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ABSTRACT 

Development of fully protective dengue virus (DV) vaccines has been problematic as infection 

with DV requires a broad antibody immune response that targets all 4 possible serotypes. 

Herein, we used an integrated systems vaccinology approach to identify prevaccination features 

that allow the development of fully protective DV-specific antibody responses.  This approach 

allowed us to identify a transcription network in a subset of monocytes defined by the 

expression of CD68 and downstream of specific pro- and anti-inflammatory cytokines. 

Moreover, we identified metabolites as drivers of an immune response that induced neutralizing 

antibodies to the 4 DV serotypes. Specifically, PC/PE drove the production of TGF-B in CD68 low 

monocytes, which was a positive correlate of the protective antibody response.  In contrast, 

primary and secondary bile acids triggered a proinflammatory response downstream of TGR5 

signaling and inflammasome activation in CD68 high monocytes, which was associated to a 

non-protective antibody response. These features were validated in vitro in primary myeloid 

cells. Our results highlight the role of cell and systemic metabolism as regulators of protective 

immune responses to vaccination, and that systems vaccinology is a key tool to identify such 

mechanisms.  

 

 

 

 

 

INTRODUCTION 

Dengue infectious disease is a mosquito-borne viral disease caused by one of the four 

serotypes of Dengue viruses (DENV-1, 2, 3 and 4). At present, this disease is endemic in more 
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than 100 countries, mainly in tropical and subtropical regions, with the highest incidence of 

infection in southeast Asia, South and Central America (WHO). Clinical manifestations of 

Dengue infection can range from an asymptomatic or mild disease to dengue hemorrhagic fever 

(DHF), a life-threatening syndrome associated with multi-organ failure. Although any DENV 

serotype can cause severe disease with a primary infection, a secondary infection with a 

heterologous DENV serotype has been associated with an increased risk of DHF. This 

phenomenon has been linked to Antibody-dependent enhancement (ADE), in which primary 

antibodies facilitate the secondary infection by increasing the uptake of non-neutralized DV 

virions by monocytes or macrophages via the Fc-gamma receptor.  

 

The first authorized vaccine against DV, Sanofi Pasteur's tetravalent live attenuated Dengvaxia 

(CYD-TDV) was approved in Dengue-endemic countries throughout Asia and Central/South 

America in 2016, with a vaccine efficacy differing by serotype, age group. However, the largest 

benefits were found in children with a positive prevaccination serostatus, whereas vaccinated 

seronegative children (<9 yrs old) were found to have an increased likelihood of hospitalization 

for severe dengue. This has since been suggested to be caused by ADE in a way akin to that of 

a primary infection: where a neutralizing antibody response against only a subset of all 4 

serotypes is a risk factor for severe dengue.   

 

There is an ever increasing body of evidence investigating the heterogeneity of immune 

responses induced by those vaccine approaches across individuals, both in regards to its 

quality and magnitude. The so-called "immune predisposition" to vaccination has been 

associated to immune subset frequency and distribution and circulating levels of cytokines and 

chemokines both at prevaccination and early post-vaccination timepoints. Moreover, these 

features are also known to be further modulated by a combination of age, gender, genetics and 
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a complex interplay between the microbiome and cell metabolism, in order to ultimately 

influence global health.  

 

Systems vaccinology approaches have provided valuable insights into the identification of 

correlates of immunogenicity and protection, by taking advantage of the wealth of data from 

large "OMICs", including transcriptomics, proteomics and metabolomics, in combination with 

unbiased predictive computational analyses. This has led to the successful identification of a 

predictive early gene signature of the antibody response in the yellow fever live-attenuated 

vaccine YF-17D, influenza vaccine and HepB vaccine (. Moreover, systems vaccinology has 

been leveraged to isolate pre-vaccination signatures in the context of Influenza, HepB, Malaria 

and Yellow Fever vaccination.  

 

We leveraged multi-omic data from a Phase II clinical trial for the tetravalent live-attenuated 

TV003 vaccine (NIAID/NIH) in Brazil to identify correlates of the breadth of the neutralizing 

antibody (nAb) response. A combination of transcriptomic, metabolomics, proteomics, flow 

cytometry and in vitro validation identified a complex immunometabolic balance between pro- 

and anti-inflammatory signatures mediated by monocytes predisposing to an optimal response 

in seronegative participants.  

 

 

RESULTS 

Breadth as a feature of optimal vaccine response in the TV003 Phase II clinical 

trial  

 The induction of a broad nAb response to all 4 DENV serotypes is required to be the 

best vaccination strategy to prevent ADE in seronegative individuals who are at risk of a 
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secondary infection. The vaccination strategy of the TV003 Phase II clinical trial is detailed in 

Supplementary Figure 1A.  A total of 46 seronegative individuals were enrolled in the trial and 

received two rounds of immunization with the second dose given 180 days after the first dose. 

Supplementary Figure 1B shows that the vaccine was shown to induce a potent multivalent 

response in the majority of individuals for at least 90 days. Moreover, we observed this 

response to be mostly restricted to the primary immunization, as we did not witness a secondary 

increase in nAb titers post boost. The kinetics and magnitude of this primary response varied 

significantly across serotypes and participants (Supplementary Table 1). We identified 3 non-

responders (8.51%), whose serum could not neutralize any of the 4 serotypes in PRNT assays 

at any timepoint before Day 90.  In responders, we observed the peak response, defined as the 

earliest maximum titer timepoint per participant, to be at Day 28 for a close to half of participants 

for DV1 and DV3 (48.4% and 54.8% respectively), while the remainder are spread between 

Days 56 or Day 91. In contrast, the distribution of titer peaks for DV2 and DV4 displayed an 

enrichment for Day 56 maxima (45.2% and 48.4% respectively), despite also showing 

substantial heterogeneity.  To determine if this was driven by a patient effect, namely if some 

participants responded later for all serotypes than others who peaked earlier, we tallied the 

number of peak timepoints per participant (Supplementary Table 2): we highlight that at least 

half of all responders (54.5%) have 2 timepoints at which they have their personal maxima and 

33% display peaks at all 3 timepoints. Only 4 participants (12.1%) exhibited a simultaneous 

response across serotypes, suggesting this heterogeneity in nAb kinetics is not caused by a 

patient effect, but by unexplained differences across serotypes.  

 

In order to integrate this information and circumvent this large heterogeneity and infer a 

measure of the magnitude of the response per participant, we measured the log-transformed 

Area Under their nAb titer Curve (AUC) using the trapezoid rule. In parallel, we calculated our 

selected outcome, namely the Breadth of the nAb response, in Supplementary Table 3. In 
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summary, breadth was calculated on a binary basis of detection / absence (nAb >10) for each 

serotype for at least one timepoint (columns 2-5), and then summed up across serotypes, as 

per the clinical definition(column 6). The outcome was then dichotomized into high and low 

breadth groups, where high corresponds to a detectable nAb response to all 4 serotypes, and 

low to values under 4 (column 7). This choice was made on the basis of the biology of ADE:  

anything below a full breadth brings a potential negative risk for ADE, and was thus considered 

suboptimal.  

