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ABSTRACT 

 

Background. Freezing of gait, a common symptom of Parkinson’s disease, presents as 

sporadic episodes in which an individual’s feet suddenly feel stuck to the ground. Inertial 

measurement units (IMUs) promise to enable at-home monitoring and personalization of 

therapy, but there is a lack of consensus on the number and location of IMUs for detecting 

freezing of gait. The purpose of this study was to assess IMU sets in the context of both freezing 

of gait detection performance and patient preference. 

Methods. Sixteen people with Parkinson’s disease were surveyed about sensor preferences. 

Raw IMU data from seven people with Parkinson’s disease, wearing up to eleven sensors, were 

used to train convolutional neural networks to detect freezing of gait. Models trained with data 

from different sensor sets were assessed for technical performance; a best technical set and 

minimal IMU set were identified. Clinical utility was assessed by comparing model- and human-

rater-determined percent time freezing and number of freezing events. 

Results. The best technical set consisted of three IMUs (lumbar and both ankles, AUROC = 

0.83), all of which were rated highly wearable. The minimal IMU set consisted of a single ankle 

IMU (AUROC = 0.80). Correlations between these models and human raters were good to 

excellent for percent time freezing (ICC = 0.93, 0.89) and number of freezing events (ICC = 

0.95, 0.86), for the best technical set and minimal IMU set, respectively. 

Conclusions. Several IMU sets consisting of three IMUs or fewer were highly rated for both 

technical performance and wearability, and more IMUs did not necessarily perform better in 

FOG detection. We openly share our data and software to further the adoption of a general, 

open-source model that uses raw signals and a standard sensor set for at-home monitoring of 

freezing of gait. 
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BACKGROUND 

 

Freezing of gait (FOG), a common symptom of Parkinson’s disease, is an intermittent 

inability to perform alternating stepping. FOG can occur when people attempt to initiate walking, 

turn, or navigate obstacles (1). It can lead to falls, injury, loss of independence, and decreased 

quality of life (2,3). Fifty percent of people with Parkinson’s disease experience FOG, and 

prevalence increases to 80% with disease progression (4,5).  

Assessing FOG severity depends on subjective, qualitative tools like patient diaries, 

surveys, and clinical rating scales (6–9), or on observation by an experienced rater in a 

neurology clinic. Of these qualitative tools, the FOG Questionnaire, a six-question survey based 

on one’s experiences over the last week (10) is the recommended clinical assessment of FOG 

severity (11,12). While the FOG Questionnaire is more reliable than other clinical assessments 

(12), it does not offer granularity regarding FOG frequency and only quantifies length of freezes 

by patient recall. The gold standard of quantitatively measuring FOG is through post-hoc 

analysis of video-recorded gait by experienced raters (12). Features of the clinical setting, 

including the physical environment, on-medication status, and shift in attentional focus toward 

gait, limit FOG elicitation in patients who otherwise report FOG in their daily lives (13). The lack 

of a quantitative measure of FOG severity in a patient’s natural environment makes it difficult to 

track disease progression and tune therapy. 

Advances in inertial measurement unit (IMU) technology and machine learning methods 

enable objective FOG detection at home (14). Successful detection has required domain 

knowledge and years of development (15–17). In the past 15 years, more than 50 papers have 

reported FOG detection algorithms that use features devised by researchers or clinicians, 

including spectral analyses of accelerometer signals and gait parameters (15–17). A FOG 

detection model that does not use hand-engineered features relies less on domain knowledge 

and may be faster to develop. In addition, it may be more generalizable. Hand-engineered 
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spectral features capture trembling, an increase in high-frequency leg movement in the relative 

absence of locomotion (18), that often accompanies freezing. However, there are other FOG 

presentations (19), and hand-engineered features may limit FOG identification to specific types 

of movement at specific body locations. 

