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Background 

Individuals with long standing diabetes duration can experience damage to small microvascular blood 

vessels leading to diabetes complications (DCs) and increased mortality. Precision diagnostic tailors a 

diagnosis to an individual by using biomedical information. Blood small molecule profiling coupled with 

machine learning (ML) can facilitate the goals of precision diagnostics, including earlier diagnosis and 

individualized risk scoring. 

Methods 

Using data in a cohort of 537 adults with type 1 diabetes (T1D) we predicted five-year progression to DCs. 

Prediction models were computed first with clinical risk factors at baseline and then with clinical risk factors 

and blood-derived molecular data at baseline. Progression of diabetic kidney disease and diabetic 

retinopathy were predicted in two complication-specific models. 

Findings 

The model predicts the progression to diabetic kidney disease with accuracy: 0.96±0.25 and 0.96±0.06 area 

under curve, AUC, with clinical measurements and with small molecule predictors  respectively and 

highlighted main predictors to be albuminuria, glomerular filtration rate, retinopathy status at baseline, 

sugar derivatives and ketones. For diabetic retinopathy, AUC 0.75±0.14 and 0.79±0.16 with clinical 

measurements and with small molecule predictors respectively and highlighted key predictors, 

albuminuria, glomerular filtration rate and retinopathy status at baseline. Individual risk scores were built 

to visualize results. 

Interpretation 

With further validation ML tools could facilitate the implementation of precision diagnosis in the clinic. It is 

envisaged that patients could be screened for complications, before these occur, thus preserving healthy 

life-years for persons with diabetes. 

Funding 

This study has been financially supported by Novo Nordisk Foundation grant NNF14OC0013659.  
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Research in context 

Evidence before this study 

Microvascular diabetes complications (DCs), such as diabetic kidney disease (DKD) and diabetic 

retinopathy (DR), lead to increased mortality, blindness, kidney failure and overall decreased quality 

of life in individuals with diabetes.  

 

Added value of this study 

We have developed four algorithms based on traditional risk factors alone and risk factors with 

metabolomic and lipidomic data. Two accurately predicted the future progression in individuals with 

type 1 diabetes. The top predictors chosen by the algorithm were hemoglobin A1c, albuminuria and 

retinopathy status at baseline for diabetic retinopathy. The most promising  models predicted future 

diabetic kidney disease in which albuminuria, eGFR, retinopathy status at baseline were 

complemented with a number of ketones and sugar derivatives. 

 

Implications of all the available evidence 

With further validation in several cohorts, the prediction models presented here have the potential 

for early diagnosis of CKD in persons with diabetes, thus enabling appropriate decisions on the 

available therapies. It is envisaged that these algorithms will be trialed and support clinicians with 

precision diagnosis and treatments. 

Diabetes Complications ∙ Diabetic Kidney Disease ∙ Diabetic Retinopathy ∙ Machine Learning ∙ Microvascular 

Complications 
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1. Introduction 

Devastating microvascular diabetes complications (DCs), such as diabetic nephropathy (DN) and diabetic 

retinopathy (DR), lead to increased mortality, blindness, kidney failure and overall decreased quality of life 

in individuals with diabetes (1,2). Systemic high glucose levels result in damage in the cells of the capillary 

endothelium of the retina and in the cells of the mesangial in the glomerulus. Thus, hyperglycemia is the 

most important known predictor of the pathogenesis of these two complications in type 1 diabetes (3). 

Glomerular filtration rate (GFR) and the urinary albumin excretion rate, which themselves are measures of 

DN, are also major predictors of further progression of DN (4). Although clinical risk factors and glycemic 

control can be good predictors of the development of microvascular complications, they are not necessarily 

informative at the early stages of disease. Hence, there is a need for technology that can exploit hidden risk 

patterns and molecular dynamics, thus achieving accurate prediction of DCs.  

Metabolomics and lipidomics are snap-shots of metabolism and can be applied to the study of diabetes to 

obtain a comprehensive molecular profile (5).  Over the past decade, omics technologies have shown the 

potential to personalize patient care in a way that was previously unthinkable (6-8). Thus, by combining 

already well-known clinical risks factors together with a broad omics panel, we aim to study the biological 

dynamics during progression to DR and DN. 

