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Abstract  23 

Although many persons in the United States have acquired immunity to COVID-19, either through 24 

vaccination or infection with SARS-CoV-2, COVID-19 will pose an ongoing threat to non-immune 25 

persons so long as disease transmission continues. We can estimate when sustained disease transmission 26 

will end in a population by calculating the population-specific basic reproduction number ℛ!, the expected 27 

number of secondary cases generated by an infected person in the absence of any interventions. The value 28 

of ℛ! relates to a herd immunity threshold (HIT), which is given by 1 − 1/ℛ!. When the immune fraction 29 

of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely 30 

(barring mutations allowing SARS-CoV-2 to escape immunity). Here, we report state-level ℛ! estimates 31 

obtained using Bayesian inference. Maximum a posteriori estimates range from 7.1 for New Jersey to 2.3 32 

for Wyoming, indicating that disease transmission varies considerably across states and that reaching herd 33 

immunity will be more difficult in some states than others. ℛ! estimates were obtained from 34 

compartmental models via the next-generation matrix approach after each model was parameterized using 35 

regional daily confirmed case reports of COVID-19 from 21-January-2020 to 21-June-2020. Our ℛ! 36 

estimates characterize infectiousness of ancestral strains, but they can be used to determine HITs for a 37 

distinct, currently dominant circulating strain, such as SARS-CoV-2 variant Delta (lineage B.1.617.2), if 38 

the relative infectiousness of the strain can be ascertained. On the basis of Delta-adjusted HITs, 39 

vaccination data, and seroprevalence survey data, we find that no state has achieved herd immunity as of 40 

20-September-2021. 41 
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 46 

Significance Statement 47 

COVID-19 will continue to threaten non-immune persons in the presence of ongoing disease transmission. 48 

We can estimate when sustained disease transmission will end by calculating the population-specific basic 49 

reproduction number ℛ!, which relates to a herd immunity threshold (HIT), given by 1 − 1/ℛ!. When 50 

the immune fraction of a population exceeds this threshold, sustained disease transmission becomes 51 

exponentially unlikely. Here, we report state-level ℛ! estimates indicating that disease transmission varies 52 

considerably across states. Our ℛ! estimates can also be used to determine HITs for the Delta variant of 53 

COVID-19. On the basis of Delta-adjusted HITs, vaccination data, and serological survey results, we find 54 

that no state has yet achieved herd immunity. 55 
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 67 

Introduction 68 

Vaccines to protect against coronavirus disease 2019 (COVID-19) became available in the United 69 

States (US) in December 2020 (1). As of September 20, 2021, 181,728,072 persons have been fully 70 

vaccinated, an additional 30,307,256 persons have been partially vaccinated, and an uncertain number of 71 

persons have acquired immunity through infection (2). The entire US population does not need to be 72 

vaccinated to end sustained COVID-19 transmission because of the phenomenon of herd immunity (3), 73 

which is reached when a critical fraction of the population becomes immune. This fraction is called the 74 

herd immunity threshold (HIT). 75 

The HIT for a population relates to the basic reproduction number, ℛ!, as follows (3): HIT = 1 −76 

1/ℛ!. ℛ! is defined as the expected number of secondary infections arising from a primary case in the 77 

absence of any immunity or intervention. As is well known, ℛ! and HIT are population-specific (4-5), 78 

which means that the effort required to control the local COVID-19 epidemic may vary from community 79 

to community. However, knowledge of the HIT for a given region is insufficient to determine when 80 

disease transmission within the region will end. One also needs to know the fraction of the population that 81 

has immunity. Estimating the immune fraction is difficult, because we cannot simply count the number of 82 

persons who have been vaccinated or the number of persons detected to be infected. Immunity is acquired 83 

not only through vaccination but also through infection (6), and case detection is imperfect. Insight into 84 

the immune fraction can be obtained from seroprevalence surveys, which use blood tests to identify 85 

persons who have antibodies against the SARS-CoV-2 virus (acquired through vaccination or infection). 86 

Various estimates of ℛ! for transmission of COVID-19 have been provided in the literature (7). 87 

The estimates that have received the most attention are those given for China and Italy (8-12), which were 88 

among the first regions to be impacted by COVID-19. However, the relevance of these estimates for 89 
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populations within the US (or elsewhere outside of China and Italy) is unclear. Several studies have 90 

estimated ℛ! for the US at the national level (13-15), the state level (16-18), and the county level (19-20). 91 

The usefulness of a national estimate is unclear given the heterogeneity of the US, and none of the county-92 

level estimates are comprehensive. Some state-level estimates are also incomplete (16, 18). Because 93 

responses to COVID-19 within the US have been and continue to be driven mainly by governors of US 94 

states (21), we undertook a study to generate comprehensive state-level ℛ! estimates through Bayesian 95 

inference. With this approach, we were able to quantify uncertainty in each estimate through a parameter 96 

posterior distribution. 97 

In earlier work, we developed a compartmental model for COVID-19 transmission dynamics that 98 

reproduces surveillance data and generates accurate forecasts for the 15 most populous metropolitan 99 

statistical areas (MSAs) in the US (22). Here, for each of the 50 states, we found a state-specific parameter 100 

posterior conditioned on this model from state-level COVID-19 surveillance data available from January 101 

21 to June 21, 2020 (23). From these parameter posteriors, we then obtained region-specific ℛ! and HIT 102 

posteriors and maximum a posteriori (MAP) estimates. The MAP estimates for HITs together with other 103 

data—vaccination tracking data (24), serological survey data (25-26), and quantitative estimates of the 104 

increased transmissibility of the recently introduced SARS-CoV-2 variant Delta (lineage B.1.617.2) (27-105 

28)—provide insight into the progress of each state toward herd immunity. 106 

Materials and Methods 107 

Model 108 

To obtain regional ℛ! and HIT estimates, we used a compartmental model developed previously 109 

(22). We found region-specific parameterizations that allow the model to reproduce surveillance data 110 

(daily reports of new confirmed COVID-19 cases) available for each region of interest over a defined 111 

period (e.g., January 21 to June 21, 2020). The model is able to account for a variable number of social-112 
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distancing periods. We considered versions of the model accounting for one, two, and three social-113 

distancing periods. The number of social-distancing periods deemed best (i.e., to provide the most 114 

parsimonious explanation of the data) for a given time period was determined using the model selection 115 

procedure described by Lin et al. (22). As in the study of Lin et al. (22), the model has 14 parameters with 116 

universal fixed values (applicable to all regions). The model also has 3(𝑛 + 1) + 3 parameters with 117 

region-specific adjustable values determined through Bayesian inference, where 𝑛 + 1 denotes the 118 

number of social-distancing periods. In this study, for a given region, we censored case-reporting data 119 

whenever the cumulative reported case count was less than 10 cases. We also specified the onset time of 120 

the first social-distancing period as the earliest day on which the cumulative reported case count was 200 121 

cases or more. A full description of model parameters is given in Lin et al. (22). 122 

