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Abstract 

Individual organizations, such as hospitals, pharma companies and health insurance 

providers are currently limited in their ability to collect data that is fully representative 

of a disease population. This can in turn negatively impact the generalization ability of 

statistical models and scientific insights. However, sharing data across different 

organizations is highly restricted by legal regulations. While federated data access 

concepts exist, they are technically and organizationally difficult to realize. An 

alternative approach would be to exchange synthetic patient data instead. In this work, 

we introduce the Multimodal Neural Ordinary Differential Equation (MultiNODE), a 

hybrid, multimodal AI approach, which allows for generating highly realistic synthetic 
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patient trajectories on a continuous time scale, hence enabling smooth interpolation 

and extrapolation of clinical studies. Our proposed method can integrate both static 

and longitudinal data and implicitly handles missing values. We demonstrate the 

capabilities of our approach by applying it to real patient-level data from two 

independent clinical studies and simulated epidemiological data of an infectious 

disease. 

Introduction 

Patient-level data build the foundation for a plethora of healthcare research endeavors 

such as drug discovery, clinical trials, biomarker discovery, and precision medicine [1]. 

Collecting respective data is extremely time-consuming and cost-intensive, and 

additionally access-restricted by ethical and legal regulations in most countries. 

Individual organizations, such as hospitals, pharma companies and health insurance 

providers are currently limited in their ability to collect data that is fully representative 

of a disease population. This issue is especially pronounced in clinical studies, where 

patients are usually included based on defined inclusion and exclusion criteria. 

Differences in these selection criteria between studies, can introduce cohort-specific 

statistical biases [2] which, in turn, can negatively impact the generalization ability of 

machine learning models, since the usual i.i.d. assumption is violated [3]. A naïve idea 

to counteract the situation might be to build up large data repositories pooling diverse 

clinical studies from several organizations. However, a major obstacle is that sharing 

of patient-level data across different organizations is exceedingly difficult from a legal 

point of view, as formulated, for example, in the General Data Protection Rule (GDPR) 

in the European Union. Furthermore, naïve pooling of several biased datasets would 

bias a machine learning model to preferentially learn from the most abundant data 

source, hence still resulting in a biased model [2]. While this aspect might in theory be 
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addressable via transfer learning strategies, it must be understood that clinical studies 

within the same indication area can also differ in the set of collected variables as well 

as the intervals between consecutive follow-up assessments. In addition to these 

technical considerations, the setup of a federated machine learning framework across 

several institutions is a major organizational undertaking, which is costly and time 

consuming. 

The idea we propagate in this paper is to learn a continuous-time generative machine 

learning model from clinical study data. Given the distribution of the real training data 

was appropriately learned by the model, the generated synthetic datasets maintain the 

real data signals, such as variable interdependencies and time-dependent trajectories. 

Furthermore, these synthetic datasets can overcome crucial limitations of their real 

counterparts like missing values or irregular assessment intervals, hence opening the 

opportunity to make at least subsets of variables from different studies statistically 

comparable. A further strong motivation for generating synthetic datasets is the aim to 

use the generated data as an anonymized version of its real-world counterpart and 

thereby mitigate the increased restrictions for sharing human data [4, 5, 6]. However, 

synthetic patient-level datasets open opportunities that reach far beyond data sharing. 

For example, trained generative models could be used for synthesizing control arms 

for clinical trials based on data from previously conducted trials, or from real-world 

clinical routine data [7]. This helps addressing major ethical concerns in disease areas, 

such as cancer, where it is impossible to leave patients untreated. Both, the American 

Food and Drug Administration (FDA) and the European Medicines Agency (EMA) 

have recognized this issue and taken initiatives to allow for synthetic control arms [7]. 

Over the last years, generative models (mostly Generative Adverserial Networks - 

GANs) have found notable success, mostly in the medical imaging domain [8,9,19-
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22]. However, GANs are often found to show a collapse to the statistical mode of a 

distribution, which raises concerns regarding coverage of the real patient distribution 

by synthetic data. Moreover, these methods are not necessarily suited to cope with 

the complex nature of clinical data collected in observational, longitudinal cohort 

studies, which is the main focus of our work: In addition to the previously mentioned 

issue of irregular measurement frequencies and missing values not at random (for 

example due to participant drop-out), clinical studies often comprise several modalities 

combining time-dependent variables (e.g., measures of disease severity) and static 

information (e.g., biological sex). One approach specifically designed for the joint 

modeling and generation of multimodal, time-dependent and static patient-level data 

containing missing values are the recently introduced Variational Autoencoder 

Modular Bayesian networks (VAMBN) [4]. However, VAMBN only operate on a 

discrete time scale while relevant clinical indicators such as, for example, disease 

progression expressed through cognitive decline or rising inflammatory markers, are 

intrinsically time continuous. Recently, Neural Ordinary Differential Equations 

(NODEs) have been introduced as a hybrid approach fusing neural networks and 

ordinary differential equations (ODE) [10]. While NODEs are time continuous and thus 

enable smooth interpolation between observed data points and extrapolation beyond 

the observations in the data, they are not able to integrate static variables.  