Machine learning (ML) algorithms learn descriptive patterns from large amounts of data. Hence, the 

application of this technology can support clinical decisions and is one of the areas where artificial 

intelligence has had the most impact in the recent years (9-10). ML can empower healthcare professionals, 

and to date it has been applied effectively to predict the risk of heart failure and retinopathy in diabetes 

(11,12). Significant strides are being made towards using ML algorithms to predict other conditions. In the 

case of diabetic kidney disease (DKD), extensive research has been carried out to find predictive biomarkers 

for future end-stage kidney disease.  However, to the knowledge of the authors, no single study exists, 

which employs ML to predict progression of eGFR decline in type 1 diabetes (13). In the case of DR 

complications, on the other hand, hundreds of publications and patents with highly predictive approaches 

have recently been reported and filed, including deep learning-based image analysis of retinal images (12).  

In a large and well-characterized type 1 diabetes cohort from Steno Diabetes Center Copenhagen (SDCC), 

we sought to develop easily interpretable and accurate prognostic risk prediction models for DCs. To this 

end, we apply ML with clinical data combined with two sets of omics data to predict DC progression in 

follow-up data. In this study, we hypothesize that (1) ML can be used for prediction of future complications 
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in type 1 diabetes using standard clinical risk factors; and (2) combining blood-based metabolic 

phenotyping and clinical data will improve the prediction by modeling the dynamics between risk factors 

and molecular metabolism.  The ultimate aim of this study is to design a personalized risk prediction tool 

for DCs that can be applied in clinical practice.  

 

2. Methods   
2.1 Study design and Participants  

This study is based on a cohort of 648 adults with type 1 diabetes followed at SDCC and previously 

described by Theilade, et al. (14). As the present study focuses on prediction of progression, any 

participants with missing follow-up data on DCs were excluded from the analysis. Thus, metabolomics and 

lipidomics data along with follow-up information on DKD and retinopathy status were available for 537 

participants. Advanced DCs at baseline such as macroalbuminuria, and severe retinopathy (proliferative or 

blind) were excluded, leaving 385 participants with mild or no DCs at the baseline assessment.  

The study was performed in compliance with the Declaration of Helsinki and was approved by the ethics 

committee for the Capital Region of Denmark (Hillerød, Denmark). All participants have given a written 

consent. 

 

2.2 Baseline Clinical Measurements  

A detailed description of clinical measurements has previously been reported (15-17). HbA1c, serum 

creatinine, plasma cholesterol, and triglycerides were measured using standardized methods from 

venous samples. Albuminuria was subdivided by stages (normo-, micro-, and macroalbuminuria, 

using 30 and 300 mg/g creatinine or mg/24 hours as cut offs). Decline in eGFR was defined as the 

first occurrence of ≥30% decrease from baseline, as proposed by Coresh et al. (18). Retinopathy 

status was assessed at SDCC as no retinopathy, mild non-proliferative retinopathy, moderate non-

proliferative retinopathy, proliferative retinopathy, proliferative retinopathy with fibrosis, and blind. 

Previous cardiovascular disease (CVD) was defined as any previous event of ischemic heart 

disease, ischemic stroke, heart failure, and peripheral artery disease. Information on medication was 

collected from electronic medical records. Following categories were applied: use of lipid-lowering 

treatment (yes/no), antihypertensive treatment (yes/no) and current smoking (yes/no).   
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2.3 Metabolic phenotyping and preprocessing 

Metabolite and lipid concentrations were measured in plasma samples using untargeted ultra-high-

performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) and two-dimensional gas 

chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) as previously described 

(16,17,19-21). Global metabolomics based on GC×GC-TOF-MS, covers small molecules such as sugars, free 

fatty acids and amino acids. Global lipidomics based on UHPLC-MS covers molecular lipid species, such as 

neutral lipids, sphingolipids and phospholipids. Raw GC×GC-TOF-MS and UHPLC-MS data were processed 

with ChromaTOF (LECO; Saint Joseph; USA) and MZmine 2, respectively. Finally, data from each platforms 

were post-processed in R by batch-correction, truncation of outliers, and imputation of missing values, as 

described previously. The final data sets of metabolite and lipid species consisted of the measured levels of 

identified and unidentified compounds. Inclusion of the complete data from the platforms was used to 

acquire an unbiased global metabolic phenotype. Finally, features with a very high mutual correlation 

(Pearson correlation coefficient larger than 0.85) were removed, thus leaving one feature from each tight 

feature group as a nonredundant predictor. 