Studies have also probed a variety of sensor locations including the feet, shanks/ankles, 

knees, thighs, lower back, waist, chest, head, forearms and wrists (16,17). Despite the many 

locations explored, there is a lack of consensus about IMU location and quantity for the most 

accurate FOG detection. In addition, few studies investigate wearability and patient preferences, 

which may limit successful deployment. Recently, Davoudi et al., conducted a systematic 

analysis across accelerometer quantities and locations for physical activity recognition in older 

adults (20). This analysis informed the research community about sensor use in a general 

population across a variety of activities. A similar analysis among individuals with FOG could aid 

future research and practice in this population. 

 Monitoring FOG in natural environments can help us better understand its underlying 

mechanisms and inform therapy. It is important first to determine a standard IMU set that people 

with Parkinson’s disease will reliably wear and to develop a FOG detection algorithm that is 

accurate and robust. We address these needs using a combination of patient surveys, IMU 

measurements, and machine learning. 

The aim of this study was to assess IMU sets in the context of both FOG detection 

performance and patient preference. This was supported by the development of an open-source 

framework to train neural networks that use raw IMU data to detect FOG without hand-

engineered features. Assessments across sensor sets could aid future research protocol 

development and enable better adoption and generalizability of IMU-based algorithms for FOG 

detection. 
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METHODS 

Dataset 

 Our dataset consists of survey-reported IMU preferences and IMU walking data from a 

freeze-eliciting course. 

Sixteen individuals with Parkinson’s disease, with 1 to 50 hours of prior in-clinic IMU 

experience, completed the survey (Appendix A). Participants were asked to extrapolate, from 

their in-clinic IMU experiences, the 12-hour wearability of individual IMUs and preferences for 

wearing various 3-, 2-, and single-IMU sets in a free-living setting. They were also asked to 

report motivations for their selections. IMU combinations included in the survey were selected 

from sets previously used to detect FOG in the literature (17). 

Seven participants with Parkinson’s disease, ages 51 to 68, walked independently 

without an assistive device wearing IMUs (APDM Wearable Technologies, Inc., Portland, OR) 

through the turning and barrier course, specifically designed to elicit FOG. Each walking trial 

(walk) consisted of two ellipses and two figures of eight around tall barriers (21,22). Six IMUs 

were strapped on the tops of both feet, the lateral aspects of both shanks, and the lumbar (L5) 

and chest regions. Four of the seven participants wore a total of 11 IMUs, with five additional 

IMUs on the head, the posterior aspects of both wrists, and the lateral aspects of both thighs. 

Data were collected at 128 Hz. 

Each participant provided 5 to 14 walks through the turning and barrier course across 2 

to 6 clinic visits. Visits were separated by up to 44 months. The full dataset includes 88.8 

minutes of walking across 62 unique walks, with 212 unique FOG events resulting in 23.9% of 

the time freezing (Table 1). A video of each walk was synchronized with the IMU system. 

Participants completed all trials off medication and off deep brain stimulation. 

Survey and IMU walking trial participants were not from the same cohort. Participants 

provided informed consent to a protocol approved by the Stanford University Institutional 

Review Board and completed the survey anonymously via REDCap. 
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Participant Gender Disease 
Duration 
(y) 

Number of 
Walks 

Total % Time 
FOG 
(all walks) 

Total Number of 
FOG Events (all 
walks) 

1 M 5-7 7 20.9 31 

2 M 9-11 5 7.1 9 

3  F 11-12 9 27.5 38 

4 F 10-11 6 60.7 48 

5 M 8-9 9 12.2 18 

6  F 12-15 14 5.5 19 

7 M 10-11 10 33.2 49 

 
Table 1. Participant demographics. Some values are reported as ranges because participants 
completed walks over multiple visits.  
 

Data Processing 

One of two experienced raters identified start and end times of FOG events in the video 

recordings of the walking data. A FOG event was defined by loss of alternating stepping, 

complete cessation of forward motion, or trembling of the legs (23). 

 IMU data were downsampled to 64 Hz and split into windows of 2-second durations, 

comparable to window lengths used in previous studies (15). Each window was normalized to 

zero mean and unit variance. To simulate variation in sensor orientation, the 2-second windows 

used to train the models were augmented with random rotations about the individual IMU axes 

(24). A window overlap was calculated to yield approximately 10,000 2-second windows. Each 

window’s label, FOG or not FOG, was set to the majority human-rated label of that window. 