A majority of participants (26/35, 74.2%) had successfully mounted a high breadth response at 

Day 90 (Suppl Fig 1C), with the remaining with either a partial (6/35, 17.14%) or absence of 

response (3/35, 8.57%),  

 

Examination of the low breadth responses showed that all participants retained the capacity to 

mount a detectable nAb response against DV1, suggesting that the immunization for this 

serotype was the most consistent and robust. In contrast, DV3 responses seemed to be 

particularly lacking in low breadth individuals, where 7/9 participants (including 3 non-

responders to all 4 serotypes) displayed no detectable nAb titers against DV3. Moreover, 

comparison of the magnitude of the response across breadth groups showed a partial 

association between outcomes (Supplementary Figure 1D), where DV3 AUC was significantly 

lower in the low breadth group (p = 0.00023), along with a weaker significant association of DV2 

and DV4 AUC to Breadth (p = 0.16, p = 0.022, respectively).  This supports that the induction of 

a DV3-specific response is a critical determinant of Breadth following TV003 immunization.  

 

Type I Interferon and TGF-B signaling dichotomy as inflammatory drivers of 

breadth of the nAb response to TV003 
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Next, we performed a bulk RNAseq analysis to evaluate the transcription profile of 

prevaccination PBMC (Figure 1A). Unsupervised Principal Component Analysis (PCA) reveals 

no significant association of the top components with the AUC and Breadth outcomes (data not 

shown). However, using a supervised analysis (DESeq2), we detected a total of 1139 

differentially expressed genes (DEGs) at Day 0 associated with the breadth of the nAb response  

before vaccination (nominal p-value < 0.05) (Figure 1A), where 530 and 609 were significantly 

associated with a high and low breadth, respectively. 

 

Parallel DEG analyses for each serotype-specific outcomes revealed more insight into the 

relationship between those outcomes (Figure 1B). The number of DEGs differed drastically 

across outcomes,  identifying 1471, 1434, 2427 and 1155 DEGs respectively for DV1-4, with 

DV3 displaying the highest number of DEGs. Examination of the DEG similarity across 

outcomes, using the Jaccard coefficient, highlights the high DEG overlap between DV3 and 

Breadth (465), and low overlap of DV1 with Breadth (94).     

We then performed a pathway analysis using pre-ranked GSEA, which revealed significant 

associations of pathways with outcome, as quantified by a NES (Normalized Enrichment Score). 

We identified a total of 3489 genesets significantly associated at a nominal p-value < 0.05 (2849 

associated with high breadth, 625 with low breadth), or 1039 at an adjusted p-value (FDR) < 

0.05 (799 high; 240 low). EnrichmentMap was used to generate modules on the basis on the 

geneset leading edge Jaccard similarity index cutoff of 0.25. We identified 27 immune modules 

(Figure 1C) 10 of which were associated with a high breadth and 17 with a low breadth, along 

with 20 metabolic modules (Figure 1D) (19 high; 1 low). Our analysis revealed a positive 

association of several anti-inflammatory genesets associated with TGFB signaling, namely 

SMAD2/3/4 and ETS1, with p-values ranging from 0.008 to 0.0002. In contrast, we identified a 

negative association of several proinflammatory genesets with Breadth, with the strongest 

association being Type I interferons, TNFA and RELA modules (p < 0.01 - 0.00018).  
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Examination of the leading edge genes for those signatures highlights a predominance for 

antiviral function (IFIH1, DDX58, IRF1,IFIT1, IFIT2, IRF7)  and tonic signaling ISGs (STAT1, 

USP18, PARP9) (Supplementary Fig. 4).  

 

Examination of gene expression levels for cytokine and chemokine expression did not however 

reveal a significant association of TNFA, type I IFNs or TGFB at a univariate level in relation to 

the Breadth outcome, nor are they found within the leading edge genes of modules generated in 

Fig.1C. This suggests either the source for these cytokines is either not blood-

borne/hematopoietic, comes from a subset too rare to pick up the single signal from or that the 

effect is being diluted by the subset heterogeneity. In contrast, a few cytokine genes highlighted 

in our pathway analysis also proved significant at a univariate level, including IFNG and multiple 

members of the IL1 family (IL1B, IL1A, IL6). This suggests a differential activation of a member 

of the inflammasome family between high and low breadth to be investigated. Finally, we 

identified 10 chemokines enriched in the low breadth group and 1 in the high breadth group, 

which was consistent with the general Chemotaxis module being negatively associated with 

Breadth in Fig.1C.  

 

Given the large known interplay of cell metabolism and immune function and the balance of pro 

vs anti-inflammatory pathways highlighted above, we investigated whether prevaccination 

transcriptomic measurements of metabolism could also predict post-vaccination Breadth (Fig. 

1D). We identified a large number of very biologically diverse pathways significantly associated 

with Breadth, including NAD metabolism, Oxidative Stress, Glycolysis and Amino Acid 

metabolism as positive determinants of a good response. The highest associations were 

however for modules involved in lipid metabolism, including transcription factors such as TFAP2 

and TCF3 (p-values ranging from 0.0006 - 0.00033).  
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 We measured the concentration levels for a custom panel of 228 plasma protein using 

monitoring-mass spectrometry (MRM) analysis.  Notably, we identified 13 plasma proteins to be 

significantly associated to the breadth of the response at a univariate level (p < 0.1), 10 of which 

were associated with a low breadth of nAb responses (Figure 2B). These proteins were 

hallmark surrogates of proinflammation, including Complement receptor 1 (CR1; p=0.0066), 

soluble ICOSL (p=0.028), C-Reactive Protein (CRP; p=0.08), Lysozyme C (LYSC; p=0.028) and 

Complement Factor 1 (CFAI; p = 0.026). Furthermore, know immunometabolic determinants 

were also identified in the plasma, such as FABP5 (p = 0.09), NGAL (p = 0.007) and Serum 

Amyloid 1(SAA1; p=0.076), all of which are involved in lipid metabolism.  

Further investigation of the proteomic signature using Gene Set Variation Analysis (GSVA) on 

all proteins revealed a number of differentially enriched pathways associated with breadth, 

among which we isolated HECKER IFNB1 targets (p=0.026) and SMAD1 (p=0.0156) pathways 

(Figure 2C), which respectively served as protein validation of the dichotomy of IFN and TGFB 

signatures identified by RNA-Seq in Figure 1C. Moreover, we noted an interesting enrichment of 

plasma proteins involved in B cell activation (p=0.04) in high breadth participants.  Integrative 

analysis between transcriptomics and proteomics supports a strong consistency across OMICs  

and highlights a consistent dichotomy between pro and anti-inflammatory in association with  

the breadth of the response to TV003 (Figure 2C) .  