 

2.4 Machine learning method 

2.4.1 Data and model design 

Random Forest (RF) models were applied to predict future risk of progression of DCs (22). We evaluated 

three scenarios with participants divided into two groups: first, non-progressors (persons with mild 

complication not advancing to another stage of the complication; n=195), and progressors (n=190), 

including both the DR and DKD progressors; second, only progression to DR (mild, moderate or severe) 

predicted for 193 non-progressors and 111 progressors; and third, only progression to DKD (≥30% decline 

in eGFR) predicted for 193 non-progressors and 79 progressors. 

The RF classifier was employed to predict whether the participant will during the follow-up progress to at 

least one of the complications. For each of the models, two sets of features were evaluated: 1) clinical 

variables only (17 measures), and 2) blood small molecule data (965 molecular features) along with the 

clinical variables. 

Clinical variables with no predictive power were excluded for improved performance. Unidentified 

compounds that were picked by the ML algorithm (as described next) were further investigated to acquire 
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putative identities by manually comparing the retention time (RT), mass-to-charge ratio (m/z) and 

fragmentation pattern with spectral libraries. All prediction models were developed using SciKit-learn (23) 

in Python (v3.7.1). RF scalable visualizations (decision trees) for interpretation are created with 

‘pybaobabdt’ library (24). 

 

 

2.4.2 Model validation 

The models were trained by splitting the data into training and testing datasets through k-fold cross 

validation (k=5). The number of Decision Trees in the ensemble was set to 500, all features were included in 

each split without a priori feature selection and a panel of features was then selected by the model. Non-

progressors and progressors were divided randomly into a training set (80%) used to build the RF models 

and an unseen validation data set (20%) used to validate the model performance. The main predictors and 

features of importance were selected using the maximal mean absolute SHapley Additive exPlanation 

(SHAP) algorithm. This method selects features while ensuring the top performance model is obtained (25). 

For each panel of predictors, the performance was calculated for each round on mean AUROC values from 

which the optimal number of features was selected. The models were further tested for performance 

stability using Monte Carlo (MC) simulation consisting of 50 iterations (26,27). Model performance was 

evaluated with the following metrics: AUROC, prediction accuracy, precision, recall (sensitivity), and F-

score. Prediction performance was assessed at the class decision threshold of 0.50. To illustrate the 

applicability of the algorithm for personalized medicine, the results from two individuals using clinical risk 

factors were portrayed (Figure 2.G).  
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3. Results 

A graphical representation of the study design and ML specifications is shown in Figure 1. Participants’ 

baseline characteristics are given in Table 1. 

 

3.1 Baseline characteristics of the cohort 

The baseline characteristics of the included individuals were as follows: mean ± SD: age of 54.8 ± 13.7 

years, a median diabetes duration of 30.4 ± 16.9 years and 171 (45 %) women (Table 1). Overall, 215 (56 %) 

had normo-albuminuria at baseline, 104 (27 %) and 64 (17 %) had microalbuminuria and macroalbuminuria, 

respectively.  At baseline eGFR was 88.8 ± 27.1 ml min-1 1.73 m-2. During follow-up, 79 participants 

experienced a ≥ 30% decline in eGFR, and 111 individuals progressed in the DR stage. The majority (62 %) 

were on antihypertensive treatment (AHT) and statin (52 %) treatment. Median follow-up time was 5.4 

years.  

 

3.2 Metabolic Phenotyping  

Using the two untargeted analytical platforms for metabolites, a total of 702 lipid species and 263 

metabolites were measured, respectively, from 385 plasma samples. All 965 non-redundant omics features 

were included in the development of the ML algorithms (see methods, ‘Modeling design’). 

Out of the omics features included, 14 omics features appeared as predictors of importance in the models 

with clinical and omics (described in the next subsection). Six of the selected omics features were known 

metabolites: ketone bodies (2,4- and 3,4-dihydroxybutanoic acids) and four sugar derivates (ribitol, ribonic 

acid, myo-inositol, and meso-erythrinitol).  