In this work, we present the Multimodal Neural Ordinary Differential Equations 

(MultiNODEs) as an extension of the NODEs. MultiNODEs allow learning a generative 

model from multimodal longitudinal and static data that may contain missing values 

not at random. To demonstrate MultiNODEs’ generative capabilities, we applied the 

model to clinical, patient-level data from an observational Parkinson’s disease (PD) 

cohort study (the Parkinson’s Progression Markers Initiative, PPMI [11]) and, 
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additionally, a longitudinal Alzheimer’s disease (AD) data collection (National 

Alzheimer’s Coordination Center, NACC [12]). We compared the generated 

trajectories and correlation structure against the real counterpart. In this context, we 

additionally evaluated MultiNODEs’ performance against the previously published 

VAMBN approach. Furthermore, we assessed MultiNODEs’ interpolation and 

extrapolation performance. Finally, we investigated the influence of sample size, 

noisiness of the data, and longitudinal assessment density onto the training of 

MultiNODEs in a systematic benchmark on data simulated from a mathematical model 

well-known in the epidemiology field. 

Results 

Conceptual Introduction of the MultiNODEs 

MultiNODEs represent an extension of the original NODEs framework [10] that 

overcome the limitations of its predecessor such that an application to incomplete 

datasets consisting of both static and time-dependent variables becomes feasible. 

Conceptually, MultiNODEs build on three key components (Figure 1): 1) latent 

NODEs, 2) a variational autoencoder (more specifically a Heterogenous Incomplete 

Variational Autoencoder - HI-VAE - designed to handle multimodal data with missing 

values [13]), and 3) an implicit imputation layer [14]. The latent NODEs enable the 

learning and subsequent generation of continuous longitudinal variable trajectories. 

The longitudinal properties of the initial condition (i.e., the starting point for the ODE 

system solver of the latent NODEs) are defined by the output of a recurrent variational 

encoder which embeds the longitudinal input data into a latent space (Figure 1 orange 

box). In order to allow for an additional influence of static variables onto the estimation 

of the longitudinal variable trajectories, the second component, a HI-VAE, is 

introduced (Figure 1 blue box). This component transforms the static information into 
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a distinct latent space and the resulting embedding is used to augment the latent 

starting condition of the NODEs by concatenating the static variable embedding and 

the latent representation of the longitudinal variables (Figure 1 ‘augmentation’). The 

HI-VAE component itself holds generative properties and conducts the synthesis of 

the static variables when MultiNODEs are applied in a generative setting. 

Conclusively, MultiNODEs integrate static variables (e.g., biological sex or genotype 

information) both to inform the learning of longitudinal trajectories, and in the 

generative process. Finally, to mitigate the original NODEs’ incapability of dealing with 

missing values, we introduced the imputation layer which implicitly replaces missing 

values during model training with learned estimates (Figure 1 green box). For further 

details on the model architecture, training, and hyperparameter optimization, we refer 

to the Method section and Supplements, respectively. 

Synthetic Data Generation using MultiNODEs 

Generating synthetic data using MultiNODEs starts by randomly sampling a latent 

representation for both the static and longitudinal variables, respectively. The 

longitudinal variables in data space are then generated by first constructing the initial 

conditions of the latent ODE system (i.e., concatenating the static latent representation 

to the longitudinal one), followed by solving the ODE system given these initial 

conditions, and finally by decoding the result into data space. The static variables are 

generated by directly transforming their sampled latent representation into data space 

using the HI-VAE decoder.  

MultiNODEs support two different approaches for the initial sampling of the latent 

representations, namely sampling from the prior distribution employed during model 

training and sampling from the learned posterior distribution of the input data.  
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During the posterior sampling procedure, the reparameterization trick [15] is applied 

to draw a latent representation from the posterior distribution learned from the training 

data. The amount of noise added in this process can be tuned, whereas greater noise 

will lead to a wider spread of the generated marginal distributions of the synthetic data. 

Alternatively, latent representations can be drawn independently from the prior 

distributions imposed on the latent space during variational model training (multivariate 

standard Gaussian for longitudinal data, Gaussian Mixture Model for static data). 

However, independent sampling from two prior distributions and subsequent decoding 

may result into synthetic trajectories that have different statistical properties than the 

original real data, because we ignore statistical dependencies between static and 

longitudinal data.  In conclusion, posterior sampling is the preferred method for data 

generation when aiming for a realistic synthetic counterpart of a real dataset, while the 

prior sampling might still be useful for increasing the sample size of data for machine 

learning purposes. More detailed descriptions of both procedures are provided in the 

Method section. 