Simulations 123 

Each region-specific model consists of a coupled system of ordinary differential equations (ODEs), 124 

which are given by Lin et al. (22). The ODEs were numerically integrated using the SciPy (29) interface 125 

to LSODA (30) and the BioNetGen (31) interface to CVODE (32). Python code was converted to machine 126 

code using Numba (33). The initial conditions were determined as in Lin et al. (22). 127 

Calculation of epidemic parameters 𝓡𝟎 and 𝛌 128 

To find the basic reproduction number ℛ!, we considered a reduced form of the model of Lin et 129 

al. (22), which is given in Eqs. 1-8 of the Supplementary Information (SI). The reduced model omits 130 

consideration of interventions, including social distancing, quarantine, and self-isolation, which are all 131 

considered in the full model. From the reduced model, we derived an expression for ℛ! by applying the 132 

next-generation matrix method (34). In this procedure, ℛ! is determined as the spectral radius of the so-133 

called next-generation matrix. Denoting this matrix as 𝒩, the (𝑖, 𝑗) entry of 𝒩 is the expected number of 134 

new infections in the 𝑖#$ compartment produced by persons initially in the 𝑗#$ compartment. The 135 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.21264188doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.27.21264188


7 
 

expression for ℛ! given in the Results section below was obtained using Mathematica (35). The matrix 136 

𝒩 was obtained using Mathematica’s LinearSolve function and ℛ! was computed as the dominant 137 

eigenvalue of 𝒩. 138 

To characterize the initial rate of exponential growth for a local epidemic within a given region, 139 

we computed the epidemic growth rate λ as the dominant eigenvalue of the Jacobian of the reduced model 140 

linearized at the disease-free equilibrium (36). The derivation of λ is provided in the SI. 141 

Bayesian inference 142 

To infer region-specific values of adjustable model parameters (and ℛ! and HIT estimates), we 143 

followed the Bayesian inference approach of Lin et al. (22). In inferences, we used all region-relevant 144 

confirmed COVID-19 case-count data available in the GitHub repository maintained by The New York 145 

Times newspaper (23) for the period starting on 21-January-2020 and ending on 21-May-2020, 21-June-146 

2020, or 21-July-2020 (inclusive dates). Markov Chain Monte Carlo (MCMC) sampling was performed 147 

using the Python code of Lin et al. (22) and a new release of PyBioNetFit (37), version 1.1.9, which 148 

includes an implementation of the adaptive MCMC method used in the study of Lin et al. (22). Inference 149 

job setup files for PyBioNetFit, including data files, are provided for each of the 50 states online 150 

(https://github.com/lanl/PyBNF/tree/master/examples/Mallela2021States). Results from both methods 151 

were found to be consistent (SI Fig S1). To ensure that MCMC sampling procedures converged, we 152 

visually inspected trace plots for log-likelihood (SI Fig S2) and parameters (SI Fig S3) and pairs plots (SI 153 

Fig S4). We also performed simulations using maximum likelihood estimates (MLEs) for parameter 154 

values to assess agreement of the simulations with the training data (SI Fig S5). 155 

The maximum a posteriori (MAP) estimate of a parameter is the value of the parameter 156 

corresponding to the peak of its marginal posterior distribution, where probability density is highest. 157 
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Because we assumed a proper uniform prior distribution for each of the adjustable parameters, as in the 158 

study of Lin et al. (22), the MAP estimates are MLEs. 159 

Results 160 

Bayesian uncertainty quantification 161 

Following the Bayesian inference approach of Lin et al. (22), we quantified uncertainty in 162 

predicted trajectories of confirmed case counts for all 50 states, using data from January 21 to June 21, 163 

2020. As illustrated in Fig 1 for the states of New Jersey, Wyoming, Florida, and Alaska, we find that 164 

each region-specific model parameterized on the basis of our MCMC sampling procedure reproduces the 165 

corresponding surveillance data over the period of interest. Results for the remaining states are shown in 166 

SI Fig S5. At the end of each MCMC sampling procedure, we obtained a marginal posterior distribution 167 

for 𝛽 (the rate constant in the model for disease transmission) which provides a probabilistic 168 

characterization of region-specific SARS-CoV-2 transmissibility. If the marginal posterior is narrow, we 169 

have high confidence in the MAP estimate of 𝛽; if it is wide, we have less confidence in its value. Each 170 

state-specific marginal posterior yields a MAP estimate for 𝛽.  171 

We can propagate the uncertainty in 𝛽 into uncertainty in ℛ! and HIT estimates, using the formula 172 

for ℛ! given below and HIT = 1 − 1/ℛ!. In Fig 2, we show marginal posterior distributions for ℛ! and 173 

HIT for the states of New Jersey, Wyoming, Florida, and Alaska. We provide MAP estimates of the model 174 

parameters for all states in SI Table S1. Model parameters were found to be identifiable in practice. (We 175 

have no proof of identifiability.) MAP estimates for ℛ! and HIT for all 50 states are provided in SI Table 176 

S2. These tables also provide 95% credible intervals. These estimates characterize the infectiousness of 177 

SARS-CoV-2 ancestral strains in each region of interest. 178 

Region-specific basic reproduction numbers and herd immunity thresholds 179 
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 To calculate the herd immunity threshold (HIT) for a specific region, we need to know the 180 

corresponding region-specific value of the basic reproduction number ℛ!, which is given by the following 181 

formula (obtained as described in Materials and Methods and SI): 182 

ℛ! = 𝛽 × 7%&'!
("

+ '!)!
(!

