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Abstract 
 

Background 
Recent advances in Artificial intelligence (AI) have the potential to substantially improve healthcare 
across clinical areas. However, there are concerns health AI research may overstate the utility of newly 
developed systems and that certain metrics for measuring AI system performance may lead to an overly 
optimistic interpretation of research results. The current study aims to evaluate the relationship between 
researcher choice of AI performance metric and promotional language use in published abstracts.  
 

Methods and findings 
This cross-sectional study evaluated the relationship between promotional language and use of composite 
performance metrics (AUC or F1). A total of 1200 randomly sampled health AI abstracts drawn from 
PubMed were evaluated for metric selection and promotional language rates. Promotional language 
evaluation was accomplished through the development of a customized machine learning system that 
identifies promotional claims in abstracts describing the results of health AI system development. The 
language classification system was trained with an annotated dataset of 922 sentences. Collected 
sentences were annotated by two raters for evidence of promotional language. The annotators achieved 
94.5% agreement (κ = 0.825). Several candidate models were evaluated and, the bagged classification and 
regression tree (CART) achieved the highest performance at Precision = 0.92 and Recall = 0.89. The final 
model was used to classify individual sentences in a sample of 1200 abstracts, and a quasi-Poisson 
framework was used to assess the relationship between metric selection and promotional language rates. 
The results indicate that use of AUC predicts a 12% increase (95% CI: 5-19%, p = 0.00104) in abstract 
promotional language rates and that use of F1 predicts a 16% increase (95% CI: 4% to 30%, p = 0. 
00996). 
 

Conclusions 
Clinical trials evaluating spin, hype, or overstatement have found that the observed magnitude of increase 
is sufficient to induce misinterpretation of findings in researchers and clinicians. These results suggest 
that efforts to address hype in health AI need to attend to both underlying research methods and language 
choice.  

 

 

Introduction 
Popular and scientific accounts describing the potential of Artificial Intelligence (AI) for health 

and medicine promise fundamental transformations in the nature and quality of care.1,2 Accounts of the 

near future of health AI promise full life-span benefits from reproductive planning through end-of-life 

care.1-2 as well as transformation in related areas like health policy.3 Recently developed and currently 

available health AI technologies have shown great potential for cancer diagnosis,3 intensive care unit 

admission prediction,4 health policy,5 and even mitigating systemic biases in medicine.6 These kinds of 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.21264169doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.27.21264169


promising results are fueling unprecedented investments in the sector, with over $14 billion in US venture 

capital in 2020.7 The enthusiasm for health AI is often warranted. However, many in medicine and 

bioethics are concerned that if practitioners or hospital systems put too much trust in health AI’s 

promotional claims, it may lead to significant patient harm.7-13 Overly enthusiastic adoption of AI may 

lead to misdiagnoses, medical errors, and inequitable delivery of care.  

To help address these issues, researchers in medicine and bioethics are advancing new standards 

for health AI research and reporting.14-16 Nevertheless, the ability to effectively identify extravagant and 

promotional claims will remain an important part of vetting new technological innovations. Appropriate 

validity methods and related performance metrics are often seen as the cornerstone of these initiatives. 

The ability to precisely determine the accuracy of a given AI system offers an important tool for 

separating the hype from reality, in terms of both AI performance and potential utility. Specificity and 

sensitivity, for example, have been primary metrics in diagnostic medicine for nearly 75 years.17 These 

metrics are relatively intuitive ratios confusion matrix values (true positives, true negatives, false 

positives, false negatives). Specificity is defined by the number of true negatives over the sum of true 

negatives and false positives; whereas, sensitivity represents the number of true positives over the sum of 

true positives and false negatives. In short, these metrics offer clinicians critically important information 

about how likely a given test is to correctly diagnose a patient and how likely that same test is to correctly 

clear a patient. Other common metrics such as accuracy, precision, and recall are derived similarly based 