 

Figure 1: Conceptual framework of MultiNODEs. Blue box: HI-VAE for the encoding 

and generation of static variables. Orange box: NODEs that learn and generate 

longitudinal trajectories. Green box: The imputation layer which can handle missing 
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data implicitly during model training. 

Application cases: Parkinson’s disease and Alzheimer’s disease 

We applied MultiNODEs to longitudinal, multimodal data from two independent clinical 

datasets with the goal of generating realistic synthetic datasets that maintain the real 

data properties. Details about the data pre-processing steps are described in the 

Supplementary Material. 

The first dataset was the Parkinson’s Progression Markers Initiative (PPMI), an 

observational clinical study containing 354 de-novo PD patients who participated in a 

range of clinical, neurological, and demographic assessments which form the 

variables of the dataset. In total, a set of 25 longitudinal and 43 static variables was 

investigated.  

Furthermore, as a second example, we applied MultiNODEs to longitudinal, 

multimodal data from the National Alzheimer’s Coordinating Center (NACC). NACC is 

a database storing patient-level AD data collected across multiple memory clinics. 

After preprocessing, the dataset used in this study contained 2284 patients and a set 

of 4 longitudinal and 4 static variables was investigated. 

In the following sections, we will focus on the results achieved on the PPMI data and 

refer to the equivalent experiments based on the NACC data which are presented in 

the Supplementary Material. 

MultiNODEs generate realistic synthetic patient-level datasets 

Although it was expected that data generated using the posterior sampling would 

resemble the real-world data more closely, we additionally applied the prior sampling 

for comparison purposes. With each method, we generated the same number of 

synthetic patients as encountered in the real dataset to allow for a fair comparison. To 
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assess whether the generated data followed the real data characteristics sufficiently 

closely, we conducted thorough comparisons of the marginal distributions and 

investigated the underlying correlation structure of the measured variables. Across all 

these aspects, we evaluated MultiNODEs’ performance against the previously 

published VAMBN approach [4] as a benchmark. 

The synthetic data generated using MultiNODEs’ posterior sampling exhibited 

marginal distributions which were highly similar to their corresponding real 

counterparts. As expected, sampling and subsequent data generation from the 

posterior distribution resulted in synthetic data that resembled the real data more 

closely than those generated from the prior distribution (Figure 2 A-C). This was also 

indicated by lower Kullback-Leibler divergences (KL-divergence) between the 

marginal distributions generated from the posterior and the real distribution relative to 

those generated from the prior distribution.  

Compared to VAMBN, MultiNODEs’ posterior sampling produced marginal 

distributions that resembled the original data more closely for 51,7 % of the generated 

distributions, again indicated through lower respective KL-divergences between the 

generated and real distributions. Especially considering skewed, continuous variables, 

MultiNODEs showed closer approximation than VAMBN (e.g., Figure 2 A). With 

respect to the static variables, both VAMBN and MultiNODEs’ posterior sampling 

produced realistic distributions while prior sampling led to substantial deviations 

between synthetic and real data (Figure 2 D). More examples of generated 

distributions on the PPMI data can be found in the Supplementary Material (Figure 

S1). Equivalent results for the NACC data are presented in Figure S4. 
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Figure 2: Marginal distributions of real and synthesized data for multiple variables. 

Mean, standard deviation and KL-Divergence for the displayed variables can be found 

in Table S1. Equivalent results for the NACC data are presented in Figure S5. A, time 

dependent variable ‘SCOPA’ at month 24. B, time dependent variable ‘UPDRS2’ at 

month 36. C, static variable ‘Aβ.42’. D, categorical static variable ‘Handedness’. 

In order to evaluate whether MultiNODEs learned not only to reproduce univariate 

distributions but actually captured their interdependencies accurately, we compared 

the correlation structure of the generated data to the that of the real variables. 

Visualizations of the Spearman rank correlation coefficients showed that both the prior 

and posterior sampling generated synthetic data which successfully reproduced the 

real variables' interdependencies (Figure 3). The only exception to this was that the 

synthetic data sampled from the prior failed to recover the correlations among the 

static variables (absence of the lower right block in Figure 3 C). Comparing the results 

against VAMBN generated data revealed that both generation procedures of 
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MultiNODEs were significantly better at reproducing the real data characteristics: the 

Frobenius norm of real data correlation matrix resulted in 45.3, and with a Frobenius 

norm of 25.66 the VAMBN generated data placed substantially further from the real 

data than the MultiNODEs approaches with 58.72 and 52.58 for the prior and posterior 

sampling, respectively. Here, it shows that MultiNODEs slightly overestimated the 

present correlations, while VAMBN substantially underestimated them. Concordantly, 

the relative error (i.e., the deviation of the respective synthetic dataset’s correlation 

matrix from the real one normalized by the norm of the real correlation matrix), was 

0.81, 0.56 and 0.40 respectively for VAMBN and MultiNODEs’ prior and posterior 

sampling, leaving MultiNODEs with a significantly lower error than the VAMBN 

approach.  