+ (+&%)-#
.$

8      [1] 183 

where 𝛽 characterizes the rate of transmission attributable to contacts between persons who are not 184 

protected by social distancing, 𝑓/ denotes the fraction of infected persons who never develop symptoms 185 

(i.e., the fraction of asymptomatic cases), 𝑐/ characterizes the rate at which asymptomatic persons recover 186 

during the immune clearance phase of infection, 𝑐0 characterizes the rate at which symptomatic persons 187 

with mild disease recover or progress to severe disease, 𝜌1 is a constant characterizing the relative 188 

infectiousness of presymptomatic persons compared to symptomatic persons (with the same behaviors), 189 

𝜌/ is a constant characterizing the relative infectiousness of asymptomatic persons compared to 190 

symptomatic persons (with the same behaviors), m denotes the number of stages in the incubation period, 191 

and 𝑘2 characterizes disease progression, from one stage of the incubation period to the next and ultimately 192 

to an immune clearance phase. The value of ℛ! depends on one inferred region-specific parameter, 𝛽, and 193 

seven fixed parameters, which have values taken to be applicable for all regions (i.e., 𝑓/, 𝑐/, 𝑐0 , 𝜌1 , 𝜌/, 𝑘2, 194 

and 𝑚). Estimates of these fixed parameters were taken from Lin et al. (22). 195 

The SARS-CoV-2 variant Delta (lineage B.1.617.2) has been estimated to be 1.64 times more 196 

infectious than variant Alpha (lineage B.1.1.7) (28), which has been estimated to be 1.50 times more 197 

infectious than ancestral strains (27). Assuming that Delta is the dominant circulating SARS-CoV-2 strain 198 

throughout the US (as of September 20, 2021) and that 𝛽 for Delta is 1.64 × 1.50 = 2.46 times greater 199 

than 𝛽 for ancestral strains (with other parameters in Eq. 1 remaining the same), the MAP estimate of the 200 

Delta-adjusted ℛ! ranges from 5.6 for Wyoming to 18 for New Jersey (from the multiplier given above 201 

and SI Table S2). The population-weighted Delta-adjusted ℛ! for the US is 12. These estimates indicate 202 
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that the herd immunity threshold (HIT) for the Delta variant of SARS-CoV-2 ranges from 82% to 94%. 203 

Estimates of initial region-specific epidemic growth rates 204 

 HIT estimates are directly determined by estimates of the basic reproduction number, which are 205 

related to the initial growth rate of the epidemic in a given region. Here, our ℛ! estimates are conditioned 206 

on a compartmental model that has been parameterized to reproduce case-reporting data available for each 207 

region over a five-month period (January 21 to June 21, 2020). We can use parameter estimates obtained 208 

for each region to calculate the initial epidemic growth rate λ, which is directly comparable to early 209 

surveillance data (Fig 3 and SI Fig S6). We provide MAP estimates and 95% credible intervals for 	λ, ℛ!, 210 

and HIT for selected states in Table 1. MAP estimates and 95% credible intervals for 𝜆, ℛ!, and HIT for 211 

all states are provided in SI Table S2. These estimates are based on state-specific marginal posteriors for 212 

the parameter 𝛽 of our compartmental model. State-specific MAP estimates and 95% credible intervals 213 

for 𝛽 (and other adjustable model parameters) are given in SI Table S1. As can be seen (e.g., in Fig 3), 214 

our 𝜆 estimates are consistent with early case reporting data during the exponential takeoff phase of disease 215 

transmission. 216 

Sensitivity of 𝛽 to the surveillance data used in inference 217 

 For each state, we used data from January 21 to June 21, 2020 to infer the MAP estimate of 𝛽 (and 218 

the values of the other region-specific adjustable model parameters). Thus, our estimates are derived from 219 

a particular subset of the available surveillance data. To check the robustness of MAP estimates for 𝛽 to 220 

variations in training data, we performed a sensitivity analysis wherein we inferred 𝛽 using data collected 221 

over three distinct periods in 2020: 1) January 21 to May 21, 2) January 21 to June 21, and 3) January 21 222 

to July 21. By visualizing our estimates with a rank order plot (Fig 4) and conducting pairwise two-sample 223 

Kolmogorov-Smirnov tests (38), we found that the 4-, 5-, and 6-month training datasets yielded estimates 224 

for 𝛽 that were not statistically significantly different from each other. The MAP estimates for 𝛽	obtained 225 
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using the 4-, 5-, and 6-month datasets are listed in SI Table S3. We assessed sensitivity by computing the 226 

relative error between the 𝛽 estimates obtained from the 5-month dataset and the average 𝛽 estimate over 227 

all datasets considered. We found that none of the state-level MAP estimates for 𝛽 showed sensitivity 228 

(i.e., a relative error exceeding 100% in magnitude) to variations in the training data (SI Table S4). The 229 

largest relative error was 12% (for Kansas).  230 

Global asymptotic stability of the disease-free equilibrium 231 

The model of Lin et al. (22) has a globally asymptotically stable disease-free equilibrium (DFE) if 232 

ℛ! < 1, which can be deduced by following the approach of Shuai and van den Driessche (39). As a 233 

consequence, the model predicts that the epidemic will be extinguished as the system dynamics are 234 

attracted to the DFE. 235 

To confirm that the model behaves as expected around the HIT, we conducted a perturbation 236 

analysis for the states of New York (Figs 5A and 5B) and Washington (Figs 5C and 5D). We simulated 237 

disease dynamics starting from an arbitrarily chosen initial condition near the HIT number of persons, 𝑆$, 238 

given by the following formula: 𝑆$ = HIT × 𝑆!, where 𝑆! denotes the population size of the region 239 

considered. We defined the size of our perturbation as ε = 0.2 × 𝑆$ for Figs 5A and 5C and as 𝜀 =240 

−0.2 × 𝑆$ for Figs 5B and 5D. The initial condition was 𝑆! − 𝑆$ − 1 + ε susceptible persons, 1 infected 241 

person, and 𝑆$ − 𝜀 recovered persons. As expected, for 𝑆$ < HIT × 𝑆! (Figs 5A and 5C), the number of 242 

infectious persons grows over time, whereas for 𝑆$ > HIT × 𝑆! (Figs 5B and 5D), the number of 243 

infectious persons decays over time. 244 

Progress toward herd immunity 245 

 From our state-specific HIT estimates and other information (discussed below), we were able to 246 

calculate percent progress toward herd immunity for each state (Fig 6, SI Table S5). We estimated the 247 
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percent progress of each state’s population toward herd immunity, 𝒫 ∈ [0%, 100%], using the following 248 

equation (the derivation of which is given in the SI): 249 

𝒫 ≡ (𝜀3(1 − 𝑓4)𝑓3 + 𝜀4𝑓4) 71 −
%

5Deltaℛ*
8
&%
× 100%   [2] 250 

where ℛ! is the population-specific basic reproduction number that we estimated for ancestral strains (SI 251 

Table S2), 𝑌Delta is a multiplier that accounts for the increased transmissibility of SARS-CoV-2 variant 252 

