalized to the MNI152 2-mm template using the transformation matrix from the individual 

preprocessed images. Whole brain average PSD vectors were extracted and power values were log 

transformed for the statistical analysis. 

Amplitude of low frequency fluctuations (ALFF) analysis was performed on the obtained power 

spectrum using the autoregressive method. Since the power at a given frequency is proportional to the 

square of the amplitude at that frequency component, we calculated the square root of power at each 

frequency and obtained the averaged square root across the 0.–0.1 Hz frequency range at each voxel. 
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This averaged square root was our ALFF measure64. We applied 18 intrinsic connectivity network masks 

thresholded at 3.1 (p < 0.001) from Laird et al. (2011) on whole-brain ALFF images and we extracted 

average ALFF for each participant for each network at the pre- and post-intervention time-points. We 

calculated average values across the five emotion networks, four motor/visuospatial networks, three 

visual networks and six cognitive networks and computed the difference between post and pre 

functional connectivity values. 

For the statistical analyses for the training scan (see Fig. 3b), we excluded seven participants; 

two people who failed to complete the scan due to time constraints (NOsc+ = 1, NOsc- = 1), one person who 

failed to complete the scan due to feeling unwell (NOsc+ = 1), three people due to errors in stimulus 

presentation (NOsc+ = 3), and one participant due to unsuccessful results of the denoising pipeline (NOsc- = 

1). Additionally, we excluded six outliers (NOsc+ = 2, NOsc- = 4) who on a box-and-whisker plot showed 

total power above Q3 + 3 * the interquartile range for their condition on the training scan, leaving an N 

of 87 (NOsc+ = 45, NOsc- = 42). For the analyses comparing training scan and pre-intervention rest (see Fig. 

3a), the 83 participants who were included for both the training scan and the pre-intervention resting-

state scan were included (NOsc+ = 43, NOsc- = 40). For the analysis comparing pre-intervention and post-

intervention resting-state scans (see Fig. 2c), we excluded two participants (NOsc+ = 1, NOsc- = 1) due to 

unsuccessful results of the denoising pipeline for their resting-state data and we excluded two outliers 

(NOsc+ = 1, NOsc- = 1) who on a box-and-whisker plot showed total power changes above Q3 + 3 * the 

interquartile range. Additionally, we excluded two outliers (NOsc+ = 2) who on a box-and-whisker plot 

showed breathing rate changes above Q3 + 3 * the interquartile range or breathed at their own 

resonance frequency as if they were engaged in the Osc+ biofeedback, leaving an N of 94 (NOsc+ = 48; 

NOsc- = 46).  

Resting State Functional Connectivity. Seed-based functional connectivity analysis: Out of 

100 participants who completed the resting state scan before and after the intervention, two 
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participants (one person from each condition) were excluded due to unsuccessful denoising pipeline 

results. Additionally, two Osc+ participants were excluded due to the fact that during the post-

intervention resting state scan they breathed slowly as if they were engaged in the Osc+ biofeedback 

(see BOLD spectral analyses of resting-state and training scans section above). In the remaining 96 

participants, we examined the resting-state functional connectivity between mPFC and amygdala. The 

mPFC was defined based on a previous meta-analysis of brain regions where activity correlated with 

HRV3 (i.e., a sphere of 10mm around the peak voxel, x=2, y=46, z=6). The right and left amygdala were 

each anatomically defined using that participant’s T1 image. The segmentation of the right and left 

amygdala was performed using the FreeSurfer software package version 6 using the longitudinal 

processing scheme implemented to incorporate the subject-wise correlation of longitudinal data into 

the processing stream (http://surfer.nmr.mgh.harvard.edu)65. Labels from the specific structures 

(left/right amygdala) were saved as two distinct binary masks in the native space. All files were visually 

inspected for segmentation accuracy at each time point. We used FSL FLIRT to linearly align each 

participant’s preprocessed data to their brain-extracted structural image and the standard MNI 2-mm 

brain. We applied a low-pass temporal filter 0-0.1 Hz and extracted time series from the mPFC. For each 

participant, a multiple regression analysis was performed in FSL FEAT with nine regressors including 

the mPFC time series, signal from white matter, signal from cerebrospinal and six motion parameters. 