 

Model Development 

 Two-layer, one-dimensional convolutional neural networks were trained using the 

labeled 2-second data windows (Figure 2). We used convolutional neural networks because 
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they are suited to small time series datasets. Relative to long short-term memory networks, 

convolutional neural networks contain few learnable parameters, which reduces overfitting to 

the training dataset. Our neural network architecture was parameterized with the number and 

lengths of filters in the convolutional layers and the number of neurons in the dense layer. We 

tuned these hyperparameters using leave-one-subject-out cross-validation. Hyperparameters 

were selected to increase the area under the receiver operating characteristic (AUROC) of the 

set with the most IMU walking data, the 6-IMU set, to minimize overfitting. Hyperparameters 

remained constant across networks in our subsequent analysis. The resulting two convolutional 

layers contained 16 filters with kernel lengths of 17. Outputs were passed through a max 

pooling layer with length 2. Concatenated data were passed through a 10-node fully-connected 

layer. The final node’s sigmoid activation function output the probability that the label for each 2-

second IMU window was FOG.  
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Figure 2. One-dimensional convolutional neural network model architecture. Two-layer, 
one-dimensional convolutional neural networks were trained using 2-second windows of raw 
inertial measurement unit (IMU) data. Each convolutional layer had 16 filters with a kernel length 
of 17. Weights were trained with 50% dropout. Convolutional layers were followed by a max 
pooling layer with a pool length of 2 and a 10-node fully-connected layer. The output of the 
model was the probability that the majority label for the 2-second window of raw IMU data was 
freezing of gait (FOG). 
 

 Models were trained with a batch size of 512, using the binary cross-entropy loss 

function and an Adam optimizer with a learning rate of 0.001. To avoid overfitting to certain 

participants or to the majority class during model training, we assigned equal weights to each 

class of each participant. Weights from each participant summed to 1, and weights from each of 

the two classes of each participant summed to 0.5. Dropout was implemented during training in 

the convolutional layers to reduce overfitting. Models were validated using leave-one-subject-

out cross-validation. Early stopping to reduce overfitting was employed in each fold, using the 

loss of the left-out subject. Models were implemented using Keras (25) in TensorFlow 2.3.1 

(26). 

 

IMU Sensor Set Experiments 

 We trained models with various IMU combinations to investigate how combinations 

performed relative to one another. We separately analyzed data from the four participants 

wearing 11 IMUs and the seven participants wearing 6 IMUs in order to compare results across 

sensor sets with data from equal numbers of participants. 

Models with the full 11-IMU set and full 6-IMU set were trained to determine full sensor 

set performance. We also evaluated models with the 2- and 3-IMU sets from the survey as well 

as models with single IMUs. To account for stochasticity, each model was trained 30 times. 

Model performance across IMU sets was evaluated using average held-out-set AUROC 

across folds. Two key IMU sets were identified: the best technical set and the minimal IMU set. 

The best technical set was defined as the IMU set that achieved the highest AUROC. The 
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minimal IMU set was defined as the set with the fewest number of IMUs that still achieved an 

average AUROC within 5% of the best technical set. To account for IMU wearability and assess 

deployment feasibility, results from the best technical and minimal IMU sets were compared to 

results from the survey-preferred sets. 

 

Clinical Utility Assessment 

Clinical utility was assessed on the best technical set and the minimal IMU set by 

computing intraclass correlations (ICCs) between model-identified and human-rater-labeled 

values of percent time FOG and number of FOG events for each walk. To translate our models’ 

FOG probability outputs into meaningful clinical metrics, probabilities were thresholded: 

examples with probabilities above a “freeze threshold” were labeled FOG. To understand the 

upper bound of model performance, thresholds were selected to optimize each clinical outcome 

metric’s ICC with ground truth (i.e., one threshold for percent time FOG and another for number 

of FOG events). In practice, any threshold can be selected for a researcher’s or practitioner’s 

use case, trading off specificity for sensitivity. 