 

 

Pre-vaccination metabolic activity as immunomodulating driver of vaccine 

response to TV003.  

Given the growing recognition of cell metabolism as modulator of immune responses following 

vaccination and our transcriptomic observations for an association of metabolic activity with 

breadth of the response, we hypothesized that cell metabolism was a critical driving factor for 
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the divergent pro- and anti-inflammatory profiles identified in Figure 1 prior to TV003 

vaccination. Given the large breadth of metabolic pathways known to possess 

immunomodulatory function, we analyzed a broad panel of 868 pre-vaccination plasma 

metabolites in relation to the breadth response (Supplementary Figure 5A). Despite substantial 

heterogeneity across participants , which is a common feature of both plasma metabolism and 

baseline donor characterization, we identified 22 differentially expressed metabolites (nominal 

p-value <0.05) across breadth groups, 6 of which belonged to the 

Phosphatidylcholine/Phosphatidylethanolamine (PC/PE) class of metabolites. Interestingly, 

PC/PE has been previously associated to TGF-B function, both by regulating its transcription 

and by contributing to its activation at the cell surface in chondrocytes.  

 

We then proceeded to perform pathway analysis using MSEA (Metabolite Set Enrichment 

Analysis) on SMPDB (Small Molecular Protein DataBase) and Metabolon metabolite sets, which 

foregoes traditional p-value thresholds and operates by ranking the whole list of metabolites for 

enrichment, followed by Enrichment Map (as described above for transcriptomics) for 

consolidating of sets with high degrees of redundancy. We further showed the association of 

PC/PE metabolism as a positive correlate of the breadth response (p = 0.00037) (Figure 3B), in 

line with the univariate observations described previously. We highlighted the strongest drivers 

of module enrichment from the leading edge of correlates in Figure 3A; PC/PE metabolism 

includes 14 metabolites. Other positive module correlates included Benzoate and sphingomyelin 

metabolism (p=0.005 and p=0.013).  In contrast, we observed a significant association of bile 

acid metabolism with breadth of the response, with primary Primary Bile Acids cholate and 

glycocholate as the most potent features, as negative correlates of the response (p=0.00049).  
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We performed integrative analysis between transcriptomic and metabolic sets allowed to 

confirm the concordance between metabolic pathways across OMICs, where PC metabolism 

had been highlighted in RNA-Seq (Figure 1C) as a predictor of breadth of vaccine induced Ab 

responses (Figure 3C). Spearman regression shows a significant correlation between PC/PE 

metabolism pathways across OMICs, validating our prior observations. Furthermore, this 

analysis highlighted the interplay between metabolic pathways and cytokine activity, where 

PC/PE metabolism and Bile acid metabolism modules are respectively negatively and positively 

correlated to 13 proinflammatory modules, including TNFA signaling, ILR1 signaling and NFKB. 

On the other hand, those metabolic modules are also correlated to 5 positive transcriptomic 

determinants of breadth, 3 of which are involved in TGFB signaling (SMAD1, SMAD2/3, 

SMAD4).  These observations serve to further display the immunometabolic dichotomy 

associated with an optimal response to vaccine TV003.  

In order to pinpoint the potential immune populations that could be mediating bile acid signals 

and PC/PE activity, we leveraged publicly available sorted subsets from the Monaco dataset 

(Supplementary Figure 6). We infer myeloid cells, with monocytes in particular, as the most 

probable subset involved in bile acid metabolism, on the basis of their predominant expression 

of the canonical TGR5 (Takeda G-proOtein-Coupled Receptor 5 protein, encoded by GPBAR1) 

receptor and of the VDR. Moreover, despite FXR's well-established role in mediating 

downstream signaling of bile acids, we could not detect its expression in any of the immune 

populations across datasets. In contrast, PE/PC metabolism has no established receptor, and is 

thus more difficult to associate to a specific subset in a bulk RNA-seq dataset. In order to 

pinpoint the most likely mediators of PC/PE metabolism in the blood, we generated an 

aggregate score from the normalized expression for each sorted subset in the Monaco dataset. 

This allowed us to observe an enrichment for both PC/PE metabolism and bile acid metabolism 

in the myeloid compartment, notably in monocytes. We also observed an elevated expression of 

genes in both of these pathways in progenitors and plasmablasts. We were intrigued in the 
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lower relative expression of the bile acid pathway genes of Monocytes and mDCs, in 

comparison with Progenitors and Plasmablasts given the expression of the canonical TGR5 

receptor in Supplementary Figure 6A. While we cannot exclude a plasmablast contribution in 

the response, the inflammatory signatures identified previously are generally associated with 

innate immunity, and as such makes the myeloid compartment more likely mediators of the 

prevaccination predisposition effect we observe. 

 

Prevaccination classical monocyte functional heterogeneity is associated to 

breadth of response to TV003.  

In light of the signatures identified previously, we hypothesized a major contribution of the innate 

compartment in the predisposition of an optimal response to TV003. We set out to associate 

prevaccination PBMC flow cytometry profiles of innate immune cells to the breadth of Ab 

responses. Unsupervised clustering using a combination of Phenograph clustering with tSNE 

dimension reduction approach revealed 22 distinct clusters amongst CD3-CD19-CD56- 

populations (Figure 4A). The frequencies of 3 of these clusters were significantly associated 

with the Breadth of the response: one of which was consistent with a pDC phenotype (Lin-

CD11c+CD123+; cluster 8, p = 0.0062) and the other 2 clusters with a classical monocyte 

phenotype (CD14+CD16-CD11b+HLA-DR+) (Figure 4B; Supplementary Fig.7A)). However, those 

2 monocyte clusters, which differed primarily by their expression of scavenger receptor CD68 

(macrosialin), and with a lesser extent by CD45 expression, displayed a differential enrichment 

across breadth groups in the DV trial. CD68hi monocytes (cluster 1) were enriched in the low 

breadth group (p=0.0028), whereas CD68low monocytes (cluster 16) were enriched in the high 

breadth group (p = 0.0024).  
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Furthermore, flow cytometry characterization of the B cell compartment highlighted additional 

differences between high and low breadth participants. Our B cell panel lead to the identification 

of 27 CD19+ clusters (Figure 4E), 2 of which were significantly enriched in the high breadth 

group. Cluster 8 was consistent with a Naive B cell phenotype (CD20+CD21+BCL2hiIgG-), while 

Cluster 15 was consistent with a GC B cell phenotype (CD20hiCD21lowCD38+) (Figure 4F; 

Supplementary Fig 7B).  