 

Figure 3: Correlation structure of real and synthetic data expressed as spearman rank 

correlation coefficients. Equivalent results for the NACC data are shown in Figure S6. 
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A, real data. B, posterior sampling from MultiNODEs. C, prior sampling from 

MultiNODEs. D, VAMBN generated data. 

Generating data in continuous time through smooth interpolation and 
extrapolation 

One particular strength of MultiNODEs, that sets it apart from alternative approaches 

such as VAMBN, is its ability to model variable trajectories in continuous time. The 

latent ODE system allows for estimation of variable trajectories at any arbitrary time 

point and thereby opens possibilities for 1) the generation of smooth trajectories, 2) 

overcoming panel-data limitations through interpolation, and finally 3) extrapolation 

beyond the time span covered in training data themselves. Again, we evaluated these 

capabilities based on the PPMI and NACC datasets. 

Comparing the median trajectories of variables from the real data to those generated 

using MultiNODEs revealed that MultiNODEs accurately learned and reproduced the 

longitudinal dynamics exhibited in the real data (Figure 4). Generation from both the 

prior and posterior distribution led to synthesized median trajectories that closely 

resembled the real median trajectories. Equivalently, also the 97.5% and 2.5% 

quantiles of the synthetic data approximated the corresponding real quantiles closely, 

indicating a realistic distribution of the synthetic data across the observed time points. 

This observation held true for most of the time-dependent variables (plots for all 

variables are linked in the Supplementary Material).  
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Figure 4: Comparison of median trajectories including the 2.5% / 97.5% quantiles of 

longitudinal variables from synthetic and real PPMI data. Additional examples are 

provided in Figure S2. A corresponding example for the NACC dataset is shown in 

Figure S7. A, B, C, D, depict different longitudinal variables from the PPMI dataset. 

We further assessed the interpolation and extrapolation capabilities of MultiNODEs. 

For interpolation, one time point was excluded from model training and subsequently 

data was generated for all time points including the one left out. Contrasting the 

interpolated values against the corresponding real values showed that MultiNODEs 

accurately reproduced the longitudinal dynamics of a variable, even for unobserved 

time points (Figure 5 B). In this context, we further compared the interpolated values 

against synthetic data that was generated based on the complete, real data trajectory. 

We observed that the median KL-divergence between the interpolated data and the 

real data was only slightly higher than between the real data and the synthetic data 

generated after training MultiNODEs on the complete trajectory (0.08 and 0.05, 

respectively). Similarly, the relative error between the interpolated correlation matrix 
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and the real data was again only marginally higher than between the complete data 

and the real data (0.56 and 0.53, respectively; Figure S4). 

In order to test MultiNODEs’ extrapolation capabilities, only the first 24 months of 

assessment follow-up and the static variables were used during model training. The 

trained model was then applied to generate data for the remaining, left out time points 

of the longitudinal variables. In this course, 77 values were extrapolated while not 

every variable had the same number of follow-up assessments after month 24. 

Comparing the extrapolated synthetic data to the left out real data demonstrated 

reliable extrapolation beyond the training data (Figure 5 A, C). Similar to the 

interpolation setting, we also compared the median KL-divergence between the 

extrapolated data and the real data with that between the real data and synthetic data 

that were generated after training MultiNODEs on the complete trajectory. As 

expected, we could see a larger difference between the KL-divergences compared to 

the interpolation setting with 0.16 for the extrapolated data and 0.08 for the synthetic 

data based on the complete trajectory. The correlation structure was well preserved 

also in the extrapolation setting with a relative error of 0.56 compared to the .55 when 

using the complete trajectory for training MultiNODEs (Figure S4). 

 In addition, also the marginal distributions at both the interpolated and extrapolated 

time points followed those of the real data (Figure 5 C, D). 
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Figure 5: Time-continuous interpolation and extrapolation of exemplary PPMI 

variables. The black box indicates the interpolated and extrapolated sections. Plots for 

additional variables are presented in Figure S3. A corresponding example for the 

NACC dataset is shown in Figure S8. A, extrapolation of the last two assessments of 

the UPDRS1 variable. B, interpolation of the UPDRS1 variable at month 24. C, 

distribution of the interpolated values for UPDRS1 at visit 24. D, distribution of the 

extrapolated values for UPDRS1 at month 42. distribution of the extrapolated values 

for UPDRS1 at month 42. 

Systematic model benchmarking on simulated data 

To explore the learning properties of MultiNODEs more systematically, we 

investigated how alternating training conditions with respect to measurement 

frequency, sample size, and noisiness of the data influence MultiNODEs’ generative 

performance.  