Model-identified FOG periods that were one example apart were combined to a single 

FOG event, and short FOG periods that were just one example long were relabeled as non-

FOG. The number of FOG events was calculated as the total number of non-FOG to FOG 

transitions in the walk. The percent time FOG was computed as the total duration of FOG 

events in the walk divided by the total duration of the walk, multiplied by 100. Clinical metric 

correlations between the model and a human rater were computed using ICCs. ICC estimates 

and their 95% confidence intervals were calculated using Pingouin (27) and were based on a 

single-rating, absolute-agreement, 1-way random-effects model. In accordance with Koo et al., 

(28), we used the following classification of reliability based on the ICC 95% confidence interval: 

< 0.50 poor, 0.50 to 0.75 moderate, 0.75 to 0.90 good, and > 0.90 excellent. 
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All analyses were performed using our custom framework, written in Python 3. Data and 

software can be found at https://github.com/stanfordnmbl/imu-fog-detection. 

 

RESULTS 

IMU Preferences 

 Individuals with Parkinson’s disease rated the wrist, ankle, and lumbar sensors as most 

wearable and the head and thigh sensors as least wearable (Figure 3a). Aside from the thigh 

and head sensors, more than 80% of respondents indicated a positive likelihood of wearing any 

individual sensor. In determining wearability, individuals reported perceived comfort and 

difficulty applying sensors as the most important decision factors (3b). IMU combinations with 

the greatest numbers of top rankings included: wrist and both ankles for a 3-sensor set, wrist 

and ankle or both ankles for a 2-sensor set, and wrist for a single-sensor set (Figure 3c). 
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Figure 3. Survey results highlight patient preferences and wearability (n = 16). (a) 
Breakdown of individual sensor wearability scores. Scores ranged from 0 (definitely would NOT 
wear) to 4 (would happily wear, if asked). (b) Counts of top decision factor for determining 
wearability. Note, three participants did not answer the question associated with this, which 
involved ranking factors from least to most important. (c) Counts of top-ranked sensor set 
preferences for each of the 3-, 2-, and 1-IMU sets. Write-in sets (not offered as options) are 
indicated by “other.” 
 

IMU Sensor Set Experiments 

A full-sensor model with data from all participants wearing 6 IMUs (chest, lumbar, both 

ankles, and both feet) estimated FOG from raw IMU signals with an AUROC of 0.80 (Figure 4a). 

Average precision (AP) of this model was 0.64, 2.5 times the positive predictive value of 0.26 

(Supplementary Figure 1). The best technical set consisted of three IMUs, at the lumbar region 

12
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and both ankles (AUROC = 0.83, AP = 0.66). Based on the survey, this set was also the 

preferred 3-IMU set among subsets of the 6 IMUs worn by all participants. The highest-

performing 2-IMU set consisted of sensors from both ankles (AUROC = 0.82, AP = 0.63). This 

set was also one of the two preferred 2-IMU sets. The highest-performing single IMU was the 

ankle IMU (AUROC = 0.80, AP = 0.61). The preferred lumbar IMU demonstrated worse 

performance (AUROC = 0.75, AP = 0.54). The minimal IMU set, predefined as the set with the 

fewest number of IMUs that achieved an average AUROC within 5% that of the best technical 

set, consisted of a single ankle sensor (3.9% from best technical). 
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Figure 4. Test set AUROCs across subsets of the (a) 6-IMU and (b) 11-IMU sets. Best 
technical sets are indicated by green bars, and minimal IMU sets are indicated by red bars. 
Orange circles indicate the survey’s top-ranked sets for 1-, 2-, and 3-IMU subsets. Note, top-
ranked sets differ across (a) and (b) because the 6-IMU set does not include wrist IMUs. 

 

A full-sensor model with data from the subset of participants wearing 11 IMUs (head, 

chest, lumbar, both wrists, both thighs, both ankles, and both feet) estimated FOG with an 

AUROC of 0.60 (Figure 4b). The addition of the head, wrist, and thigh sensors to the 6-IMU set 

reported in Figure 4a did not change the best technical set (lumbar + ankles, AUROC = 0.76, 

14
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AP = 0.35). The minimal IMU set with this subset of participants differed from the 6-IMU subset 

results and consisted of 2 sensors (lumbar + ankle, AUROC = 0.73, AP = 0.33, 4.7% from best 

technical) rather than a single ankle sensor. The highest-performing single IMUs in this data 

subset were the lumbar IMU (AUROC = 0.66, AP = 0.30, 14% from best technical) and ankle 

IMU (AUROC = 0.65, AP = 0.27, 14% from best technical). 