 

In order to determine if prevaccination CD68 expression in CD14+CD16- monocytes  was 

associated with other vaccine responses, we leveraged CITE-Seq data from Tsang et al. 

generated in the context of influenza vaccination across 20. subjects (Figure 5A). Subjects that 

showed the highest level of CD68 expression also had the highest magnitude off the antibody 

response (p = 0.03)(Figure 5B), confirming the association of CD68 expression and protective 

responses to DV vaccination. MAST analysis identified multiple genes (2160 with FDR <0.05) 

associated with CD68 expression amongst CD14+CD16- monocytes. We observed a positive 

association to expression of bile acid receptor TGR5 (GPBAR1), suggesting CD68high 

monocytes could be more responsive to bile acids. Furthermore, we associate a number of 

proinflammatory genes to CD68 expression, including TNF, MYD88, and PYCARD 

(inflammasome activator ASC). Moreover, we showed that members of the antiviral interferon 

network (Suppl. Fig.4) IFIT1/2 and IRF1 were positively associated to CD68 expression. 

Conversely, we identified a negative association of anti-inflammatory myeloid scavenger 

receptor CD163 to CD68 expression. These observations highlight the impact of differences in 

CD68 expression in monocytes, a significant correlate of DV-specific protective antibody 

responses on mechanisms that underlie the development of those antibody responses.   

 

Integrative analysis of TV003 OMICs reveals monocytes as central mediators of an 

inflammation-metabolic crosstalk  
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We used sparse least-square regression models to investigate whether the gene expression 

signatures associated to breadth in the TV003 Phase II trial were correlated to levels of plasma 

proteins, plasma metabolites and FCM subset frequencies, both at the single analyte or 

pathway level (Supplementary Figure 9 and Figure 7, respectively). The pathway-level 

integrative analysis shows a clear dichotomy between pro- and anti-inflammatory pathways and 

their respective association to CD68high and CD68low classical monocytes. For instance, they are 

respectively negatively and positively correlated to the SMAD4 module, hinting of an enhanced 

TGFB signaling in CD68low monocytes. pDC are also positively associated to SMAD4 and not 

correlated to Type I IFN, providing some potential mechanistic insight into a more tolerogenic 

pDC phenotype as a positive determinant of breadth.  Interestingly, the frequency of neither 

monocyte population are correlated to the metabolite modules, yet are connected to the same 

functional inflammatory modules (SMAD4; Type I IFNs, RELA/NFKB, TNFA signaling).  

 

 

 

 

DISCUSSION 

In this study, we leverage an in-depth multi-OMIC analysis to provide a mechanistic framework 

underlying the predisposition to an optimal response to a live attenuated tetravalent vaccine to 

dengue virus. This Phase II trial included 38 seronegative participants that were vaccinated with 

the TV003 vaccine in Brazil. We identified an intricate network of bile acids and PC/PE 

metabolites respectively triggering activation of pro- and anti-inflammatory signaling cascades in 

monocytes. This in turns modulates how many DV serotypes are neutralized post-vaccination. 

i.e. Breadth of the response.  
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Associations of the anti-inflammatory properties of PC/PE have been made in the past by 

showing their role in promoting downregulation of TNFa signaling and autophagy. PE 

deficiencies have been associated to the Unfolded Protein Response (UPR), ER stress and in 

the context of Parkinson's disease and ulcerative colitis. The mechanisms through which PC/PE 

induce these anti-inflammatory effects are however poorly defined. One proposed mechanism 

highlighted through in vitro rat chondrocyte experiments has been through activation of latent 

TGF-beta1 in a manner similar to mild detergents. Our validation experiments have been able to 

further validate these findings with human primary monocytes, showing both an increase in 

active TGFb concentrations in supernatants following exogeneous PC/PE exposure and 

SMAD2/3 phosphorylation downstream of TFBGR signaling. Interestingly, a recent report by Fu 

et al.  highlights a role for PE in promoting CXCR5 expression and differentiation of TFH cells. 

This could be in fact mediated through TGFb as well, which is a well known key factor in TFH 

differentiation. This could also mean PC/PE play a role beyond monocytes in the context of our 

cohort, optimizing TFH differentiation and facilitating the generation of a broad nAb response.  

 

In contrast, exogenous bile acid stimulation was associated to a pro-inflammatory phenotype in 

human primary monocytes. We detected downstream signaling of bile acid receptor TGR5 by 

CREB1 phosphorylation, as well as inflammasome activation through Caspase-1 

phosphorylation. We find this interesting because, despite having Interferon and TNFA as more 

significant pro-inflammatory transcriptomic pathways in association to Breadth, we do not detect 

any differential expression of the genes encoding for the cytokines in these pathways, thereby 

suggesting their source is either non-hematopoietic or from a rare subset within PBMC. In 

contrast, almost all IL1-related cytokine genes were found to be enriched in low breadth 

participants PBMC, which better support a hematopoietic source of this inflammasome activity. 

The role of bile acids in inducing an inflammatory response has a complicated history: work in 

mice has shown FXR and TGR5-mediated mediated inhibition of NLRP3 activation downstream 
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of cAMP-PKA-CREB in bone marrow-derived macrophages, as well as a tendency to promote a 

M2-like phenotype with increased IL-10 production for both primary and secondary bile acids. 

Furthermore, the discrepancy with our results may be mediated by the species difference: 

authors have shown that their inhibition of NLRP3 requires activation of intracellular bile acid 

receptor FXR, for which we detect no transcripts in human monocytes in the Monaco and 

Human Cell Atlas datasets. Furthermore, additional conflicting evidence also purports a more 

proinflammatory role of bile acids, including an activation of the PYRIN inflammasome in human 

PBMC by bile acid analog BAA473, leading to increased IL-18 and IL-1b secretion and 

activation. Bile acids have also been shown to promote hepatocyte cell death, release of 

alarmins in cholestasis patients, a condition associated with an accumulation of bile acids in the 

liver.  Elevated expression of inflammasome genes was observed in both hepatocytes and M1-

like macrophages in cholestatic patients, supporting our observations of a pro-inflammatory role 

of bile acids.  

 

The role of bile acids in the context of vaccine responses has been described previously. Hagan 

et al. have shown that gut microbiome perturbations alter immunity to vaccines, partially through 

modulation of secondary bile acids in the context of influenza vaccination (TIV). In this study, 

bile acids were not directly associated to post-vaccination outcome, but were predominantly 

negatively associated to inflammasome signaling. This finding comes in contrast with ours, 

which could be explained by gut microbiome disparities due to geographical location (California 

versus Brazil), and the distinct nature of the vaccine. As a matter of fact, this study contrasts 

with other published and unpublished work that highlight a different role of inflammatory 

signatures across vaccine regimens. To support this statement, a recent study by Liu et al. 

uncovered hypo-responsiveness to HBV vaccination in children with elevated bile acids, which 

is in line with our findings. 
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The dichotomy of pro- and anti-inflammatory signatures as respective negative correlates of 

vaccine immunogenicity has been the focus of much of the work published in the context of 

vaccine predisposition. A Study by Fourati et al. has demonstrated  hyporesponsiveness to 

HepB in the presence of heghtened inflammation. On the other hand, work by the HIPC, 

currently under review, has shown a pan-vaccine proinflammatory signature as a positive 

correlate of the magnitude of the Ab response. We believe the differences lie in the necessary 

response for each vaccine. For instance, an individual displaying an enhanced level of immune 

activation, expression of antivirals would also limit viral replication of a live attenuated vaccine 

like TV003, effectively reducing antigen load for the generation of a potent humoral response. 