Delta, 𝑓4 denotes the fraction of the population with immunity acquired through infection, 𝑓3 is the fraction 253 

of the population that has been vaccinated (24), 𝜀4 is the fraction of infected persons who are protected 254 

against productive infection (i.e., an infection that can be transmitted to others), and 𝜀3 is the fraction of 255 

vaccinated persons who are protected against productive infection. Recall that we use 𝑌Delta = 2.46 (27-256 

28). We estimate that 𝜀4 = 1.0 (40) and 𝜀3 = 0.66 (41). We obtain four different estimates for 𝑓4 as 257 

follows. In the first case, we obtain 𝑓4 as the cumulative number of detected cases within a population 258 

divided by the population size. In the second case, we adjust our previous estimate for 𝑓4 by a multiplier 259 

of 5.8 (42). In other words, we assume that the true disease burden is 5.8 times higher than the detected 260 

number of cases. In the third case, we obtain 𝑓4 as the fraction of the population that has been infected 261 

according to the latest serological survey results reported online at Ref. (25). In the fourth case, we assume 262 

𝑓4 = 𝑓4,!/(1 − 𝑓/), where 𝑓4,! denotes the estimate of seroprevalence in a given region and 𝑓/ denotes the 263 

fraction of all cases that are asymptomatic. With this approach, we are assuming that asymptomatic cases 264 

are not detected in serological testing (43). We adopt the estimate of Lin et al. (22) that 𝑓/ = 0.44.  265 

As can be seen in Fig 6C, which is based on case reporting data, 18 of the 50 states have reached 266 

herd immunity. However, in Fig 6D, which is based on serological survey data, none of the states have 267 

reached herd immunity. South Dakota is closest to herd immunity, with 84% of the immune persons 268 

required for herd immunity. Idaho is furthest from herd immunity, with 45% of the immune persons 269 

required for herd immunity. The mean (median) progress toward herd immunity, across all states, is 63% 270 
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(63%). 271 

Discussion 272 

One of our most important findings is quantification of how COVID-19 transmissibility, in terms 273 

of the basic reproduction number ℛ!, varies across the 50 US states. The MAP value of ℛ! for ancestral 274 

strains of SARS-CoV-2 ranges from 2.3 for Wyoming to 7.1 for New Jersey. The population-weighted 275 

mean for the US is 4.7. These estimates indicate that the herd immunity threshold (HIT) for the Delta 276 

variant of SARS-CoV-2 ranges from 82% to 94%, assuming that Delta is 2.46 times more transmissible 277 

than ancestral strains. The uncertainty in each ℛ! estimate was quantified: 95% credible intervals are 278 

indicated in Figure 4. The 95% credible intervals for ancestral HIT estimates are given in SI Table S2. 279 

Because we can estimate the relative effort required to reach herd immunity across the US (in terms of 280 

HIT), resources for vaccination campaigns can be targeted to those areas where it is more difficult to 281 

achieve herd immunity. 282 

Our ℛ! and HIT estimates differ from estimates given in previous studies. For example, various 283 

researchers derived point estimates for ℛ! from data using tools from time-series analysis, without 284 

assuming an underlying mechanistic model (13, 15). These tools depend on slope estimation and thus can 285 

be expected to depend sensitively on noise and errors in early case-reporting data. Ives and Bozzuto (16) 286 

provided state-level estimates for ℛ! (in 36 states), and Fellows et al. (17) used a Bayesian framework to 287 

obtain state-level estimates for ℛ! (in all 50 states). For the 30 states that are considered in Ives and 288 

Bozzuto (16), Fellows et al. (17), Milicevic et al. (18), and the present study, our estimates for ℛ! were 289 

most similar to those of Milicevic et al. (18) (SI Table S6). Milicevic et al. (18) provided state-level ℛ! 290 

point estimates (for 45 states) that are statistically consistent with our MAP estimates of ℛ! for ancestral 291 

strains of SARS-CoV-2. The main points of difference between these earlier studies and the present study 292 

are as follows. Our ℛ! and HIT estimates were obtained from a model consistent with new case-reporting 293 
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data, as illustrated in Figs 1 and 3. We were able to provide estimates for all 50 states (Fig 4, SI Table S2), 294 

and we were able to obtain a Bayesian quantification of the uncertainty in each estimate (Fig 4, SI Table 295 

S2). 296 

In the face of Delta, the estimates of Fig6C (based on case reporting data) suggest that a majority 297 

of states have yet to achieve herd immunity, and the estimates of Fig 6D (based on serological survey 298 

results) suggest that no state in the US has achieved herd immunity as of September 20, 2021. In either 299 

case, persons in the US lacking immunity are still at risk (44). The perspective provided by Fig 6D is 300 

consistent with the study of Moghadas et al. (45) indicating that only 62% of persons in the US had some 301 

form of immunity as of July 15, 2021 (either through infection or vaccination). Given that the percentage 302 

of immune persons required for herd immunity according to Fig 6D ranges from 84% for South Dakota 303 

to 45% for Idaho (Fig 6D) ~20 months (counting from January 2020) into the COVID-19 pandemic and 304 

~9 months after vaccines became widely available, it seems that this situation will persist for months, if 305 

not years. How can the US accelerate the approach to herd immunity?  306 

Policies that encourage infection of children and vaccinated persons who have healthy immune 307 

systems may be rationalized because such persons seem to be well-protected against severe (but not mild) 308 

disease (46) and infected persons seem to have greater protection against productive infection (40). 309 

However, this approach has obvious drawbacks, starting with the risks of infection. Another is that non-310 

immune persons may not be able to self-identify as such. Unfortunately, it seems that we cannot rely on 311 

currently available vaccines to stop community transmission. Delta-adjusted HITs are mathematically 312 

impossible to achieve through vaccination alone because these HITs are close to 1 (SI Table S2) and 313 

vaccine protection against productive infection is imperfect (i.e., 𝜀3 is significantly less than 1) (41). Thus, 314 

use of Delta-targeted vaccines may be needed to accelerate the approach to herd immunity and to minimize 315 

COVID-19 impacts.   316 
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One potential benefit of our comprehensive state-level ℛ! estimates is that they quantify how 317 

differences in social structure and contact patterns across the US—the factors presumably underlying the 318 

spatial heterogeneity in 𝛽 and ℛ!—influence the spread of an aerosol-transmitted virus (47-48). This 319 

information, by identifying the regions in the US where transmission is likely to be highest, could be 320 

useful for responding to future pandemics caused by viruses similar to SARS-CoV-2.  321 