 

Clinical Utility Assessment 

Interrater reliability between the best technical set (lumbar + ankles) and the individual 

human raters was good to excellent for percent time FOG (ICC = 0.93 [0.89, 0.96]) and number 

of FOG events (ICC = 0.95 [0.91, 0.97]) (Figure 5). Interrater reliability between the single ankle 

IMU and the individual human raters was slightly lower but still good to excellent for percent 

time FOG (ICC = 0.89 [0.82, 0.93]) and number of FOG events (ICC = 0.86 [0.78, 0.91]) 

(Supplementary Figure 2). 

 

Figure 5. Clinically-relevant metrics from a model using the best technical set correlated 
with human ratings. Human raters’ ground truth vs model predictions from the best technical 
set (lumbar + ankles) for (a) percent time FOG and (b) number of FOG events. Intraclass 

15
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correlations (ICCs) for the two metrics were 0.93 and 0.95, respectively. Each walk is depicted 
by a single datapoint. Data from individual participants are depicted by color. 
 

 

DISCUSSION 

 The goal of this study was to assess IMU sets in the context of both FOG detection 

performance and patient preference. Among pre-selected sensor sets, a best technical set and 

a minimal IMU set were identified. The best technical set consisted of only IMUs on the lumbar 

and both ankles, demonstrating that having more IMUs was not necessarily better. The minimal 

IMU set performed within 3.9% of the best technical set and used only a single ankle IMU. Both 

sets were highly rated for wearability and clinical metric performance. All models trained with 

data from seven subjects could detect FOG using raw IMU data (AUROC > 0.7). In conducting 

these analyses, we developed an open-source framework for identifying freezing of gait from 

raw time series data.  

Based on raw IMU signals, the presented algorithm may be more generalizable across 

various sensor locations and sets than an algorithm reliant on hand-engineered features. 

Further analysis should be conducted through a direct comparison of a hand-engineered 

spectral algorithm and our raw IMU algorithm. 

Results from the 6-IMU set outperformed those from the 11-IMU set. In neural networks, 

more variation in the training data yields better model performance. Consequently, these results 

are expected, given that the 6-IMU set consisted of data from seven participants, while the 11-

IMU set consisted of data from only four participants. With more participants, model 

performance could increase even further. Comparisons between different sensor subsets 

should not be made across the 6- and 11-IMU sets, and models should be evaluated by their 

relative, rather than absolute, performance within each set. Relative performances observed in 

the 6- and 11-IMU sets were largely consistent. The remainder of this discussion is focused on 
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the 6-IMU set, which contained more training data and yielded better-performing models.  

Within the 6-IMU set experiments, a 3-IMU subset consisting of the lumbar and two 

ankle IMUs achieved best technical performance, despite using hyperparameters tuned on the 

6-IMU set. This demonstrates that more IMUs are not necessarily better for FOG detection, 

likely because additional IMUs can add more noise than signal. This 3-IMU subset produced 

clinically-relevant metrics that were in agreement with our human raters’ assessments (Figure 

5). ICCs were improved compared to other algorithms and human raters (ICC = 0.73, 0.75, (29)) 

and between clinical raters (ICC = 0.76, 0.45, (30)) for percent time FOG and number of FOG 

events, respectively. In addition to FOG detection, these three IMUs can provide further context 

relevant to the patient’s gait and have been utilized in other algorithms (14,17,31). For example, 

the lumbar IMU can provide quantitative metrics of turning (32,33), and the bilateral ankle IMUs 

can provide metrics of regularity like arrhythmicity (21,22,34), both of which are relevant to 

clinical care. 

Of note, a single ankle IMU performed at near-peak FOG detection performance. 