Moreover, we think that the term proinflammatory response may be too reductive: a heightened 

NFKB differ greatly in downstream pathways induced to that of RIG-I/MDA5 signaling.  

 

 

 

MATERIAL AND METHODS 

Trial design 

Thirty-seven volunteers from TV003 Phase 2 trial in Brazil were used in this study, based on 

their prevaccination seronegative status to all 4 DV serotypes as measured by PRNT assay by 

the Kallas laboratory in Sao Paulo. Participants were recruited at the Butantan Institute in Sao 

Paulo, were screened for major infections prior to vaccination, and were given 2 doses of 

TC003 vaccine spaced 180 days apart. PBMCs and plasma were collected at Day 0, prior to 

vaccination, as depicted at Supplementary Figure 1A. Neutralizing antibody response to the 

vaccine was measured by PRNT assay at Day 28, Day 56 and Day 90.  

Transcriptomic analysis 
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RNA was isolated using RNEasy micro-kit (QIAGEN) from PBMC samples taken 

preimmunization, and the quality of the RNA was confirmed using BGI’s protocols. 

Paired-end total RNA sequencing was performed at Beijing Genomics Institute (BGI) using an 

Illumina NextSeq 2500 for 30 million 100 bp reads. Raw FASTQ files were processed at Case 

Western Reserve University with the Sekaly lab pipeline: After sequencing, reads are processed 

to remove Illumina adapters and low quality 3'-end bases using the Trimmomatic software (1), 

and then mapped to the reference mouse genome version GRCh38 using the RNA-seq 

optimized software STAR (2). RSeQC was then used to asses strand-specificity of reads for all 

transcripts (3). Transcript abundance was then estimated from unique mapped reads into raw 

counts using HTSeq (4), R package DESeq2 (version 1.6.2) (5)was then used to normalize read 

counts among samples and to identify differentially expressed genes between biological 

samples. A Wald test was used to evaluate the statistical relevance of the observed variations 

given its reproducibility between biological replicates, and a Benjamini-Hochberg correction for 

large number of measurements was applied to obtain adjusted p-values. Genes of interest were 

selected based statistical significance (p-adj > 0.05), and Bayesian shrinkage estimation was 

applied to the fold change to estimate effect size more accurately.  

Hierarchical clustering with complete linkage was performed using Euclidean distance, and 

displayed using the pheatmap R package.  

 

Preranked Gene Set Enrichment Analysis (GSEA) was performed for each contrast and or 

correlation against genesets extracted from the MSigDB (BROAD Institute),  and Interferome 

databases. The shrunken fold change was used as a ranking metric Genesets found to be 

significantly enriched associated with the breadth of the response were considered as 

differentially activated pathways.  
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GSVA (Gene Set Variation Analysis) R package. was then used to compute a sample-level 

geneset enrichment z-score for genesets found to be signifcantly enriched using GSEA, on the 

basis of the expression level of the leading edges genes. Sample level z-scores were then used 

for correlation wwith other OMICs.  

 

Proteomic preprocessing 

MRM Mass spectrometry assays was performed on a total of 228 selected plasma markers 

associated with inflammation and metabolism.  

 

Proteomic pathway analysis 

Genesets were generated by the conversion of MSigDB and CHEA genesets into associated 

UNIPROT identifiers found in the 228 plasma proteins measured by MRM Proteomics 

approach. GSVA was used for each c2, c5 , Hallmark and CHEA genesets on the normalized 

expression values. Sample level pathway scores were then compared across Breadth groups 

using Student's T-test. Significant pathways were then integrated with significant selected 

transcriptomic pathways by using Spearman correlation on Proteomic pathway scores and 

Transcriptomic pathway z-scores. Significant associations were filtered using a nominal p-value 

<0.05. 

 

 

Metabolic profiling 

Normalized expression values from Metabolon and Caprion platforms were compared across 

Breadth groups using a Student's T-test. MSEA was used as an adaptation of GSEA on 

metabolite data by preranking the individual metabolites by their sign(t-value) * -log(p-value), 

and. compared to metabolic sets generated from the in-house Metabolon classifications or 

SMPDB (Small Molecule Pathway Database) pathways. EnrichmentMap was then used to 
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reduce pathway redundancy of enriched pathways by generating modules of genesets on the 

basis of a Jaccard distance >0.25. Sample level z scores for each pathway were generated on 

the leading edge genes of pathways found significant in GSEA using GSVA. Those z-scores 

were then integrated with transcriptomic genesets selected z-scores to infer association across 

OMICs using Spearman correlation.  

 

 

 

Unsupervised Flow cytometry analysis 

Individual FCS files generated by the BD FACS Diva software were imported into FlowJo 

Software for pregating on CD3-CD19-CD56- live cell cells. Selected events were then exported: 

from which an identical number of events per patient were then randomly subsampled into R.  

For bioinformatic analysis of flow cytometry data, a custom script was made using UMAP for 

RPhenograph analysis was used to to generate clusters of cells based upon their marker 

expression, while clusters were projected on a tSNE dimension reduction of the data, allowing 

for visualization of high dimensional data in two dimensions and for events to be clustered 

based on similar expression of flow cytometry markers which led to identification of novel cell 

subsets. 

Frequency of events per samples was then computed per cluster and compared across Breadth 

groups using a Welch T-test. Median Fluorescence Intensity for each marker was computed for 

each cluster for comparison of expression profiles.  

 

 

Single-cell transcriptomic analysis 

Publicly available datasets of 10X healthy PBMC datasets were downloaded from a 

prevaccination influenza cohort (https://doi.org/10.35092/yhjc.c.4753772).  The top 2000 most 
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variable genes were used as anchors to first batch correct whole PBMC datasets.  Principal 

Component Analysis was then performed on integrated normalized data. The optimal number of 

components was then selected using the Elbow method, and used as input for UMAP 

dimension reduction and Phenograph clustering.  SingleR was then used on integrated log-

transformed values to infer cell type when compared to the Monaco dataset on each cluster/  

SingleR was then used on individual monocyte cells to identify cell subsets. MAST software was 

used on raw counts to perform differential expression across groups of influenza vaccine 

response.  

 

Integrative analysis 

We leveraged a projection-based approach from the R package mixOmics characterize 

correlations between OMICs (RNA-Seq, metabolome, proteomics, FCM). A sparse least square 

regression (sPLS) was used across OMICs as pairwise comparisons: a pairwise projection on 

the same scale allowed to quantify the Pearson correlation coefficient between the features of 

the two data types was calculated. To assess the probability of obtaining a Pearson correlation 

equal to or greater than the one observed, we derived a p value based on the distribution of the 

Pearson correlations calculated between all pair of features of the two data types (i.e., the 

statistical universe). Pearson correlations corresponding to a p value cutoff of 0.05 were 

considered significant. 