Our study has several notable limitations. Our HIT estimates are potentially biased downward 322 

because of general awareness within the US of the impacts of COVID-19 in other countries (e.g., China 323 

and Italy), which could have resulted in a fraction of the US population changing their behaviors to protect 324 

themselves from COVID-19 before the start of the local epidemic. In addition, our estimation of percent 325 

progress toward herd immunity crucially depends on seroprevalence estimates of the true disease burden. 326 

These estimates are associated with some uncertainty (49-51). As illustrated in Fig 6, percent progress 327 

toward herd immunity is underestimated if serological tests fail to detect all cases of infection. The reader 328 

must also be cautioned that our analysis depends on a number of assumptions. For example, we considered 329 

a compartmental model in which populations are taken to be well-mixed and to lack age structure. This is 330 

clearly a simplification. More refined estimates could be obtained by making the model more realistic, but 331 

this would have the drawback of increasing the complexity of inference, which at some point would make 332 

inference impracticable. 333 
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 467 
 468 
 469 
 470 
 471 
 472 
Table 1. Maximum a posteriori (MAP) estimates and 95% credible intervals for epidemic parameters (β, 473 
λ, ℛ!, HIT, and Delta-adjusted HIT) for the states of New Jersey, Wyoming, Florida, and Alaska. 474 

 475 

In this analysis, we used surveillance data (daily reports of new cases) available from 21-January-2020 to 476 
21-June-2020 (inclusive dates) to estimate parameter values through Bayesian inference. *Computed as 477 
described in SI. **Calculated using Eq. 1. ***Obtained through the relation HIT = 1 − 1/ℛ!. ****Based 478 
on Delta being 2.46 times more infectious than ancestral strains.  479 

 480 

State β (d&%) 𝜆 (d&%)* ℛ!** HIT*** Delta-adjusted 
HIT**** 

New Jersey 

Wyoming 

Florida 

Alaska 

0.65 (0.59-0.71) 

0.21 (0.21-0.23) 

0.55 (0.48-0.59) 

0.21 (0.21-0.23) 

0.45 (0.41-0.48) 

0.13 (0.13-0.15) 

0.39 (0.34-0.41) 

0.13 (0.13-0.14) 

7.1 (6.4-7.7) 

2.3 (2.3-2.5) 

6.0 (5.2-6.4) 

2.3 (2.3-2.5) 

0.86 (0.84-0.87) 

0.56 (0.56-0.59) 

0.83 (0.81-0.84) 

0.56 (0.56-0.59) 

0.94 (0.94-0.95) 

0.82 (0.82-0.84) 

0.93 (0.92-0.94) 

0.82 (0.82-0.84) 
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 481 
 482 
Figure 1. Bayesian predictive inferences for daily confirmed case counts of COVID-19 in (A) New Jersey 483 
(B) Wyoming (C) Florida (D) Alaska, from January 21 to June 21, 2020 (inclusive dates). The 484 
compartmental model (22) accounts for an initial social distancing period followed by 𝑛 additional 485 
periods. We considered 𝑛 = 0, 1 and 2 and selected the best 𝑛 using the model selection procedure of Lin 486 
et al. (22). Plus signs indicate daily case reports. The shaded region indicates the prediction uncertainty 487 
and inferred noise in detection of new cases. The color-coded bands within the shaded region indicate the 488 
median and different credible intervals (e.g., dark purple band corresponds to the median, the band with 489 
lightest shade of yellow corresponds to the 95% credible interval, and gradations of color between these 490 
two extremes correspond to different credible intervals as indicated in the legend). In each panel, the 491 

A B 

C D 
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vertical broken line indicates the onset time of the first social-distancing period. For states with 𝑛 = 1 492 
(Alaska and Florida), there is an additional broken line, which indicates the onset time of the second 493 
social-distancing period. The model was used to make forecasts of new case detection for 14 days after 494 
June 21, 2020. The last prediction date was July 5, 2020. 495 
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 538 
 539 
 540 

 541 

 542 
Figure 2. Marginal posterior distributions of ℛ! (left panels) and HIT (right panels) for ancestral strains 543 
of SARS-CoV-2 in four US states: (A, B) New Jersey, (C, D) Wyoming, (E, F) Florida, and (G, H) Alaska. 544 
Inferences are based on daily reports of new cases from January 21 to June 21, 2020. Each ℛ! posterior 545 
was obtained from the corresponding marginal posterior for β and Eq. 1. Each HIT posterior was obtained 546 
from the relation HIT = 1 − 1/ℛ! and the corresponding marginal posterior for ℛ!. The 95% credible 547 
intervals for ℛ! are as follows: (6.44, 7.67) for New Jersey, (2.26, 2.47) for Wyoming, (5.20, 6.41) for 548 
Florida, and (2.26, 2.45) for Alaska. The 95% credible intervals for the HIT estimates are as follows: 549 
(0.84, 0.87) for New Jersey, (0.56, 0.59) for Wyoming, (0.81, 0.84) for Florida, and (0.56, 0.59) for 550 
Alaska. For each panel, the endpoints of the corresponding credible interval are indicated with vertical 551 
broken lines. 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 

A 

C D 

B 

E 

G H 

F 

6.00 6.50 7.00 7.50 8.00
��

Po
st

er
io

r D
is

tr
ib

ut
io

n

New Jersey

0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880
HIT

Po
st

er
io

r D
is

tr
ib

ut
io

n

New Jersey

2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
��

Po
st

er
io

r D
is

tr
ib

ut
io

n

Wyoming

0.550 0.560 0.570 0.580 0.590 0.600 0.610 0.620 0.630
HIT

Po
st

er
io

r D
is

tr
ib

ut
io

n

Wyoming

5.00 5.50 6.00 6.50 7.00
��

Po
st

er
io

r D
is

tr
ib

ut
io

n

Florida

0.790 0.800 0.810 0.820 0.830 0.840 0.850 0.860
HIT

Po
st

er
io

r D
is

tr
ib

ut
io

n

Florida

2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60
��

Po
st

er
io

r D
is

tr
ib

ut
io

n

Alaska

0.550 0.560 0.570 0.580 0.590 0.600 0.610
HIT

Po
st

er
io

r D
is

tr
ib

ut
io

n

Alaska

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.21264188doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.27.21264188