Further two features were known lipid species: a saturated ceramide Cer(d42:0) and a monounsaturated 

sphingomyelin SM(d30:1). The last six features were putatively identified. Based on RT and Golm 

Metabolome Database (28), ‘M_68’ is a small metabolite with more than one hydroxyl group, thus likely a 

sugar. ‘M_76’ is indicatively a large carboxylic acid. Based on m/z values from the unknown lipid species 

and according to the LIPID MAPS database (29), ‘L_195’ and ‘L_168’ are putative ceramides. L_103’ is a 

phosphatidylserine or a phosphatidylinositol. ‘L_439’ could not be identified. 
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3.3 Risk Prediction Models 

Overall, the predictive performance of all models using traditional risk factors showed excellent and robust 

predictive performance for future progression to DCs (Figure 2). Moreover, combining metabolic 

phenotyping and clinical variables improved the prediction performance (Figure 3). The importances and 

contributions of the top-features in the models are shown in the SHAP summary plots. Next, we will 

describe the models in detail. 

 

3.3.1 Clinical-based biomarkers in the prediction of diabetes complications  

Overall, 190 participants (49 %) experienced any progression of retinopathy and/or ≥ 30% decline in eGFR 

from baseline to follow-up. The final model for combined DCs selected through the SHAP method included 

14 out of the initial 17 clinical baseline variables: albuminuria, mild degree of retinopathy, HbA1c, eGFR, 

systolic BP, HDL-cholesterol, BMI, LDL-cholesterol, diabetes duration, total cholesterol, age, total 

triglycerides, antihypertensive therapy (AHT) and previous cardiovascular disease (CVD) (Figure 2.A). 

Smoking, gender and statin remained unincluded. Using five-fold cross-validation for discrimination on 

SHAP selected features, the mean AUROC was 0.81 (95% CI 0.687;0.893) in the validation set with an 

accuracy of 0.81, precision of 0.79, F1-score of 0.80, and recall of 0.81 (Figure 2.D). The 50 AUROC values 

obtained in MC had a mean of 0.75, and a standard deviation of 0.16.  

 

A total of 79 participants (21 %) experienced a progressive decline of ≥30 % in eGFR. The optimal DKD 

model included 15 clinical baseline variables: albuminuria, eGFR, mild degree of retinopathy, AHT, systolic 

blood pressure, HbA1c, age, previous CVD, diabetes duration, total triglycerides, HDL-cholesterol, BMI, LDL-

cholesterol, total cholesterol, and statin, excluding smoking and gender (Figure 2.B). Smoking and gender 

were not included in the optimal model.  AUROC for the DKD model was 0.92 (95% CI 0.857;0.995) with an 

accuracy of 0.95, precision of 1.00, F1-score of 0.89, and recall of 0.80 (Figure 2.E). The 50 AUROC values 

obtained in MC had a mean of 0.96, and a standard deviation of 0.25. An individual decision tree for 

classifying the ≥ 30% eGFR decline model based clinical dataset is shown in Fig. 4.A. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2022. ; https://doi.org/10.1101/2021.09.28.21264161doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264161
http://creativecommons.org/licenses/by/4.0/


10 

 

A total of 111 participants (28.83%) experienced any progression of retinopathy. The best model derived 

from RF algorithm for retinopathy included 12 clinical baseline variables: HbA1c, albuminuria, mild degree of 

retinopathy, HDL-cholesterol, eGFR, diabetes duration, LDL-cholesterol, systolic BP, BMI, age, total 

cholesterol, total triglycerides, and total cholesterol (Figure 2.C). Smoking, gender, statin, AHT, and 

previous CVD were not included in the optimal model. The mean AUROC for the retinopathy model was 

0.81 (95% CI 0.754;0.958) with an accuracy of 0.75, precision of 0.73, F1-score of 0.59, and recall of 0.50 

(Figure 2.F). The 50 AUROC values obtained in MC had a mean of 0.75, and a standard deviation of 0.14. An 

individual decision tree for classifying the retinopathy model based clinical dataset is shown in Fig. 4. B. 