 

 

FIGURE LEGENDS 

Figure 1. PBMC transcriptomic analysis of prevaccination of TV-003 vaccine-induced 

Breadth of the response reveals a dichotomic association of pro vs anti-inflammatory 

pathways. (A) Heatmap representing row normalized 1139 DEGs associated with Breadth of 
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response at a nominal p.value <= 0.05, where each row represents a gene and columns 

represent prevaccination timepoint samples. (B) Jaccard similarity network across outcomes for 

transcriptomic contrasts. Each node represents an outcome, such as Breadth of the response or 

the magnitude of serotype-specific responses, and edge widths represent the Jaccard index of 

DEGs found to be significantly associated at p.value < 0.05 in each pairwise comparison. 

Heatmaps representing pathway EnrichmentMap analysis for immune (C) and metabolic (D) 

transcriptomic genesets, where each row represents a pathway module and rows individual 

participants. Row annotation tracks (left) represent the signed log p-value of the association of 

each outcome for each module, with blue and red denoting high negative and positive 

significance, respectively. Column annotation tracks (above) represent the Breadth and DV3-

specific AUC outcomes per participant.  

 

Figure 2. Prevaccination plasma protein profiling confirms a negative association of 

proinflammatory pathway signaling at the protein level(A) Heatmap representing Mesoscale 

quantification of row-normalized prevaccination plasma chemokines and cytokines associated 

with Breadth of the response to TV-003 at a nominal p.value <= 0.05 (left) with associated 

boxplots per significant analyte (right). (B) Differentially expressed plasma proteins between 

high and low Breadth patients by MRM proteomics at p.value < 0.05. Row represent individual 

proteins and their UniProt accession ID. The color scale, from blue to red, represents the 

normalized expression (z-score) of the associated row, where red denotes high expression. (C) 

Geneset Variant Analysis (GSVA) on MRM proteomics data heatmap. Rows represent the 

GSVA score per participant for the combination of the proteins in the enriched pathway. 

Pathways were enriched at a nominal p-value of 0.05 (D) Integrated correlation network 

analysis of transcriptomics and proteomics, where nodes denote features and edges the 

Spearman correlation coefficient between them.  
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Figure 3. Prevaccination profilling of plasma metabolites reveals metabolic pathway 

activity is associated with inflammatory status (A) Metabolite Set Enrichment Analysis 

(MSEA) was performed on preranked metabolites from differential expression analysis, followed 

by Enrichment Map analysis with a Jaccard Index > 0.5 for modules displaying a nominal 

p.value < 0.05. (B) Heatmap representing the leading Edge metabolites from modules in A, 

where each row represents normalized metabolite expression and columns individual 

participants. Row annotation tracks (left) represent the signed log p-value of the association of 

each outcome for each module, with blue and red denoting high negative and positive 

significance, respectively. Column annotation tracks (above) represent the Breadth and DV3-

specific AUC outcomes per participant. (C) Integrated correlation network analysis of 

transcriptomics and metabolomics, where nodes denote features and edges the correlation 

coefficient between the 2 features they link. Spearman correlation (p-value < 0.05) was used as 

an integration metric across OMICs and displayed on the edge color. Node shape and color 

maps to the respective feature type and association to Breadth.  

 

 

Figure 4. The frequency of prevaccination classical monocyte subsets distinguished by 

their expression of scavenger receptor CD68 at the prevaccination timepoint is 

associated with Breadth of the response to TV-003 in a dichotomous fashion. (A) tSNE 

plot of CD3-CD19-CD56- PBMCs from unsupervised flow cytometry analysis. Different colors 

represent distinct clusters following Rphenograph clustering analysis (top). The tSNE plot was 

separated on the basis of breadth outcome (bottom), showing variations in density in clusters 1, 

16 and 8 (surrounded top).  (B) Heatmap showing scaled median fluorescence cluster profile for 

each marker: each row is a significant cluster and each column is a marker in the panel.  White 

denotes low expression, while red denotes high expression. Red rectangle highlights the top 2 
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significant correlates of breadth (C) and (D) Boxplots and scatter plots, respectively showing 

cluster 1(top) and 16 (bottom) cell frequency versus Breadth and DV3-specific AUC. (E) Boxplot 

showing cluster 8 cell frequency versus Breadth.  

 

Figure 5. Single-cell transcriptomics analysis on 4 independent datasets confirm 

existence of novel subsets of monocytes with distinct proinflammatory vs anti-

inflammatory functions (A) CD68 gene expression violin plots across monocyte clusters, 

where each dot represents a cell in the associated cluster. (B) GSEA analysis of between 

CD68low Classical monocyte cluster 3 versus CD68high Classical monocyte clusters 1, 2, 4 and 5 

, where a positive NES (red) indicates enrichment of genes in associated pathway in Classical 

Monocytes #2, and NES <0 (blue) in Classical Monocytes #1 (C) Heatmap of row-normalized 

leading edge genes from each enriched pathway across selected clusters for Type I IFN (top) 

and SMAD (bottom) pathways. 

 

Figure 6. Integrative analysis between transcriptomics, Plasma Proteomics and 

Metabolomics and flow cytometry highlight a dichotomous crosstalk of classical 

monocyte subsets with metabolic, pro and anti-inflammatory pathways.  Circos plot 

representation of cross-platform correlation analysis, where nodes denote features and edges 

the correlation coefficient between the 2 features they link.  

 

Supplemental Figure 1. (A) Design of Stage II TV-003 Brazil Clinical Trial in Naive participants, 

with one primary injection at Day 0, and a second dose at Day 180. PBMCs were collected at 

Day 0, Day6, 15, and plasma at Day 0,  (B) Neutralizing Ab responses (PRNT Assay) against 

each Dengue Virus serotype across Naive participants following vaccination. (C) Venn Diagram 

representing the number of participants that had a positive (PRNT >10) for at least one 

timepoint between Day 0 and Day 91 post-vaccination, against each serotype. (D) Violin Plots 
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representing serotype-specific AUC responses per breadth group. Parametric Welch’s T-test 

was used to compared groups. P * < 0.05; ** < 0.01, *** <0.005 

 

 

Supplemental Figure 2. (A) Enrichment Map Interferon module leading Edge Gene 

network.   Edge annotation was generated using GeneMania for genes belonging to the Type I 

IFN modules (gray line). Tonic sensitivity classification of genes is depicted as node color, and 

antiviral function as a border as shown the the legend.  