Despite ranked preference for a wrist sensor (Figure 3c), survey participants indicated equal 

individual wearability between the wrist and ankle sensors (Figure 3a). This high technical 

performance and wearability opens the door for simple data collection from a single IMU. It also 

suggests positive adoption of an ankle sensor by individuals with Parkinson’s disease who want 

to monitor and track their condition and treatments with minimal instrumentation. Not all single 

sensors performed well. While the IMUs at the lumbar region, ankles, and feet were found in the 

best-performing sets, IMUs at the wrists and head were less useful to the models. The wrist 

IMU, though rated highly wearable, demonstrated poor performance (AUROC = 0.56). This 

finding may be limited by the four-participant dataset, as a recent convolutional neural network 

trained on wrist IMU data from eleven participants showed comparable performance to our best 

technical set (sensitivity = 0.83 and specificity = 0.88, (35)).  

We hope these results empower patients, clinicians and researchers trying to weigh 
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FOG detection performance with other monitoring needs across sensor locations. 

 

Limitations and Future Work 

There are several limitations to consider before implementing this framework to detect 

FOG in a free-living setting. 

         Our survey captured sensor location preferences from individuals with Parkinson’s 

disease who had previously used the sensors in the clinic. Thus, the sample was skewed 

toward participants who generally wanted to aid research. This bias may have influenced 

results. Moreover, participants’ preferences were based on extrapolations from their in-clinic 

experiences, consistent with previous surveys on sensor preferences in other clinical 

populations (36). Survey results should be validated in individuals with IMU experience in free-

living settings. 

While good model performance was demonstrated for multiple IMU sets, our dataset and 

models had several limitations. All walking data were collected in a clinical setting rather than in 

a home environment. However, the turning and barrier course is explicitly designed to mimic 

movement in at-home settings. Additionally, participants were those with known FOG who 

completed walks off medication and deep brain stimulation. Translating to the broader 

Parkinson’s disease population will require training models with more diverse datasets that 

include participants who do not experience FOG and who are under different treatment 

conditions. Additionally, models were trained to detect one type of FOG, observed in continuous 

walking, and were not trained to identify FOG associated with gait initiation. For real-world 

application, a larger training dataset containing both FOG behaviors should be used.  

Model training and assessment was limited by our small dataset. The observed 

decrease in model performance from a model trained with data from seven participants to a 

model trained with data from four participants suggests that a larger dataset will result in 

improved performance. Our models, using raw data and simple neural networks, underperform 
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some previously-reported results from models that employ hand-engineered features 

(15,37,38). This is also likely due to our relatively small dataset, which limits the complexity of 

our models. A more complex model with more training data might perform comparably to a 

model with hand-engineered features. However, the objective of this study was to compare 

model performance across different sensor sets. 

We present results from a small dataset and need to validate these findings on a larger, 

more diverse dataset. Sensor location preferences and model performance should be tested 

during real-life gait conditions on a larger cohort of participants with differing symptomatology 

and treatment. 

  

CONCLUSIONS 

A general framework was developed to train deep learning models on raw IMU data, 

enabling assessment of relative performances of sensor sets across the body. Experiments 

across sensor combinations and survey results demonstrated that three IMUs at the lumbar and 

ankles performed best in detecting FOG. A single ankle IMU performed within 3.9% of the best 

technical set. These two sensor sets agreed with patient wearability preferences and yielded 

clinically-relevant metrics, important for therapy personalization, that correlated well with human 

ratings. The dataset and framework (https://github.com/stanfordnmbl/imu-fog-detection) are 

intended to progress the community toward adopting a standard model and sensor set for FOG 

detection, an important step toward monitoring and personalization of care outside of the clinic.  
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APPENDIX 
 
Movement Sensor Survey 

 

 

Confidential
Page 1

Movement  Sensor Survey

1 Are you right- or left-handed? Right
Left
Ambidextrous

2 Which side of your body is MORE affected by Right
Parkinson's disease, if applicable? Left

I do not have a more affected side
I do not know

projectredcap.org

3 If you were asked to wear ONE (1) sensor for 12 hours, please rate how likely it is you would wear the sensor on each 
of the following body parts (Definitely would NOT wear; Would happily wear, if asked; or somewhere in between).
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