23 
 

 563 
 564 

 565 

 566 
Figure 3. Consistency of model-derived λ estimates with empirical growth rates during initial exponential 567 
increase in disease incidence in (A) New Jersey, (B) Wyoming, (C) Florida, and (D) Alaska. In each panel, 568 
the initial slope of the solid curve corresponds to 𝜆 (calculated as described in Materials and Methods), 569 
the crosses indicate empirical cumulative case counts, and the broken line is the model prediction based 570 
on MAP estimates for adjustable parameters. The solid curve is derived from the reduced model (Eqs. 1-571 
8 in the SI). This curve shows cumulative case counts had there not been any interventions to limit disease 572 
transmission. As can be seen, the initial slopes of the solid and broken curves are comparable. We selected 573 
𝑛 = 0 for New Jersey and Wyoming and 𝑛 = 1 for Florida and Alaska. Among 35 states with 𝑛 = 0, New 574 
Jersey has the largest inferred λ value (0.45) and Wyoming has the smallest inferred 𝜆 value (0.13). Among 575 
15 states with 𝑛 = 1, Florida has the largest inferred value of 𝜆 (0.39) and Alaska has the smallest inferred 576 
value of 𝜆 (0.13). It should be noted that, in contrast with Fig 1, the y-axis here indicates cumulative (vs. 577 
daily) number of cases on a logarithmic (vs. linear) scale. 578 
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 580 
Figure 4. MAP estimates of the basic reproduction number ℛ! for ancestral strains of SARS-CoV-2 in 581 
all 50 US states. The different symbols refer to different training datasets used to estimate ℛ!. Open 582 
triangles correspond to surveillance data collected from January 21 to May 21, 2020, filled circles 583 
correspond to surveillance data collected from January 21 to June 21, 2020, and open squares correspond 584 
to surveillance data collected from January 21 to July 21, 2020. Estimates of ℛ! are sorted by state from 585 
largest to smallest values according to the ℛ! estimates derived from the surveillance data collected for 586 
January 21 to June 21, 2020. The whiskers associated with each filled circle indicates the 95% credible 587 
interval (inferred from the 5-month dataset). States are indicated using two-letter US postal service state 588 
abbreviations (https://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf). 589 
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 601 
 602 
 603 

 604 

 605 
 606 
Figure 5. Perturbation analysis using the full model of Lin et al. (22) for the states of New York (panels 607 
A and B) and Washington (panels C and D). In each panel, the black solid line represents the number of 608 
infectious persons (initially 1), the black broken line represents the threshold number of persons required 609 
for herd immunity (i.e., 𝑆$), and the gray broken line represents the number of recovered persons (initially 610 
𝑆$ − ε, obtained as described in Results). Simulations are based on MAP estimates for model parameters 611 
obtained using surveillance data collected from January 21 to June 21, 2020. 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 

A B 

C D 
0 10 20 30 40 50

Time (days)

10-12

10-8

10-4

100

104

108

N
u

m
b

e
r 

(p
e
rs

o
n

s
)

New York with growing infections

0 10 20 30 40 50

Time (days)

10-12

10-8

10-4

100

104

108

N
u

m
b

e
r 

(p
e
rs

o
n

s
)

New York with declining infections

0 10 20 30 40 50

Time (days)

10-12

10-8

10-4

100

104

108

N
u

m
b

e
r 

(p
e
rs

o
n

s
)

Washington with growing infections

0 10 20 30 40 50

Time (days)

10-12

10-8

10-4

100

104

108
N

u
m

b
e
r 

(p
e
rs

o
n

s
)

Washington with declining infections

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.21264188doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.27.21264188


26 
 

B A 

C 

 622 
 623 

Figure 6. Percent progress toward herd immunity in each of the 50 US states. Percent progress 𝒫 indicates 624 
the fraction of immune persons required for herd immunity. 𝒫 was calculated using Eq. 2. Black bars 625 
(Panel A) correspond to the first scenario (i.e., 𝑓4 estimated as the number of detected cases divided by 626 
population size), gray bars (Panels A and C) correspond to the second scenario (i.e.,	𝑓4 estimated as the 627 
number of detected cases within a population divided by the population size, adjusted for lack of detection 628 
of undiagnosed SARS-CoV-2 infections), black bars (Panel B) correspond to the third scenario (i.e., 𝑓4 629 
given by seroprevalence survey results), and gray bars (Panels B and D) correspond to the fourth scenario 630 
(i.e., 𝑓4 given by seroprevalence survey results adjusted for lack of detection of asymptomatic cases). 631 
Estimates for 𝒫 are sorted by state from largest to smallest values according to the second scenario (Panels 632 
A and C) and the fourth scenario (Panels B and D). North Dakota was omitted from Panels B and D 633 
because a recent estimate of seroprevalence was not available at Ref. (25). States are indicated using two-634 
letter US postal service state abbreviations (https://about.usps.com/who-we-are/postal-history/state-635 
abbreviations.pdf). 636 
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 22 

Reduced Model 23 

We derive ℛ! from a simplified form of the compartmental model of Lin et al. (1). The reduced 24 

model is obtained by omitting variables and terms for interventions, including social distancing, 25 

quarantine, and self-isolation. Thus, the reduced model describes disease transmission dynamics in the 26 

absence of interventions. The equations of the reduced model are as follows: 27 

"#
"$
= − %#

#!
[𝐼 + ρ&(𝐸' + 𝐸( + 𝐸) + 𝐸*) + ρ+𝐴],       [1] 28 

"&"
"$
= %#

#!
[𝐼 + ρ&(𝐸' + 𝐸( + 𝐸) + 𝐸*) + ρ+𝐴] − 𝑘,𝐸-,      [2] 29 

"&#
"$
= 𝑘,(𝐸./- − 𝐸.), for 𝑖 = 2,3, … ,𝑚        [3] 30 

"+
"$
= 𝑓+𝑘,𝐸0 − 𝑐+𝐴,           [4] 31 

"1
"$
= (1 − 𝑓+)𝑘,𝐸0 − 𝑐1𝐼,          [5] 32 

"2
"$
= 𝑓2𝑐1𝐼 − 𝑐2𝐻,           [6] 33 

"3
"$
= 𝑐+𝐴 + (1 − 𝑓2)𝑐1𝐼 + 𝑓3𝑐2𝐻,         [7] 34 

"4
"$
= (1 − 𝑓3)𝑐2𝐻,           [8]  35 

where 𝑡 denotes time, 𝛽, 𝑆!, ρ&, ρ+, 𝑘,, 𝑓+, 𝑓2, 𝑓3, 𝑐+, 𝑐1, and 𝑐2 are positive-valued time-invariant 36 

parameters, as defined in Lin et al. (1), and 𝑚 denotes the number of stages taken to comprise the 37 

incubation period. Here and in the study of Lin et al. (1), 𝑚 = 5. The values of 𝛽 (a rate constant 38 

characterizing disease transmission) and 𝑆! (the total population) are taken to be region-specific; the other 39 

parameters have values that are taken to be universal (i.e., applicable to all regions of interest). The 40 

variable 𝑆 denotes the population of susceptible persons. The variables 𝐸- to 𝐸0 denote populations of 41 

exposed persons, e.g., persons incubating virus but not symptomatic. As noted earlier, the incubation 42 

period is divided into 𝑚 stages. The variable 𝐴 denotes the population of persons who have progressed 43 
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through the incubation period but will never develop symptoms (i.e., persons with asymptomatic 44 

infections). The variable 𝐼 denotes the population of persons with mild symptomatic disease. The variable 45 