 

Supplementary Figure 3. Prevaccination profilling of plasma metabolites reveals 

metabolic pathway activity is associated with inflammatory status b 

Supplementary Figure 4. Heatmap showing scaled median fluorescence cluster profile for 

each marker: each row is a cluster and each column is a marker in the panel.  White denotes 

low expression, while red denotes high expression.  
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Supplementary Figure 1.
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Number of maxima 
timepoints per participant n (relative proportion)

1 4 (12.1%)
2 18 (54.5%)
3 11 (33.3%)

serotype Day 28 Max. Day 56 Max. Day 91 Max. n
DV1 15 (48.4%) 9 (29%) 7 (22.6%) 31
DV2 8 (25.8%) 14 (45.2%) 7 (22.6%) 31
DV3 17 (54.8%) 4 (12.9%) 6 (19.4%) 31
DV4 8 (25.8%) 15 (48.4%) 6 (19.4%) 31

Serotype-specific nAb titers 
(highest value across time) Sum

Participants DV1 DV2 DV3 DV4 # serotypes: 
titer > 10

Breadth 
(high = 4;
low < 4)

#1 1000 1000 1000 1000 4 high

#2 100 100 100 100 4 high

#3 1000 1000 100 <10 3 low

#4 <10 <10 <10 <10 0 low

Supplementary Table 1. Example calculations for the Breadth outcome: the sum of
serotypes with a detectable nAb titer >10 before or at Day 91 per patient (0-4) is the
dichotomized into high (4) and low (<4).

Supplementary Table 2. Distribution of serotype-specific maximum across responder
participants per timepoint. The timepoint at which each participant peaked (local
maximum) per serotype was determined and summarized.

Supplementary Table 3. Distribution of the number of distinct titer maxima timepoints
across serotypes.

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Figure 1

C

D

DV3_AUCp

DV4_AUCp

DV1_AUCp

DV2_AUCp

Breadth

B

Node size

Number of DEGs Jaccard Index

Legend
Edge width

0

200

400

600

High Low
Enriched

ng
en
es

Enriched
High

Low

Z-score

Z-score

A

Type I IFNs
TNFa
IL1

TGFb signaling
Immunometabolism

Breadth

DV2

DV3

DV4

PBMC RNA-Seq
Prevaccination

E

hway enrichment for DV1
relate Tonic genes, AND antiviral genes as separate

Pat 
Cor 
modules with DV1 and DV3

SMAD4
ETS1
E2F4
SMAD2 SMAD3
SMAD1
STAT4
Endocytosis
Notch3 activation
Notch signaling
MYB
IRF8
IL1R signaling
Th1_Th17 response
Chemotaxis
DNA Sensing
IL10 signaling
RIG−1 TLR signaling
Type II IFN #1
Humoral response
NFKB #2
NFKB
TNFA signaling #1
TNFA signaling #2
TNFA signaling #3
Type I IFN #1
Type I IFN #2
RELA

Breadth Breadth
low
high

−2

−1

0

1

2

Lipid catabolism
MYCN
TFAP2
TCF3
NAD metabolism #1
AP2
Fructose Metabolism
TFAP2A
Oxidative stress
EGR1
Glycolysis
Glycolysis #2
Amino acid metabolism
Amino acid metabolism #2
Phosphatidylcholine metabolism
Histone deacytylation
Pyrimidine metabolism
NFE2L2
Glycerophospholipid metabolism
ATF4

Breadth Breadth
low
high

−2

−1

0

1

2

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


A B
Breadth

Breadth
low
high

−2

0

2

4

Z-scoreBreadth
Breadth

low
high

−2

0

2

4

Breadth
Breadth

low
high

−2

0

2

4

Z-score

Supplemental Figure 3.

MERGED

VEGFA
HBEGF
OSM
RETN
PDGFC
CTF1
PDGFRB
RABEP2
OGN
IL12A
GHRL
NUDT6
FGF22
FAM3C
IFNG
IL12B
INHBA
IL7
LTA

CCL22
CCL19
CXCL11
CXCL1
CXCL3
CCL3L1
CCL3L3
CCL4L2
CCL20
CCL3
CCL4

IL1A
NLRP3
NFKB1
NFKBIA
IL18
IL1B
RELB
RELA
CFLAR
IL1RN
NFKB2
IL6

Breadth

class

Breadth
high
low

class
CHEMOKINES
CYTOKINES
INFLAMMASOME

−2

−1

0

1

2

3

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


IFIT2

OAS2

ADAR

IFIT3

OASL

MX1

IRF7

PHF11

SAMD9

CMTR1

IRF9

HERC5

PLSCR1

DDX58

CXCL10TNFSF10

IFI35

TAP1

TRIM25
DDX60

IRF1

IFIH1

ISG15

IFITM3

OAS3

ISG20

IFITM1

Type I IFN #1

IFIT5

USP18

TRIM22

PARP9STAT1

HERC6
PARP14

TDRD7

IFIT1

MX2

IFI44

XAF1

UBE2L6

PARP12

EIF2AK2

Type I IFN #2

A

Transcriptomic pathway
Gene

Shape

Physical Interactions
Pathway shared

Edge

Co-localization
Leading Edge

Node color

Tonic IFN Sensitive

Tonic IFN Insensitive

Node border

Antiviral gene

Flavivirus antiviral gene

Undetermined

Supplemental Figure 4.

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Type II IFN #1

GO_POSITIVE_REGULATION_OF_APOPTOTIC_SIGNALING_PATHWAY 

TNFA signaling #2

Th1_Th17 response

SRY

TNFA signaling #3

NFKB
NFKB #2

Humoral response

THEILGAARD_NEUTROPHIL_AT_SKIN_WOUND_DN 
RIG-1 TLR signaling

TNFA signaling #1

RELA

JUN

IL1R signaling

DNA Sensing

LIAN_NEUTROPHIL_GRANULE_CONSTITUENTS 

IL10 signaling

CHEN_METABOLIC_SYNDROM_NETWORK 

Chemotaxis

HECKER_IFNB1_TARGETS

Notch signaling
ZNF217STAT6

STAT4

GO_POSITIVE_REGULATION_OF_CELL_ACTIVATION 

GRYDER_PAX3FOXO1_ENHANCERS_IN_TADS 

SREBF2

GO_REGULATION_OF_WNT_SIGNALING_PATHWAY 

SMAD1

CUI_TCF21_TARGETS_2_DN

Notch3 activation

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 

IRF8

Type I IFN #2

Type I IFN #1

GO_POSITIVE_REGULATION_OF_T_CELL_PROLIFERATION 

GO_REGULATION_OF_T_CELL_PROLIFERATION 

ASH2L

SMAD1

E2F4

WT1

GO_CARBOHYDRATE_METABOLIC_PROCESS 

MYB

SMAD4

SMAD2 SMAD3

OLIG2

Endocytosis

AHR

CEBPD

GO_NEGATIVE_REGULATION_OF_WNT_SIGNALING_PATHWAY 

ETS1

GO_B_CELL_ACTIVATION

STAT5A

Figure 2.