The individual amygdalae were registered to the standard MNI 2-mm brain using FSL FLIRT using 

trilinear interpolation followed by a threshold of 0.5 and binarise operation with fslmaths in order to 

keep the mask a similar size. From each participant’s mPFC connectivity map, we extracted the mean 

beta values from the right and left amygdalae region-of-interests (ROIs) separately, which represents 

the strength of functional connectivity with mPFC. Lastly, we performed 2 (condition: Osc+, Osc-) × 2 

(time point: pre, post) mixed ANOVAs on functional connectivity between mPFC and the left amygdala 

and between mPFC and the right amygdala. 
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Dual regression analysis: The same four participants were excluded as for the seed-based 

connectivity analysis. The six motion parameters and signal from white matter and cerebrospinal fluid 

were removed from each participant’s preprocessed data. We used FSL FLIRT to linearly align the 

denoised data to each participant’s brain-extracted structural image and the standard MNI 2-mm brain. 

A low-pass temporal filter 0-0.1 Hz was applied in order to remove high frequency fluctuation. These 

data were used in a FSL dual-regression analysis 66, in which we created subject-specific time series 

based on spatial maps for each of 18 canonical resting state networks from a prior study67. These 

individual time series were used to create subject-specific spatial maps of each network. From the 

subject-specific z-transformed spatial maps, we extracted mean functional connectivity values for each 

participant within an ROI of each of the corresponding canonical network using Laird et al’s67 network 

masks thresholded at 3.1 (p < 0.001). As done for ALFF values, we calculated average values within each 

network category (emotion/interoception, motor/visuospatial, visual, and cognitive) and computed the 

difference between post and pre functional connectivity values.  

Arterial Spin Labeling. A total of 88 participants had available complete (i.e., pre- and post-

intervention) pCASL data. Twenty-two participants were excluded due to errors in preprocessing or 

excessive motion, resulting in a total of 61 participants in subsequent pCASL analyses involving pre- 

and post- intervention scans, and a total of 53 participants in analyses involving pre-intervention and 

training scans. Data were preprocessed using the Arterial Spin Labeling Perfusion MRI Signal 

Processing Toolbox (ASLtbx)68. M0 calibration image and 10 tag-control pairs were motion corrected, 

co-registered to individual participants’ T1-weighted structural images, smoothed with a 6 mm full 

width at half maximum Gaussian kernel, and normalized to MNI template space. Preprocessing 

resulted in a time-series of 5 perfusion images representing the tag-control pairs, which were averaged 

to create a single mean whole brain perfusion image. 
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 We conducted voxel-wise analyses of whole brain perfusion maps in SPM12 to investigate the 

effects of training group and time-point on cerebral blood flow with a two-way ANOVA model. We 

included a study-specific grey matter mask comprised of averaged grey matter segmentations across 

participants’ T1-weighted structural scans in all voxel-wise analyses to restrict analyses to grey matter 

cerebral blood flow, as ASL has lower power to detect white matter than grey matter perfusion signal69. 

An absolute threshold of 0.01 ml/100g/min was applied to remove background voxels and voxels with 

negative values. Following model estimation, we examined interactions of group and scan type (rest 

pre vs. post; rest pre vs. training), and within-group pre vs. post comparisons. 

Emotion Regulation Data. Ninety-eight participants (NOsc+ = 52, NOsc- = 46) completed the 

emotion regulation scan before and after the intervention. Six participants (NOsc+ = 3, NOsc- = 3) were 

excluded due to unsuccessful denoising pipeline results. Two participants (NOsc+ = 1, NOsc- = 1) were 

excluded because task timing files were not saved correctly. Six participants (NOsc+ = 3, NOsc- = 3) were 

excluded as they failed to respond to 50% or more of the trials. Eighty-four participants remained for 

fMRI analysis (NOsc+ = 45, NOsc- = 39). For the emotional intensity rating analysis, we excluded an 

additional three subjects (NOsc+ = 2, NOsc- = 1) whose data were collected with a malfunctioning response 

button device and four participants (NOsc+ = 2, NOsc- = 2) who answered with the same number for all the 

trials. However, we included the six participants (NOsc+ = 3, NOsc- = 3) for whom the fMRI denoising 

process was not successful. For the rating analysis, we analyzed 83 participants’ responses (NOsc+ = 44, 

NOsc- = 39).  