on a simple confusion matrix. However, health AI researchers increasingly use composite metrics that 

mathematically aggregate these ratios. Area Under the Receiver Operating Characteristic Curve (AUROC 

or AUC) and F1 are among the most popular. AUC is determined by plotting a ROC curve defined by 

sensitivity and 1-specificity and then calculating the two-dimensional area under that curve. F1 is the 

harmonic mean of precision and recall. While composite metrics can be helpful when comparing the 

performance of different candidate models built under the same framework, many in clinical medicine 

have expressed concerns that these metrics are often misunderstood and do not offer healthcare providers 

critically important information about diagnostic performance.18-20 The underlying question of this study, 
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therefore, is to evaluate if use of these composite metrics might associate with the kinds of increases in 

promotional language that lead to overconfidence in new AI systems.  

 

Methods 
To evaluate this question, we assessed the relationship between metric selection and promotional 

language usage rates in a random sample of 1200 abstracts collected from PubMed. Promotional language 

was identified using a custom machine learning classifier trained on human-annotated sentences from 

previously collected abstracts reporting the results of newly developed health AI systems. In what 

follows, we describe our search strategy and sampling technique. Subsequently, we describe the 

development and validation of our promotional language classifier.  

 

Search strategy and data collection 
Our goal in this study was to curate a dataset that would allow us to assess any potential 

relationship between use of composite metrics and rates of promotional language related to health AI. 

Specifically, our aim was to collect research on health-related machine learning systems that included 

relevant benchmarking data in the PubMed-indexed abstract. In order to do so, we began by 

implementing a search strategy that identified PubMed-indexed articles containing (1) “machine learning” 

within the Medical Subject Heading (MeSH) ontology, and (2) one of the following terms in either the 

published article title or abstract: Accuracy, AUC, AUROC, F1, F-1, Negative Predictive Value, NPV, 

Positive Predictive Value, PPV, Precision, Recall, Sensitivity, Specificity, TNR, TPR, True Negative 

Rate, or True Positive Rate. This search yielded a total of 15,481 papers. Collected papers were 

subsequently screened for English language, presence of an abstract, and discussion of specific metrics 

within the abstract. Since the available PubMed search protocol bundles the title and abstract fields, this 

secondary screening focused on abstracts alone was necessary to locate papers that fit the study inclusion 

criteria. 7,421 records remained after screening, and a random sample of 1200 was extracted for 
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subsequent analysis. This sample size was identified prospectively in order to assure 95% power.21 See 

Fig. 1 for additional details on the search strategy and selection of articles. 

Fig. 1. Identification, Screening, and Inclusion of Studies. This flowchart details the identification, 
screening, and inclusion of studies for this paper. The chart is an adaptation Adapted from the PRISMA 
2020 Guidelines.22 
 
 

For each abstract in the sample, we collected data on which and how many performance metrics 

were being used to evaluate tested systems. Since AUC and F1 are composite metrics, they are often used 

alongside their constituent metrics. Each new metric presented in an abstract, therefore, affords writers 

the opportunity to use more promotional language. Subsequently, it was important to know if the number 

of metrics alone was sufficient to predict changes in the relative frequency of promotional language use. 

Metric identification was based on the calculation or framework rather than simply the name of the 

 

d 
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metric. So, for example, instances of true positive rate (TPR), sensitivity, and recall were all identified as 

TPR since these metrics use identical calculations. Table 1 details the regular expressions used to identify 

and classify metrics in each abstract. 