The benchmarking data was simulated via the well-established Susceptible-Infected-

Removed (SIR) model which is often used to describe the spread of infectious 
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diseases and follows a highly non-linear structure: Let 𝑆(𝑡) be the number of 

susceptible individuals at a timepoint 𝑡,𝐼(𝑡) be the number of infectious individuals at 

a timepoint 𝑡 and 𝑅(𝑡) be the number of removed or recovered individuals at a 

timepoint 𝑡. With β as transmission rate, γ as mean recovery / death rate and 𝑁 =

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) as fixed population size the SIR model can be defined by the 

following ODE system: 

𝑑𝑆

𝑑𝑡
= −

β𝑆𝐼

𝑁
𝑑𝐼

𝑑𝑡
=

β𝑆𝐼

𝑁
− γ𝐼

𝑑𝑅

𝑑𝑡
= γ𝐼

. 

Details about the SIR parameter settings are described in the supplementary material.  

As baseline settings for each investigation, we simulated 1000 data points with 10 

equidistant assessment time points each, distributed over a span of 40 time intervals 

and added 5% Gaussian noise to each measurement. That means we added a 

normally distributed variable with the standard deviation set to 5% of the theoretical 

range of each of the variables S(t), I(t) and R(t). During the benchmarking, we 

individually alternated the sample size, time points and the noise level. For the time 

point investigation, we compared MultiNODEs’ trained on 5, 10 and 100 equidistant 

assessments; for the sample size we considered 100, 1000, and 5000 samples; and 

for the noise level we tested 50%, 75% and 100% of the maximum encountered value 

added as noise.  

Alternating the amount of equidistant, longitudinal time points exposed a strong 

dependency of MultiNODEs on the longitudinal coverage of the time dependent 

process (Figure 6 A). While the general trends in the data were appropriately learned 

for all explored assessment frequencies, the position of the observations in time 
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influenced how close the learned function approximated the true data underlying 

process. Especially the peak of the ‘Infected’-function represented a challenge for 

MultiNODEs if no data point was located close to it (Figure 6 A ‘Infected’). Similarly, 

the start of the decline in the ‘Susceptible’-function and the incline in the ‘Removed’-

function were shifted, depending on the positioning of measurements. In conclusion, 

and as expected, a higher observation frequency of the data underlying time-

dependent process significantly increased the fit of MultiNODEs to the process, 

although, general trends could already be approximated for lower assessment 

frequencies. 

Investigating the effect of the sample size on training MultiNODEs, we observed that 

an increase of the sample size led to an expected improvement of the model fit to the 

SIR dynamics (Figure 6 B). While the general trends could again be learned from 

limited data (n = 100), sample sizes of 1000 or 5000 substantially reduced the model's 

deviation from the true SIR model. With 1000 samples, the learned dynamic is less 

stable than when trained on 5000 samples, where a smooth dynamic was learned that 

closely resembled the true underlying process. In conclusion, MultiNODEs can already 

learn longitudinal dynamics based on only a few data points, however, they tend to 

underfit under these circumstances and benefit from larger sample sizes. 

Adding an increasing noise level to the SIR training data revealed that MultiNODEs 

remain very robust. Only when introducing 100% of the maximal encountered value 

as additional noise, a clear deviation from the underlying true model could be 

observed. 
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Figure 6: Model benchmarking on simulated data from the SIR-model. Each row 

represents the evaluation of another parameter (assessment frequency, sample size, 

noise level). 

Discussion 

In this work, we presented MultiNODEs, a hybrid AI approach to generate realistic 

synthetic patient-level datasets. MultiNODEs are designed to consider the 

characteristics of clinical studies. It extends its predecessor, the Neural ODEs, and 

enables the application of the latent ODE system framework to multimodal datasets 

comprising both time-dependent and static variables with missing values not at 

random. MultiNODEs learn a latent, continuous time trajectory from observed data. 

This concept fits well to disease progression, where relevant observations (e.g., 

biomarkers and disease symptoms) only indirectly mimic the true, underlying disease 
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mechanism. Consequently, MultiNODEs are well suited for an application to 

heterogeneous datasets holding complex signals as encountered, for example, in 

biomedical research. 

Our evaluations showed that MultiNODEs successfully generated complex, synthetic 

medical datasets that accurately reproduced the characteristics of their real-world 

counterparts. By sampling from MultiNODEs’ posterior distribution, the model 

outperformed the state-of-the-art VAMBN approach, most notably with respect to the 

integrity of the correlation structure. This finding implies that the single data instances 

generated using MultiNODEs exhibit more realistic properties and that the real data 

characteristics are not only reproduced on a population-level.  

Advancing beyond the training data through time-continuous modeling 

Besides the reproduction of marginal distributions and synthesis of realistic data 

instances, MultiNODEs most prominent strength lies in the generation of smooth 

longitudinal data. The latent ODE system allows MultiNODEs to learn dynamics which 

are continuous in time and cover the unobserved time intervals of real-world data. 