Denoised data were analyzed using FMRIB Software Library (FSL) version 6.0.370. Three levels 

of analyses were performed: individual BOLD signal modeling, post-pre difference within each subject, 

and testing the difference between groups. For each individual’s pre- and post-intervention scans, a 

standard general linear model estimated BOLD signal during the six seconds of emotion regulation 

during each trial (see Fig. 6) with seven regressors: diminish-negative, diminish-positive, intensify-
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negative, intensify-positive, view-negative, view-positive, and view-neutral. Instruction and rating 

phases were not modeled. Intensify > view and view > diminish contrasts were conducted across 

positive and negative picture trials. This first-level analysis included spatial smoothing with 5-mm 

FWHM, motion correction (MCFLIRT)70, and high-pass filtering with 600s cutoff. Using a 12-degree of 

freedom linear affine transformation, each participant’s BOLD image was registered to a T1-weighted 

structural image (we registered each pre- vs. post-intervention BOLD image to the T1 image obtained 

in the same scan session), which was then registered to the MNI-152 T1 2mm brain image. In the 

second-level analysis, we used FSL’s fixed effect model to estimate the post-pre difference within 

subjects while controlling for the mean effect. In the third-level analysis, we performed mixed-effect 

analyses to compare the post-pre differences in emotion regulation conditions between the two 

intervention groups using FSL’s Randomise tool with 5,000 permutations and Threshold-Free Cluster 

Enhancement (TFCE) multiple comparison correction (p < .05)71.  

To test whether the intervention changed amygdala activity during emotion regulation, we 

extracted amygdala BOLD activity from the results of the above general linear model using FSL’s 

featquery function with binary masks of the left and right amygdala (segmented through the same 

method used for the resting-state scan analysis and remapped to the standard MNI 2-mm brain). The 

extracted BOLD activity was used as the dependent variable in an independent-means t-test of post-

pre change across conditions and in a dependent-means t-test comparing intensify - view vs. view - 

diminish differences in amygdala activity, with Benjamini-Hochberg correction.     

Mixed ANOVA models were applied to test how emotion intensity ratings changed before and 

after intervention and how the change differed between conditions for each trial type (Diminish, View, 

and Intensify; 12 trials/trial type).  

Questionnaires 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21264206doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44 
 

For the POMS, SAI, and CES-D, we fit a series of linear mixed effects models using the 

packages lme472 and lmerTest73 in R Version 3.6.274. For each measure, we tested fixed effects of time-

point, training condition, and their interaction. For random effects, we included a random intercept for 

each subject, which fit the data better for all measures than did random effects structures with 

intercepts at the subgroup level or for subjects nested within subgroups, as determined using likelihood 

ratio tests. Random effects structures including random slopes led either to unidentifiable models or 

singular model fits. All models were fitted using maximum likelihood. Significance of fixed effects was 

determined using F tests with Satterthwaite’s approximation for degrees of freedom. For each 

measure, we performed post hoc comparisons of estimated marginal means of scores from week 1 with 

those from each successive week (2-7 for POMS and SAI; 2, 6 and 7 for CES-D) and applied a Bonferroni 

correction for multiple comparisons using the R package emmeans75. All available data for all 106 

participants were included for these analyses. 

Other Measures of Heart Rate Activity 

We used Kubios HRV Premium Version 3.1 to compute heart rate, the standard heart rate 

variability measures of low frequency HRV (LF-HRV, 0.04-0.15 Hz), high frequency HRV (HF-HRV, 0.15-

0.4 Hz) and root mean squared successive difference (RMSSD) for baseline and training sessions during 

each lab visit. We fit separate models for heart rate, RMSSD, LF power and HF power, specifying fixed 

effects of time-point, training condition, and their interaction. Only data from weeks 2 and 7 were 

included in the statistical models to examine how each measure changed from pre- to post-training 

(and only baseline data from weeks 2 and 7 were included in the comparison of spectral power shown in 

Fig. 2g-h). Otherwise, we followed the same linear effect modeling set-up for these analyses as for the 

questionnaire data (see Questionnaires section above), using all available data for all 106 participants. 

 

Data availability 
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Data supporting the findings of this study will be made publicly available at OpenNeuro. 

 

Code availability 

Source code for biofeedback to decrease HRV is available at 

https://github.com/EmotionCognitionLab/emWave_HRV.  
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