 

Table 1. Metric identification and classification regular expressions 

Metric Regex Query 

True Positive Rate (?i)true postive rate|TPR|(?i)sensitivity|(?i)recall 

True Negative Rate (?i)true negative rate|TNR|(?i)specificity 

Positive Predictive Value (?i)positive predictive value|PPV|(?i)precision 

Negative Predictive Value (?i)negative predictive value|NPV 

Accuracy (?i)balanced accura|(?i)percent accura|(?i)precentage 
accura|(((?i)acc)(\\s|:|=)) 

AUC (?i)area under the curive|(?i)area under the receiver operating 
characteristic curve|AUC|AUROC 

F1 F1|F-1 

 

 
Annotation and Model Training 

For the promotional language analysis, we built a natural language processing machine learning 

model capable of identifying promotional claims in the collected abstracts. The model was trained on 

human identification of promotional and non-promotional statements in research abstracts for 82 articles 

collected as part of a pre-existing meta-study on diagnostic AI performance.23 The meta-study inclusion 

criteria selected for articles that (1) evaluated a diagnostic classification task for a specific disease, (2) 

used deep learning models, and (3) compared system performance to healthcare professionals. The study 

authors qualitatively evaluated 82 publications and included 25 in the statistical meta-analysis. Collected 

articles include evaluations of AI systems designed to support diagnostic imaging in oncology, 

dermatology, ophthalmology, cardiology, and other assorted subspecialties. To curate the training set, we 

searched PubMed for each article in the original meta-study and collected available abstracts. Seventy-six 
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of the abstracts are publicly available via PubMed. The remaining six abstracts were collected directly 

from publisher websites.  

Collected abstracts were tokenized by sentence creating a dataset of 922 sentences for annotation. 

Each of these sentences was annotated by two annotators for evidence of promotional claims about 

developed AI system(s). The promotional language annotation was assigned when one of the following 

were present: (1) favorable comparisons to human annotators or previously developed health AI systems, 

(2) positive superlative qualifying adjectives describing the performance or efficiency of the system, (3) 

claims to generalizability or clinical applicability, or (4) assertions that system performance meets the 

standards for Food and Drug Administration medical device clearance or approval. Many sentences 

classified as promotional met multiple requirements for annotation. For example, it was common for 

favorable comparisons to include superlative qualifiers. A given sentence was only annotated as 

“promotional language” if it described a system under evaluation in the article. Promotional language 

about AI, in general, was not assigned to the “promotional” category. Additionally, claims about system 

performance that might be considered objectively good (e.g., AUC=.9997) were not classified as 

“promotional” unless the sentence also included favorable comparisons, positive superlative qualifiers, 

claims to generalizability/applicability, or claims to meeting regulatory standards. Further details about 

these features and illustrative examples are available in Table 2.  

Table 2. Common features of promotional language and illustrative examples. 

Promotional Feature Description and Examples 

Favorable Comparison Sentence asserts that an ML system performs as well as or better than a 
qualified medical expert or previously developed ML system.  

● For the first time, dermatologist-level image classification was 
achieved on a clinical image classification task without training on 
clinical images. 

● For the whole-slide image classification task, the best algorithm 
(AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better 
than the pathologists WTC in a diagnostic simulation (mean AUC, 
0.810 [range, 0.738-0.884]; P < .001). 

Superlative Qualifier Sentence uses positive-valence superlative adjectives or adverbs to 
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qualify claim.  

● The significant improvements in diagnostic accuracy that we observed 
in this study show that deep learning methods are a mechanism by 
which senior medical specialists can deliver their expertise to 
generalists on the front lines of medicine, thereby providing substantial 
improvements to patient care. 

● Further, RADnet achieves higher recall than two of the three 
radiologists, which is remarkable. 

Generalizability or 
Applicability 

Sentence claims that findings are generalizable or warrant use in 
clinical contexts.  

● These methods could be of benefit to centres at which thoracic 
imaging expertise is scarce, as well as for stratification of patients in 
clinical trials. 

● Collectively, the current system may have capabilities for screening 
purposes in general medical practice, particularly because it requires 
only a single clinical image for classification. 

Regulatory Standards Sentence asserts that findings meet standards for regulatory approval 
(e.g., superior or noninferior).  