Here, both the prior and posterior sampling approach resulted in realistic trajectories 

that obey real variables dynamics. 

Furthermore, the time-continuous generative capabilities of MultiNODEs create 

opportunities to fill gaps in the real data through interpolation and go beyond the 

observation time by extrapolating the longitudinal dynamics. Hence, MultiNODEs 

could be used to support the design of longitudinal clinical studies, in which the 

maximum observation period as well as visit frequency are always crucial decisions to 

make. Here, the question of how patients might develop between two visits or after the 

last one determines the optimal follow-up time, demonstrating, for example, the most 
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significant treatment effect. In this context, MultiNODEs provide the opportunity to 

learn time-continuous disease trajectories from pre-existing studies. Accordingly, its 

generated synthetic disease trajectories could then be compared to those generated 

based on other studies, even if the visit intervals employed in the real studies were not 

identical. 

Requirements on training data scale with complexity of data generating process 

Our benchmark experiments on the simulated SIR model data demonstrated that 

MultiNODEs are applicable in a variety of different data settings. While the general 

trends of a data underlying process could already be learned from a relatively limited 

dataset, similar to any machine learning task, the accuracy and trustworthiness of the 

model critically depends on the available data. Especially for complex, nonlinear 

processes, a sufficiently high observation frequency should be considered. Here, the 

position of the observation time-points relative to the true underlying process is crucial 

for MultiNODEs to accurately learn nonlinear dynamics. The sample size of the 

training data mainly impacts how well MultiNODEs fits the data dynamics and we 

observed that lower sample sizes can lead to underfitting and rather rigid ODE 

systems. On the other hand, only severe noise-levels led to a model deviation from 

the true data-underlying process and, with respect to noise, MultiNODEs proved to be 

highly robust. In conclusion, MultiNODEs’ requirements towards the training data 

ultimately depend on the complexity of the data underlying process, whereas the 

learning of more complex processes requires more frequent observations and larger 

sample size, and more linear systems can already be learned from rather limited 

datasets. 

Limitations 

One limitation of MultiNODEs in their current form is that they do not work on time-
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dependent categorical variables. Additionally, MultiNODEs are sensitive to several 

hyperparameters that should be optimized for best performance. The training process 

and all relevant hyperparameters are explained in the Method section. 

Methods 

Application case datasets 

Both datasets, namely PPMI and NACC, are well known staples in their respective 

fields and can be accessed after successful data access applications. For PPMI see 

https://www.ppmi-info.org/. For NACC we refer to https://naccdata.org/. 

Neural ODEs (NODEs) 

NODEs are a hybrid of neural networks and ODEs [10]. They can be seen as an 

extension of a ResNet [16], which does not rely on a discrete sequence of hidden 

layers, but on a continuous hidden dynamical system defined by an ordinary 

differential equation. 

For 0 < 𝑡 < 𝑀 and 𝑧0 ∈ ℝ𝐷 the dynamics of the hidden layer of a NODE are given as  

𝑑𝑧(𝑡)

𝑑𝑡
= 𝑓(𝑧(𝑡), 𝑡, 𝜃)

𝑧(0) = 𝑧0

       (1) 

where 𝑧(0) may be interpreted as the first hidden layer and 𝑧(𝑇) as the solution of the 

initial value problem at timepoint 𝑇. Importantly, 𝑓 is a feed-forward neural network 

parameterized by 𝜃.  

NODEs as generative latent time series models 

As demonstrated by the authors in their publication, NODEs can be trained as a 

continuous time Variational Autoencoder. The basic idea is to learn the initial 
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conditions 𝑧0 of the dynamical system in Eq. (1) from observed time series data using 

a variational long-short term memory (LSTM) recurrent encoder [17]. Hence, Eq. (1) 

now describes the dynamics of a latent system, resulting into a classical state-

observation model. Accordingly, a feed-forward neural network decoder is required to 

project the solution of Eq. (1) back to observed data at defined time points (Figure 

S10).  