 

Feature importance and personalized individual risk predictions of DKD, progressors versus non-

progressors, were examined further (Figure 2.G). The first force plot shows a stable individual without 

progression to DCs and correctly predicted as a non-progressor by the model: the predicted probability of 

progression was 2 %. The second force plot shows an individual correctly predicted as progressor with the 

probability of 84 %. In more detail, the SHAP values of individual participants emphasize variables that most 

strongly contribute to the prediction, with red and blue colors, respectively, indicating risk factors and 

protective factors. For instance, with the second individual predicted as DKD progressor, albuminuria, mild 

degree of retinopathy, and eGFR played an important role in the prediction: albuminuria was the most 

important risk factor as determined by the color (red) and the length of the respective bar. In contrast, the 

first individual was predicted to remain free of DKD based on young age, normo-albuminuria, no 

retinopathy, and a relatively high eGFR, all contributing to the very low probability, 2 %, of DKD 

progression.  

 

3.3.2 Omics and clinical profile-based biomarkers in the prediction of diabetes complications  

The optimal model for any progression in DCs was obtained by combining three clinical baseline variables --

albuminuria, mild degree of retinopathy and  HbA1c -- with seven metabolites -- 3,4-Dihydroxybutanoic acid, 

SM(d30:1), meso-Erythritol, Cer(d42:0), one unidentified metabolite and two unidentified lipid species 

(Figure 3.A). This final model with SHAP-selected clinical variables and omics features had a mean AUROC 

of 0.89 (95% CI 0.818;0.966), accuracy of 0.83, precision of 0.90, F1-score of 0.81, and recall of 0.73 in the 

validation set (Figure 3.D). The 50 AUROC values obtained in MC had a mean of 0.81, and a standard 

deviation of 0.10.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2022. ; https://doi.org/10.1101/2021.09.28.21264161doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21264161
http://creativecommons.org/licenses/by/4.0/


11 

 

The best model for DKD was obtained by combining four clinical baseline variables: albuminuria, mild 

degree of retinopathy, eGFR and HbA1c, and two ketones and three sugar derivatives: 3,4-

dihydroxybutanoic acid, 2,4-dihydroxybutanoic acid, ribitol, ribonic acid,  myo-inositol,  and one 

unidentified metabolite (Figure 3.B). The model demonstrated an excellent performance, with mean 

AUROC=0.99 (95% CI 0.876;0.997), accuracy of 0.98, precision of 1.00, F1-score of 0.96, and recall of 0.92 

(Figure 3.E). The 50 AUROC values obtained in MC had a mean of 0.96, and a standard deviation of 0.06. 

The best performing model for DR was based on seven metabolites: Cer(d42:0), 3,4-Dihydroxybutanoic 

acid, the same unidentified metabolite as in the model above, and four unidentified lipid species together 

with HbA1c, albuminuria, and mild degree of retinopathy (Figure 3.C). The mean AUROC was 0.87 (95% CI 

0.781;0.996) with an accuracy of 0.80, precision of 0.68, F1-score of 0.71, and recall of 0.75 (Figure 2.F). The 

50 AUROC values obtained in MC had a mean of 0.79, and a standard deviation of 0.16.  

 

Both models with and without adding blood small-molecules provided a good discrimination to predict DCs. 

The recall of the models with clinical variables indicates that 80 % and 50 %, respectively, were correctly 

identified as progressors to ≥30 % decline in eGFR and any retinopathy. In models with, both, clinical 

variables and small molecules, 92 % and 80 % were correctly identified as progressors to ≥30 % decline in 

eGFR and any retinopathy, respectively.  

 

4.Discussion 
In the present study, we developed high-performing prediction models with random forest ML algorithms 

utilizing clinical risk factors and omics profiles from plasma samples of persons with type 1 diabetes. Our 

objective was to predict progression of diabetic kidney disease, defined as ≥30 % decline in eGFR, and 

retinopathy defined as progression in retinopathy severity over 5 years.  

Using only clinical risk factors for training the models, AUROC of 0.81, 0.92, and 0.81 were obtained for 

combined DCs, DKD, and DR respectively (Figure 2.D-F). The models based on the clinical risk profile 

accurately predicted the future progression of DCs in individuals with type 1 diabetes. Moreover, prediction 

improved by the inclusion of blood biomarkers from the omics data (Figure 3.D-F). Including a molecular 

profile to the predictive panel may be useful for the implementation of detailed personalized medicine 

tools in the clinic. However, molecular panels need further investigation, including the testing of clinical 

utility with clinical trials (13).  
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The models with clinical risk factors were obtained with routinely collected data (such as HbA1c, 

albuminuria and eGFR) all known risk factors of microvascular complications in diabetes (4, 30). 