● The three-dimensional convolutional neural network described in this 
article demonstrated both high sensitivity and high specificity in 
classifying pulmonary nodules regardless of diameters as well as 
superiority compared with manual assessment. 

● The sensitivity of the DL algorithm for diagnosing ONFH using digital 
radiography was noninferior to that of both less experienced and 
experienced radiologist assessments. 

 

Initial annotation was completed on a subsample of 288 sentences. Annotations were applied 

independently by each annotator and inter-rater reliability was assessed using Cohen’s kappa. Initial inter-

rater agreement was 94.1% (κ = 0.812). The two annotators used these results to conduct an additional 

norming exercise where they discussed points of disagreement. They then re-annotated the original 288 

sentences independently, along with the remaining 634 sentences to create the final dataset. Final 

interrater reliability was almost perfect (κ = 0.825 with 94.5% agreement) according to previously 

published guidelines for qualitative interpretation of Cohen’s κ.24 The few remaining annotation 

disagreements were resolved by a third annotator prior to model training. 

We extracted relevant features from the annotated sentences and assessed several competing 

approaches to training in order to develop the final model. All feature extraction and training was 
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implemented in R version 4.0.2, although some feature extraction techniques made use of python virtual 

environments via the reticulate library.25 All feature extraction and modeling was performed on a desktop 

workstation (Dell G5, core i3-9300, 16 GB RAM). Part-of-speech (POS) average location (aveloc) was 

used for primary feature extraction.26 POS aveloc uses spaCyr to classify each word according to POS 

type and identifies the average location within each sentence.27 The method was designed to provide a 

purely syntactic approach to feature engineering in a computational social science context.26 For POS 

aveloc to work well, it generally requires cases where (1) the unit of analysis is a sentence, (2) the 

collected sentences are fairly homogeneous in terms of content, and (3) the label of interest is a discursive 

or linguistic strategy/technique. POS aveloc feature engineering occurs in two steps: (1) The text of 

interest is parsed to identify parts-of-speech, and (2) the average location (within each sentence) of each 

part of speech is identified. POS aveloc feature engineering was augmented with a sentence order variable 

that resulted in moderate increases in accuracy. Candidate models included k-nearest neighbor (KNN), 

Bagged classification and regression trees (CART), naïve bayes, and neural network (NNet). All training 

was implemented in caret using a random 80/20 train/test split and 10-fold cross-validation.28 The bagged 

CART models had the highest accuracy across metrics. Performance, recall, and AUC measures are 

available in Table 3, and the ROC curves for the final models are available in Figure 2. 

 

Table 3. Precision, recall, and AUC for candidate models.  

Model Precision Recall AUC 

Bagged CART 0.92 0.89 0.8947 

NNet 0.86 0.85 0.7685 

KNN 0.84 0.96 0.7501 

Naive Bayes 0.8 0.944 0.7614 
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Fig. 2. ROC curves for candidate models. Figure shows the differential performance of KNN (red), 
Naive Bayes (blue), Neural Net (black), and bagged CART (Green) classification models. ROC curves 
were generated with the pROC R library.29 The bagged CART model was the most performant with a 
total area under the curve of 0.8947.  

 

Results 
The 1200 studies included in this study focused on the development or validation of health AI 

systems in a wide variety of clinical areas. The studies were all published between 2010 and 2021 in 421 
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distinct journals. The most commonly represented journals included Scientific Reports (58 articles), PLOS 

One (56 articles), Computers in Biology and Medicine (36 articles), Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society (31 articles), Sensors (27 articles), Computer 

Methods and Programs in Biomedicine (23 articles), European Radiology (23 articles), BMC 

Bioinformatics (18 articles), BMC Medical Informatics and Decision Making (15 articles), and the 

International Journal of Medical Informatics (13 articles).  

Each evaluated abstract reported between 1 and 5 metrics, with an average of 1.66. The number 

of sentences identified as containing promotional language ranged from 0 to 12, with an average of 2.67. 