Overall NODEs are trained at once by maximizing the Evidence Lower Variational 

Bound (ELBO): Let the training data be 𝐷 = {(𝑥𝑡𝑖
𝑛 , 𝑡𝑖)|𝑛 = 1, … , 𝑁, 𝑖 = 1, … , 𝑀}, where 

𝑁 is the number of patients and 𝑡𝑖1
, … , 𝑡𝑖𝑀

 the observed time points / patient visits. That 

means 𝑥𝑡𝑖
𝑛 ∈ ℝ𝑝 is the 𝑝-dimensional vector of measurements taken for the 𝑛-th patient 

at visit 𝑡𝑖. The ELBO for NODEs is then given as: 

𝐸𝐿𝐵𝑂𝑁𝑂𝐷𝐸 =
1

𝑁
∑ ∑ −𝐷𝐾𝐿 (𝑞 (𝑧𝑡0

𝑛 |{𝑥𝑡𝑖
𝑛 , 𝑡𝑖}𝑖

) ∥ 𝑝(𝑧𝑡0
𝑛 ))

𝑀

𝑖=1

𝑁

𝑛=1

+ 𝐸
𝑞(𝑧𝑡0

𝑛 |{𝑥𝑡𝑖
𝑛 ,𝑡𝑖}

𝑖
)

(𝑙𝑜𝑔 (𝑝(𝑥𝑡𝑖
𝑛|𝑧𝑡𝑖

𝑛))) 

where 𝑝(𝑧𝑡0
𝑛 ) = 𝑁(0, 𝐼), as usual. For details we refer to Chen et al. [10] 

Multi Modal Neural NODEs (MultiNODEs) 

Handling missing values 

To handle missing values (potentially not at random) in longitudinal clinical data we 

build on our previously published work, in which we introduced an imputation layer to 

implicitly estimate missing values during neural network training [14]: Let 𝐴: =

{𝑥𝑡𝑖,𝑗
𝑛 |𝑥𝑡𝑖,𝑗

𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔}, 1𝐴 be the indicator function on set 𝐴 with cardinality |𝐴|. The 

imputation layer can be defined as a data transformation 𝑥𝑡𝑖,𝑗
𝑛 = 𝑥𝑡𝑖,𝑗

𝑛 × 1𝐴(𝑥𝑡𝑖,𝑗
𝑛 ) +
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𝑏𝑡𝑖,𝑗 × (1 − 1𝐴(𝑥𝑡𝑖,𝑗
𝑛 )), where parameters 𝑏𝑡𝑖,𝑗 are trainable weights. That means 

missing values in a patient’s data vector 𝑥𝑡𝑖,𝑗
𝑛  are replaced by 𝑏𝑡𝑖,𝑗. The accordingly 

completed data is subsequently mapped through a recurrent neural network encoder 

to a static, lower dimensional vector, which is interpreted as the initial condition of the 

latent ODE system (Figure S11).  

To learn parameters 𝑏𝑡𝑖,𝑗 the NODEs’ loss function needs to be adapted. More 

specifically, we use the modified ELBO criterion: 

𝐸𝐿𝐵𝑂𝐼𝑀𝑃
𝑁𝑂𝐷𝐸 =

1

𝑁
∑ ∑ −𝐷𝐾𝐿 (𝑞 (𝑧𝑡0

𝑛 |{𝑥𝑡𝑖
𝑛 , 𝑡𝑖}𝑖

) ∥ 𝑝(𝑧𝑡0
𝑛 ))

𝑀

𝑖=1

𝑁

𝑛=1

+
𝐷𝑀

𝐴
∑ ∑ ∑ 1𝐴

𝐷

𝑗=1

𝑀

𝑖=1

𝑁

𝑛=1

(𝑥𝑡𝑖,𝑗
𝑛 )(𝑥𝑡𝑖,𝑗

𝑛 − �̂�𝑡𝑖,𝑗
𝑛 )

2
 

where �̂�𝑡𝑖,𝑗
𝑛  denotes the reconstructed data. Note that we only aim for reconstructing 

the observed data, but not the imputed one. Due to the layer-wise architecture of a 

neural network �̂�𝑡𝑖,𝑗
𝑛   implicitly depends on 𝑏𝑡𝑖,𝑗. 

In practice we initialize 𝑏𝑡𝑖,𝑗 for neural network training as 
1

𝑁
∑ 𝑥𝑡𝑖,𝑗

𝑛𝑁
𝑛=1 . 

Dealing with multimodal data 

In addition to implicit missing value imputation, the second main idea of MultiNODEs 

is to complement NODEs with a HI-VAE encoder [13] for static variables (Figure S11). 

A HI-VAE is an extension of a Variational Autoencoder which can implicitly impute 

missing values via an input drop-out model and handle heterogeneous multimodal 

data, including categorical data and count data, via an accordingly factorized 

generative model. In addition, a HI-VAE uses a Gaussian Mixture Model (GMM) as a 
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prior distribution rather than a single Gaussian. We refer to Nazabal et al. [13] for 

details.  