Albuminuria, eGFR and retinopathy status at baseline were the main predictors for ≥30 % decline in eGFR 

progression. Similarly, HbA1c, albuminuria, and retinopathy status were main predictors for progression to 

DR.  

In our models, baseline DR was one of the top three variables of importance for predicting future DKD. The 

association of diabetes nephropathy and DR has been addressed in several previous studies (31-34), 

confirming the plausibility of the three main predictors over other clinical factors.  

Overall, we identified eight small biomolecules from the models with clinical risk factors and blood-derived 

molecular data that were strongly predictive of DCs. The metabolite signature to predict ≥30 % decline in 

eGFR included two short chain ketones (3,4-dihydroxybutanoic acid and 2,4-dihydroxybutanoic acid) and 

three sugar derivatives ( myo-inositol, ribitol, and ribonic acid). Ribitol and ribonic acid were the main 

metabolite predictors (Figure 3.C). Ribonic acid and ribitol are sugar acid derivatives from ribose and are 

involved in the pentose phosphate pathway. In accordance with the present results, elevated levels of 

ribitol are associated with retinal cell apoptosis in DR (35). Moreover, elevated levels of ribitol and myo-

inositol in chronic kidney disease stages 3-5 have been reported (36). 

Myo-inositol is involved in inositol metabolism and is primarily synthesized in the kidneys at a rate of a few 

grams per day in humans. The overexpression of myo-inositol oxygenase has been suggested to drive the 

progression of renal tubulointerstitial injury in a mouse model of diabetes (37). Previous results in type 2 

diabetes also showed that higher levels of myo-inositol were associated with a higher risk of end stage 

renal disease (38). In the present study, we show that higher levels of myo-inositol were predictive of ≥30 % 

decline in eGFR (Figure 3.B).  

The metabolite signature to predict retinopathy progression included 3,4-dihydroxybutanoic acid and a 

saturated ceramide (Cer(d42:0)). An earlier metabolomics study by Chen et al. identified 3,4-

dihydroxybutanoic acid as a novel biomarker for DR (39). Ceramides are sphingolipids, which are active in 

cell-signaling processes, also associated with the pathogenesis of diabetes, insulin resistance and heart 

disease (40, 41). In the present study, DR progressors showed increased levels of Cer(d42:0) and 3,4-

dihydroxybutanoic acid at baseline when compared with non-progressors with diabetes (Figure 3.B).  

Evidence from the present study shows that prediction models based on variables routinely collected in the 

clinic can be excellent predictors of individual prognosis. The results suggest that the measurement of 

relevant biomolecules from the circulation can further improve the accuracy of these predictions. 
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Furthermore, we argue that biomolecules may be necessary for a more fine-grained understanding and 

prediction of complications, which will be necessary for personalized medicine in practice.  

In previous studies from other cohorts we have seen other omics-based markers associated to progression 

of kidney disease using urinary proteomics and, in the future,, it will be interesting to see if the 

combination of omics panels from two biofluids can improve prediction (42). 

 

 

 

Strengths and limitations 

Our study benefits from a large and comprehensive dataset with a good representation of individuals who 

progressed to two different DCs. This allowed us to test, both, routinely collected clinical data as well as 

molecules that are measured with advanced mass-spectrometry.  

The ML models with and without omics were robust with stable performance across the cross-validation. 

Yet, a limitation is that the study was based on a single cohort, although this was attenuated in part by the 

model being validated on unseen data representing twenty percent of the cohort. Therefore, replication in 

a clinical trial will be of substantial interest and necessary for implementing this tool for clinical decision 

making (9). Except for the outcomes of DCs, the predictor data were restricted to a snapshot baseline 

profile. Therefore, longitudinal tracking of molecular data could contribute to more accurate and robust 

prediction. 