𝐻 denotes the population of persons with severe disease who are hospitalized or isolated at home. The 46 

variable 𝑅 denotes the population of recovered persons, and the variable 𝐷 denotes the population of 47 

deceased persons.  48 

Basic Reproduction Number 49 

The basic reproduction number, ℛ!, is defined as the number of secondary infections caused by 50 

an infected person during the entire period of infectiousness when introduced into a population consisting 51 

of susceptible persons only and there are no interventions to limit disease transmission. Here, we use the 52 

next-generation matrix method to compute ℛ! (2). The model has a disease-free equilibrium (DFE) 𝑥! 53 

with 𝑆 = 𝑆!, where 𝑆! is the total population and the remaining populations (𝐸-, 𝐸', … , 𝐸0, 𝐴, 𝐼, 𝐻, 𝑅, 𝐷) 54 

are equal to 0.  55 

To use the next-generation matrix method, we let 𝑥 = (𝐸-, 𝐸', 𝐸(, 𝐸), 𝐸*, 𝐴, 𝐼) denote the vector of 56 

state variables corresponding to compartments containing infected persons. For each infected 57 

compartment 𝑖, we define 𝑓. as the rate of entry of newly infected persons into compartment 𝑖 and 𝑣. as 58 

the net transfer of persons out of the 𝑖$5 compartment. Then, we have 𝑑𝑥./𝑑𝑡 = 𝑓.(𝑥) − 𝑣.(𝑥). Now, we 59 

let 𝐹 and 𝑉 denote the Jacobians of 𝑓 and 𝑣 evaluated at the disease-free equilibrium 𝑥!. The (𝑖, 𝑗) entry 60 

of the matrix 𝐹 is the rate at which infected persons in the 𝑗$5 compartment produce a new infection in the 61 

𝑖$5 compartment. The (𝑗, 𝑘) entry of the matrix 𝑉/- is the expected amount of time that a person 62 

introduced to the 𝑘$5 compartment will spend in a single visit to the 𝑗$5 compartment. The matrix 𝐹, which 63 

is non-negative, is defined as follows: 64 
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𝐹 ≡

⎝

⎜
⎜
⎜
⎛

0 𝜌&𝛽 𝜌&𝛽 𝜌&𝛽 𝜌&𝛽 𝜌+𝛽 𝛽
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0⎠

⎟
⎟
⎟
⎞

 65 

The matrix 𝑉, which is non-singular (i.e., invertible), is defined as follows: 66 

𝑉 ≡

⎝

⎜
⎜
⎜
⎛

𝑘, 0 0 0 0 0 0
−𝑘, 𝑘, 0 0 0 0 0
0 −𝑘, 𝑘, 0 0 0 0
0 0 −𝑘, 𝑘, 0 0 0
0 0 0 −𝑘, 𝑘, 0 0
0 0 0 0 −𝑓+𝑘, 𝑐+ 0
0 0 0 0 −(1 − 𝑓+)𝑘, 0 𝑐1⎠

⎟
⎟
⎟
⎞

 67 

We find ℛ! as the spectral radius (i.e., the dominant eigenvalue) of the matrix 𝐹𝑉/- (2), which is given 68 

by Eq. 1 in the main text.  69 

Epidemic growth rate 70 

The epidemic growth rate λ is defined as the dominant eigenvalue of the Jacobian of the reduced 71 

model linearized at the disease-free equilibrium (DFE). Thus, λ is the largest root of the characteristic 72 

polynomial for the 7-dimensional Jacobian matrix 𝐽, which is equivalent to 𝐹 − 𝑉. We used the 73 

CharacteristicPolynomial function in Mathematica (3) to find 𝐽:  74 

𝑝6(𝑥) = 𝛽(1 − 𝑓+)𝑘,*(c7 + 𝑥) + [β𝑓+𝑘,*ρ+ + (𝑐+ + 𝑥)(−𝑘,* + 4β𝑘,)ρ& − 5𝑘,)𝑥 + 6β𝑘,(ρ&𝑥 −75 

10𝑘,(𝑥' + 4β𝑘,'ρ&𝑥' − 10𝑘,'𝑥( + 𝛽𝑘,ρ&𝑥( − 5𝑘,𝑥) − 𝑥*)](𝑐1 + 𝑥)	     [9] 76 

The largest root was found numerically. Solutions were based on state-specific estimates for 𝛽 and the 77 

estimates of Lin et al. (1) for other parameters in Eq. 9. 78 

Progress toward herd immunity 79 

In this section, we explain the assumptions and derive the formula for our metric of progress 80 

toward herd immunity (Eq. 2 in the main text). First, we define the variables used in our analysis. For a 81 
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given region, 𝑆! denotes the total population size,	𝑁" denotes the cumulative number of cases detected, 82 

𝑁8 denotes the cumulative number of asymptomatic cases, 𝑁9 denotes the cumulative number of 83 

vaccinations completed, 𝑁9,; denotes the number of persons who were susceptible at the time of 84 

vaccination, 𝑁9,< denotes the number of persons who had recovered from infection at the time of 85 

vaccination, 𝑁= denotes the cumulative number of all cases, ε9 denotes the fraction of vaccinated 86 

individuals protected from productive infection (i.e., an infection that can be transmitted to others), ε< 87 

denotes the fraction of recovered individuals protected from productive infection, 𝑁< denotes the number 88 

of individuals who have recovered from infection, HIT denotes the herd immunity threshold for ancestral 89 

strains, 𝑌Delta denotes the infectiousness of SARS-CoV-2 variant Delta relative to ancestral strains, 𝑆5 ≡90 