The HI-VAE results into a lower dimensional latent representation 𝑧𝑠𝑡𝑎𝑡  of static 

variables, which can be used to augment the initial conditions 𝑧𝑡0
 learned from time 

series data. Consequently, we arrive at the following formulation of the latent ODE 

system: 

𝑑

𝑑𝑡
𝑧𝑎𝑢𝑔(𝑡) =

𝑑

𝑑𝑡
[
𝑧(𝑡)

�̃�(𝑡)
] = 𝑓 ([

𝑧(𝑡)

�̃�(𝑡)
] , 𝑡, 𝜃𝑓

𝑎𝑢𝑔
)

𝑧𝑡0

𝑎𝑢𝑔
= [

𝑧𝑡0

𝑧𝑠𝑡𝑎𝑡
]

    (2) 

This approach resembles the Augmented Neural ODEs by Dupont et al. [18]. The main 

difference to our work is that in their work no additional features are added by the 

augmentation step, i.e. 𝑧𝑠𝑡𝑎𝑡 = 0. According to Dupont et al. the purpose of Augmented 

Neural ODEs is to smoothen 𝑓, whereas we here focus on multimodal data integration. 

For training MultiNODEs, we have to jointly consider 𝐸𝐿𝐵𝑂𝐼𝑀𝑃
𝑁𝑂𝐷𝐸 as well as 

𝐸𝐿𝐵𝑂𝐻𝐼−𝑉𝐴𝐸. After bringing both quantities on a comparable numerical scale, we use 

a weighted sum as our final training objective: 

𝐸𝐿𝐵�̃�𝐼𝑀𝑃
𝑁𝑂𝐷𝐸 =

𝐸𝐿𝐵𝑂𝐻𝐼−𝑉𝐴𝐸

𝐸𝐿𝐵𝑂𝐻𝐼−𝑉𝐴𝐸 + 𝐸𝐿𝐵𝑂𝐼𝑀𝑃
𝑁𝑂𝐷𝐸 𝐸𝐿𝐵𝑂𝐼𝑀𝑃

𝑁𝑂𝐷𝐸

𝐸𝐿𝐵�̃�𝐻𝐼−𝑉𝐴𝐸 =
𝐸𝐿𝐵𝑂𝐼𝑀𝑃

𝑁𝑂𝐷𝐸

𝐸𝐿𝐵𝑂𝐻𝐼−𝑉𝐴𝐸 + 𝐸𝐿𝐵𝑂𝐼𝑀𝑃
𝑁𝑂𝐷𝐸 𝐸𝐿𝐵𝑂𝐻𝐼−𝑉𝐴𝐸

 

𝐸𝐿𝐵𝑂𝑀𝑢𝑙𝑡𝑖𝑁𝑂𝐷𝐸 = 𝐸𝐿𝐵�̃�𝐼𝑀𝑃
𝑁𝑂𝐷𝐸 + 𝛽𝐸𝐿𝐵�̃�𝐻𝐼−𝑉𝐴𝐸 

where  𝛽 is a tunable hyperparameter. Details about hyperparameter optimization are 

described in the Supplements. 

Generating synthetic subjects 
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We tested two methods to generate synthetic subjects with MultiNODEs:  

a) We could independently draw 𝑧𝑡0
~𝑁(0, 𝐼) from the prior for the longitudinal data 

and 𝑧𝑠𝑡𝑎𝑡~𝐺𝑀𝑀(𝜋) from the Gaussian Mixture prior (with mixture coefficients 

𝜋) for the static data used by the HI-VAE. Subsequently, we concatenate 𝑧0 =

[𝑧𝑡0
, 𝑧𝑠𝑡𝑎𝑡] into a vector forming the initial conditions for the latent ODE system, 

solve the ODE system and decode the solution. Unfortunately, the independent 

drawing from two priors destroys the correlation between static and longitudinal 

features in the real data. We call this approach “prior sampling”. 

b)  A second option is to draw 𝑧𝑡0
~𝑞 (𝑧𝑡0

𝑛 |{𝑥𝑡𝑖
𝑛 , 𝑡𝑖}

𝑖
) = 𝑁(𝜆(𝑥𝑡𝑖

𝑛 , 𝑡𝑖), 𝜎(𝑥𝑡𝑖
𝑛 , 𝑡𝑖)) for the 

longitudinal data and 𝑧𝑠𝑡𝑎𝑡~𝑞(𝑧𝑠𝑡𝑎𝑡
𝑛 |𝑥𝑠𝑡𝑎𝑡

𝑛 , 𝜋) = 𝑁(𝜆(�̂�𝑠𝑡𝑎𝑡
𝑛 , 𝑠𝑛), 𝜎(�̂�𝑠𝑡𝑎𝑡

𝑛 , 𝑠𝑛)),

𝑠𝑛~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋(�̂�𝑠𝑡𝑎𝑡
𝑛 ))  for the static data.  That means we generate a 

blurred / noisy version of the original n-th patient. We call this approach 

“posterior sampling”. In practice, we doubled the posterior variance during 

sampling because we found the synthetic data otherwise to lie too close to the 

real data.  

It should be mentioned that synthetic data can not only be generated for observed 

visits, but also for definable time points in between (interpolation) and after the end of 

study (extrapolation). This is possible because the latent ODE system is continuous in 

time. 
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