 

According to a newly-published report from the American Diabetes Association (ADA) and European 

Association for the Study of Diabetes (EASD) (1), advanced data and algorithms are expected to contribute 

to better clinical decision making. Predicting DCs before their onset is very challenging in real-world clinical 

practice, and early detection can have major implications on the quality and length of life. Our aim is to 

further increase the understanding of how individuals with diabetes progress towards harmful 

complications. We believe that ML-based high-performing predictive models will support clinicians in these 

challenging decisions.  

In conclusion, we have demonstrated that ML algorithms using traditional risk factors can successfully 

predict future progression of DCs in type 1 diabetes. The inclusion of omics data further improved the 

predictions. We believe that with further development and validation, the prediction models presented 
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here have the potential for early detection of complications, thus enabling appropriate interventions to be 

taken to prevent further progression of these complications.        
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Tables  

Table 1 - Comparison of baseline clinical characteristics of combined diabetes complications, diabetic retinopathy, and diabetic 

kidney disease. Data are n (%, rounded) and mean ±SD. 

 All participants 

(n=383) 

Non-

progressors 

(n=193) 

Retinopathy and Kidney 

disease 

(n=190) 

Retinopathy  

(n=111) 

≥30% decline in 

eGFR 

(n=79) 

Female, n (%) 171 (44.6) 86 (44.6) 85 (44.7) 48 (43.2) 35 (44.3) 

Age, years 54.77 ± 13.7 52.84 ± 13.6 54.98 ± 13.6 52.76±13.6 56.12±13.3 

Diabetes duration, years 30.38 ± 16.9 28.29 ± 16.5 32.10 ± 16.5 27.85±15.9 35.47±14.94 

HbA1c, % (mmol/mol) 8.00 ± 1.2 7.60 ± 1.0 8.45 ± 1.3 8.44±1.2 8.68±1.3 

BMI, kg/m
2
 24.65 ± 3.8 23.99 ± 3.5 25.64 ± 3.9 25.55±3.9 25.97±4.3 

Systolic BP, mmHg 130 ± 19.4 125.00± 17.11 136.04±20.64 131.48±15.7 141.59±19.8 

eGFR, ml min-1 1,73 m
2
 88.68 ± 27.1 95.55 ± 22.0 78.55 ± 28.9 86.24±26.9 66.33±29.1 

Triglycerides, mmol/L 0.96 ± 0.7 0.89 ± 0.5 1.24 ± 0.8 1.13±0.6 1.39±0.9 

Total cholesterol, mmol/L 4.7 ± 0.9 4.70 ± 0.8 4.82 ± 1.0 4.72±0.9 4.87±1.1 

LDL-cholesterol, mmol/L 2.4 ± 27.1 2.30 ± 0.7 2.59 ± 0.8 2.59±0.8 2.55±0.9 

HDL-cholesterol, mmol/L 1.62 ± 0.5 1.68 ± 0.6 1.64 ± 0.5 1.61±0.5 1.67±0.6 

Smokers, n(%) 75 (19.6) 39 (20.2) 36 (18.9) 16 (14.4) 19 (24.1) 

Statin treatment, n(%) 200 (52.2) 84 (43.5) 117 (61.6) 61 (54.9) 61 (77.2) 

AHT treatment, n(%) 238 (62.1) 96 (49.7) 142 (74.7) 73 (65.8) 73 (92.4) 

Previous CVD, n (%) 67 (17.5) 20 (10.4) 47 (24.7) 16 (14.4) 26 (32.9) 

Albuminuria, n (%) 

 Normal 

 Micro 

 Macro 

 

215 (56.1) 

104 (27.2) 

64 (16.7) 

 

148 (76.7) 

45 (23.3) 

- 

 

67 (35.3) 

59 (31.0) 

64 (33.7) 

51 (45.9) 

37 (33.3) 

23 (20.7) 

9 (11.4) 

18 (22.8) 

52 (65.8) 
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Figures 

 

Fig. 1 Graphical representation of study design and machine learning implication. Baseline clinical data and plasma samples 

(for metabolomics and lipidomics analysis) were collected from 537 individuals with type 1 diabetes (I). Participants were classified 

into two groups: type 1 diabetes stable (n=195) or type 1 diabetes with progression to diabetes complications (n=190).  Progression 

of combined diabetes complications, diabetic kidney disease (≥30% decline in eGFR; n=79), and diabetic retinopathy (mild, 

moderate or severe; n=111) were predicted (II). Median follow-up was 5.4 years. 