Journal conventions for abstract length vary widely with unstructured abstracts often being as few as five 

sentences and structured clinical abstracts sometimes being as many as 20. Therefore, we used the 

promotional language flagged sentences to determine the percentage of promotional sentences in each 

abstract. The proportion of promotional claims in each abstract ranged from 0 to 60% with an average of 

22.85%, slightly higher than the 20% norm identified in linguistic studies of biomedical abstracts.30 Table 

3 provides additional details regarding distribution of promotional statements and number of metrics per 

abstract.   

 

Table 3: Distribution of promotional statements and number of metrics. 
 Low Mean (SD) High 

Promotional Statements (N)  0 2.67 (1.89) 12 

Promotional Statements (%) 0 22.85 (13.1) 60.0 

Number of Metrics  1 1.66 (0.79) 5 

 

To evaluate the relationship between use of AUC, use of F1, total number of metrics, and the 

proportion of promotional sentences, we used a quasi-Poisson framework. While both use of AUC and F1 

proved to be significant predictors of promotional language use (p = 0.00149 and p = 0.01564), the 

number of metrics used was not a significant predictor (p = 0.53216), So we removed the number of 

metrics variable from the model. The final model predicts a 12% increase (95% CI: 5-19%, p = 0.00104) 
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in the promotional language rates for abstracts that report AUC and a 16% increase (95% CI: 4% to 30%, 

p = 0. 00996) for abstracts that use F1. See fig. 3 for 

additional details.  

 

Fig. 3. Promotional language rates by F1 (left) and AUC (right) usage. Figure details the incident rate 
ratios and 95% confidence intervals for the proportion of promotional language in each abstract by 
composite metric usage.  

 

Discussion 
While the overall observed magnitude of the increase is not large, it is consistent with 

promotional language differentials seen in randomized clinical trials of researcher and clinician responses 

to spin or overstatement. In one study, a single sentence of overstatement was enough to prompt improper 

assessment of research results in 44.4% of cases.31 Importantly, the effect of an overstated sentence was 

not the same across reader demographics. While clinicians who had led research projects were less likely 

to accept a face-value reading of an overstated claim, time since graduation for practicing clinicians 

predicted a greater likelihood of accepting overstated claims. Modest increases in promotional language 

have also been shown to lead researchers and clinicians to be more likely to evaluate new treatments as 

potentially beneficial to patients, even though the presence of spin led researchers to rate studies as less 

methodologically rigorous.32 

, 
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Advances in machine learning and AI have the potential to substantially improve biomedical 

research and clinical practice. However, the adoption of new AI innovations that do not live up to the 

promises made in research reports can lead to both adverse events for patients and overall distrust in the 

potential benefits of clinical AI. Excessive promotional language, hype, or spin helps to create the 

conditions for these adverse outcomes. Efforts to study and address promotional language use in scientific 

and biomedical research tend to focus on hype in popular media.33-36 Within this framework, much of the 

research on hype or overstatement evaluates mismatches between the underlying research and the 

presentation of findings in press releases and news articles. Similar research also evaluates inconsistencies 

between research results and the presentation of findings in abstracts or published articles.20-21 These 

common methodologies for addressing hype assume a readily identifiable division between the 

underlying research and the linguistic presentation of results. The results presented in this article indicate 

that some methods themselves may lead to measurable increases in promotional language. Subsequently, 

these findings suggest that efforts to address hype in health AI need to attend to both underlying research 

methods and language choice in the presentation of findings. Given the established threats to clinical 

utility and the results of this study that indicate use of composite performance metrics can increase 

promotional language rates, health AI researchers and editorial boards may wish to reconsider ideal 

reporting practices in these areas. While composite metrics are quite useful when it comes to comparing 

the performance of candidate models within a study, authors and editors should be on guard against the 

attendant risks of increased promotional language that comes with the use of these metrics. 
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