HIT × 𝑆! denotes the threshold number of persons with immunity needed for herd immunity (in the face 91 

of ancestral strains), 𝑆. denotes the estimated number of persons with immunity, 𝑓+ ≡ 𝑁8/𝑁= denotes the 92 

fraction of all cases that are asymptomatic, 𝑓< ≡ 𝑁</𝑆! denotes the fraction of the population with 93 

immunity acquired through infection, and 𝑓9 ≡ 𝑁9/𝑆! denotes the fraction of the population that has been 94 

vaccinated. 95 

We assume that 𝑆! is constant. We take 𝑁< = 𝑁= to be a good approximation. We assume that we 96 

know 𝑆!, 𝑁" , and 𝑁9. We assume that susceptible and recovered individuals have the same probability of 97 

being vaccinated. From our assumption that susceptible and recovered individuals have the same 98 

probability of being vaccinated, it follows that 𝑁9,; = (1 − 𝑓<)𝑁9 and 𝑁9,< = 𝑓<𝑁9. These relations are 99 

consistent with 𝑁9 ≡ 𝑁9,; + 𝑁9,< . The number of individuals with immunity (protection from productive 100 

infection) is given by 101 

𝑆. = εC𝑁9,; + ε<𝑁< = εC(1 − 𝑓<)𝑁9 + ε<𝑁<     [10] 102 

We assume that 𝑌Delta gives the value of 𝛽 for SARS-CoV-2 variant Delta relative to 𝛽 for ancestral 103 

strains. We assume all other model parameters are the same for Delta. Thus, 𝑌Deltaℛ! is the basic 104 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.21264188doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.27.21264188


6 
 

reproduction number in the face of Delta. We define 𝒫, percent progress toward herd immunity, as 105 

𝒫 =
𝑆.
𝑆!
_1 −

1
𝑌Deltaℛ!

`
/-

× 100% 106 

Using the expression given above for 𝑆. (Eq. 10), 1 − 1/(𝑌Deltaℛ!) as the Delta-adjusted HIT, and 𝑆5 =107 
HIT × 𝑆!, we find Eq. 2 in the main text. 108 

SI Figure Legends 109 

Figure S1. Consistency of results obtained from different codes used to perform Markov chain Monte 110 
Carlo (MCMC) sampling. Shown here are 1-dimensional marginal posteriors of parameters for Wyoming 111 
(𝑛 = 0) derived using the Python code of Lin et al. (1) (blue) and PyBioNetFit (4) (red). 112 
 113 
Figure S2. Markov chain log-likelihood trace plots for each of the 50 US states. Bayesian inference was 114 
conditioned on the compartmental model of Lin et al. (1). Bayesian inference was performed as described 115 
by Lin et al. (1) except that training data consisted of daily COVID-19 case counts for states (vs. case 116 
counts for metropolitan statistical areas). The compartmental model accounts for an initial social 117 
distancing period followed by 𝑛 additional periods. We considered 𝑛 = 0, 1 and 2 and selected the best 𝑛 118 
using the model selection procedure described by Lin et al. (1). The number of epochs (or iterations) used 119 
for each state was chosen so that convergence was achieved in each case. Inferences are based on daily 120 
reports of new cases of COVID-19 from January 21 to June 21, 2020. 121 
 122 
Figure S3. Parameter trace plots for each of the 50 US states. These parameter trace plots are matched to 123 
the likelihood trace plots of Fig S2. It should be noted that the number of parameters varies across the 124 
states depending on the selected value of 𝑛. See the caption of Fig S2 for additional details. 125 
 126 
Figure S4. Matrix of 1- and 2-dimensional marginalizations of the posterior samples obtained for the 127 
adjustable parameters associated with the compartmental model for each of the 50 US states. Inferences 128 
are based on daily reports of new cases of COVID-19 from January 21 to June 21, 2020. Plots of marginal 129 
posteriors (1-dimensional marginalizations) are shown on the diagonal from top left to bottom right. Other 130 
plots are 2-dimensional marginalizations (presented as histograms) indicating the correlations between 131 
parameter estimates. Brightness indicates higher probability density. A compact bright area indicates low 132 
correlation. An extended, asymmetric bright area indicates high correlation. The pairs plots shown here 133 
are matched to the trace plots of Figs S3 and S4. See the caption of Fig S2 for additional details.  134 
 135 
Figure S5. Posterior predictive checking. The time-dependent predictive posterior distribution for daily 136 
number of COVID-19 cases detected is visualized for all states except New Jersey, Wyoming, Florida, 137 
and Alaska, which are considered in Fig 1 of the main text. Inferences are based on daily reports of new 138 
COVID-19 cases from January 21 to June 21, 2020 (inclusive dates). The compartmental model (1) 139 
accounts for an initial social distancing period followed by 𝑛 additional periods. We considered 𝑛 = 0, 1 140 
and 2 and selected the best 𝑛 using the model selection procedure of Lin et al. (1). Crosses indicate 141 
observed daily case reports. The shaded region indicates the prediction uncertainty and inferred noise in 142 
detection of new cases. The color-coded bands within the shaded region indicate the median and different 143 
credible intervals (e.g., dark purple corresponds to the median, the lightest shade of yellow corresponds 144 
to the 95% credible interval, and gradations of color between these two extremes correspond to different 145 
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credible intervals as indicated in the legend). In each panel, the vertical broken line indicates the onset 146 
time of the first social-distancing period. For states with 𝑛 = 1, there is an additional (rightmost) broken 147 
line, which indicates the onset time of the second social-distancing period. The model was used to make 148 
forecasts of new case detection for 14 days after June 21, 2020. The last prediction date was July 5, 2020. 149 
 150 
Figure S6. Consistency of model-derived λ estimates with empirical growth rates during initial 151 
exponential increase in disease incidence in 46 states of the US (i.e., excluding New Jersey, Wyoming, 152 
Florida, and Alaska; see Fig 3 in the main text). In each panel, the initial slope of the solid curve 153 
corresponds to 𝜆 (calculated as described in Materials and Methods), the crosses indicate empirical 154 
cumulative case counts, and the broken line is the model prediction based on MAP estimates for adjustable 155 
parameters. The solid curve is derived from the reduced model (Eqs. 1-8 in the SI). This curve shows 156 
cumulative case counts had there not been any interventions to limit disease transmission. As can be seen, 157 
the initial slopes of the solid and broken curves are comparable. It should be noted that, in contrast with 158 
Fig S5, the y-axis here indicates cumulative (vs. daily) number of cases on a logarithmic (vs. linear) scale. 159 
 160 
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