 

Fig. 2 Models based clinical features. (A-C) Subset of a dot plot showing the directional mean absolute SHAP values of various 

features (x axis) computed from five-fold cross-validation models that predict metabolite levels (y axis) using clinical data. Positive 

and negative SHAP values represent positive and negative impact on the predicted risk of progression to combined DCs (A), ≥30% 

decline in eGFR (B), and retinopathy (C), respectively in the validation sets.  Positive (negative) SHAP values indicate that higher 

(lower) feature values lead, on average, to higher predicted values. Each plot is made up of individual points from the validation 

dataset with a higher value being red and a lower value being blue.  (D-F) AUROC, mean and SD of the result from model based on 

the main predictors. The 50 AUROC values for combined diabetes complications, diabetic kidney disease, and diabetic retinopathy 

obtained in MC had a mean and SD of 0.75±0.16, 0.75±0.14, and 0.96±0.25, respectively (not shown). (G) Force plots showing 

effect of SHAP values at the individual level performance of randomly predicted outputs (type 1 diabetes stable and type 1 diabetes 

with progression to ≥30% eGFR decline). Features in red show risk factors pushing up the overall probability while blue are 

protective factors.  Feature labels are: Retinopathy_baseline (1= None apparent, 2= Mild non-proliferative, 3= Moderate non-

proliferative); Albuminuri_baseline (1=normoalbuminuria, 2=microalbuminuria, 3=macroalbuminuria); Previus_CVD (1=yes); 

AHT (1=yes); Statin (1=yes). 

 

 

Retinopathy status, n (%) 

None apparent 

Mild non-proliferative 

Moderate non-proliferative 

Proliferative 

Proliferative with fibrosis 

Blind 

 

 

126 (32.9) 

68 (17.6) 

125 (32.6) 

32 (8.3) 

26 (6.8) 

6 (1.6) 

 

 

75 (38.9) 

35 (18.1) 

83 (43.0) 

- 

- 

- 

 

 

51 (26.8) 

33 (17.4) 

42 (22.1) 

32 (16.8) 

26 (13.7) 

6 

- 

44 (39.6) 

31 (27.9) 

17 (15.3) 

19 (17.1) 

- 

14 (17.7) 

4 (5.1) 

20 (25.3) 

15 (18.9) 

26 (32.9) 

- 
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Fig. 3 Models based clinical and omics features. (A-C) Subset of a dot plot showing the directional mean absolute SHAP values of 

various features (x axis) computed from five-fold cross-validation models that predict metabolite levels (y axis) using clinical data. 

Positive and negative SHAP values represent positive and negative impact on the predicted risk of progression to combined diabetes 

complications (A), ≥30% decline in eGFR (B), and retinopathy (C), respectively in the validation sets.  Positive (negative) SHAP 

values indicate that higher (lower) feature values lead, on average, to higher predicted values. Each plot is made up of individual 

points from the validation dataset with a higher value being red and a lower value being blue. Shown are the top features by 

maximum mean absolute SHAP values across all clinical data. (D-F) AUROC, mean and SD result from model based on the main 

predictors. The 50 AUROC values for combined diabetes complications, diabetic kidney disease, and diabetic retinopathy obtained in 

MC had a mean and SD of 0.81± 0.10, 0.96±0.06, and 0.79±0.16, respectively (not shown). Feature labels are: 

Retinopathy_baseline (1= Noneapparent, 2= Mild non-proliferative, 3= Moderate non-proliferative); Albuminuri_baseline 

(1=normoalbuminuria, 2=microalbuminuria, 3=macroalbuminuria). 

  

Fig. 4 Visualization of random forest models based clinical features. A, Graph showing an example of a tree computed using 

random forest. It is one example out of the 500 computed decision trees for classifying the clinic dataset for predicting ≥30 % decline 

in eGFR. B, an example of one out of the 500 decision trees for classifying the clinic dataset for predicting retinopathy. Each class is 

represented by a color (brown and blue in A, and purple and green in B), the width of the link represents the number items flowing 

from one node to the other. 
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