A

DEN1001A
DEN1003A
DEN1004A
DEN1008A
DEN1011A
DEN1013A
DEN1016A
DEN1021A
DEN1025A
DEN1027A
DEN1029A
DEN1030A
DEN1033A
DEN1034A
DEN1035A
DEN1037A
DEN1038A
DEN1040A
DEN1042A
DEN1043A
DEN1044A
DEN1045A
DEN1047A
DEN1050A
DEN1007A
DEN1009A
DEN1010A
DEN1014A
DEN1017A
DEN1018A
DEN1023A
DEN1049A

CR1_HUMAN
CSF1R_HUMAN
LYSC_HUMAN
CFAI_HUMAN
ILEU_HUMAN
ICOSL_HUMAN
UROM_HUMAN
FABP5_HUMAN
AGRIN_HUMAN
MMP9_HUMAN
NGAL_HUMAN
CRP_HUMAN
SAA1_HUMAN

Cumulative_Breadth_dichot Cumulative_Breadth_dichot
high
low

−2

−1

0

1

2

GSVA score

z-
sc

or
e

B

DEN1001A
DEN1003A
DEN1004A
DEN1008A
DEN1011A
DEN1013A
DEN1016A
DEN1021A
DEN1025A
DEN1027A
DEN1029A
DEN1030A
DEN1033A
DEN1034A
DEN1035A
DEN1037A
DEN1038A
DEN1040A
DEN1042A
DEN1043A
DEN1044A
DEN1045A
DEN1047A
DEN1050A
DEN1007A
DEN1009A
DEN1010A
DEN1014A
DEN1017A
DEN1018A
DEN1023A
DEN1049A

CR1_HUMAN
CSF1R_HUMAN
LYSC_HUMAN
CFAI_HUMAN
ILEU_HUMAN
ICOSL_HUMAN
UROM_HUMAN
FABP5_HUMAN
AGRIN_HUMAN
MMP9_HUMAN
NGAL_HUMAN
CRP_HUMAN
SAA1_HUMAN

Cumulative_Breadth_dichot Cumulative_Breadth_dichot
high
low

−2

−1

0

1

2

C

Transcriptomic inflammation pathways
Proteomics pathway

Shape Color

Positively correlated with Breadth
Negatively correlated with Breadth

Positive correlation between features
Negative correlation between features

Edge

DEN1001A

DEN1004A

DEN1016A

DEN1021A

DEN1034A

DEN1037A

DEN1030A

DEN1042A

DEN1044A

DEN1047A

DEN1003A

DEN1008A

DEN1011A

DEN1013A

DEN1025A

DEN1027A

DEN1029A

DEN1033A

DEN1035A

DEN1038A

DEN1040A

DEN1043A

DEN1045A

DEN1050A

DEN1009A

DEN1017A

DEN1010A

DEN1049A

DEN1007A

DEN1014A

DEN1018A

DEN1023A

CHEN_METABOLIC_SYNDROM_NETWORK
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION
HECKER_IFNB1_TARGETS
STAT5A
JUN
SRY
LIAN_NEUTROPHIL_GRANULE_CONSTITUENTS
GO_POSITIVE_REGULATION_OF_APOPTOTIC_SIGNALING_PATHWAY
THEILGAARD_NEUTROPHIL_AT_SKIN_WOUND_DN
STAT6
CEBPD
SMAD1
OLIG2
ZNF217
SREBF2
CUI_TCF21_TARGETS_2_DN
GO_CARBOHYDRATE_METABOLIC_PROCESS
AHR
GRYDER_PAX3FOXO1_ENHANCERS_IN_TADS
ASH2L
WT1
GO_B_CELL_ACTIVATION
REACTOME_SEMAPHORIN_INTERACTIONS
GO_NEGATIVE_REGULATION_OF_WNT_SIGNALING_PATHWAY
GO_REGULATION_OF_WNT_SIGNALING_PATHWAY
GO_POSITIVE_REGULATION_OF_T_CELL_PROLIFERATION
GO_REGULATION_OF_T_CELL_PROLIFERATION
GO_POSITIVE_REGULATION_OF_CELL_ACTIVATION
GO_REGULATION_OF_CELL_ACTIVATION

outcome_value outcome_value
high
low

−2

−1

0

1

2

3

DEN1001A

DEN1004A

DEN1016A

DEN1021A

DEN1034A

DEN1037A

DEN1030A

DEN1042A

DEN1044A

DEN1047A

DEN1003A

DEN1008A

DEN1011A

DEN1013A

DEN1025A

DEN1027A

DEN1029A

DEN1033A

DEN1035A

DEN1038A

DEN1040A

DEN1043A

DEN1045A

DEN1050A

DEN1009A

DEN1017A

DEN1010A

DEN1049A

DEN1007A

DEN1014A

DEN1018A

DEN1023A

CHEN_METABOLIC_SYNDROM_NETWORK
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION
HECKER_IFNB1_TARGETS
STAT5A
JUN
SRY
LIAN_NEUTROPHIL_GRANULE_CONSTITUENTS
GO_POSITIVE_REGULATION_OF_APOPTOTIC_SIGNALING_PATHWAY
THEILGAARD_NEUTROPHIL_AT_SKIN_WOUND_DN
STAT6
CEBPD
SMAD1
OLIG2
ZNF217
SREBF2
CUI_TCF21_TARGETS_2_DN
GO_CARBOHYDRATE_METABOLIC_PROCESS
AHR
GRYDER_PAX3FOXO1_ENHANCERS_IN_TADS
ASH2L
WT1
GO_B_CELL_ACTIVATION
REACTOME_SEMAPHORIN_INTERACTIONS
GO_NEGATIVE_REGULATION_OF_WNT_SIGNALING_PATHWAY
GO_REGULATION_OF_WNT_SIGNALING_PATHWAY
GO_POSITIVE_REGULATION_OF_T_CELL_PROLIFERATION
GO_REGULATION_OF_T_CELL_PROLIFERATION
GO_POSITIVE_REGULATION_OF_CELL_ACTIVATION
GO_REGULATION_OF_CELL_ACTIVATION

outcome_value outcome_value
high
low

−2

−1

0

1

2

3

DEN1001A

DEN1004A

DEN1016A

DEN1021A

DEN1034A

DEN1037A

DEN1030A

DEN1042A

DEN1044A

DEN1047A

DEN1003A

DEN1008A

DEN1011A

DEN1013A

DEN1025A

DEN1027A

DEN1029A

DEN1033A

DEN1035A

DEN1038A

DEN1040A

DEN1043A

DEN1045A

DEN1050A

DEN1009A

DEN1017A

DEN1010A

DEN1049A

DEN1007A

DEN1014A

DEN1018A

DEN1023A

CHEN_METABOLIC_SYNDROM_NETWORK
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION
HECKER_IFNB1_TARGETS
STAT5A
JUN
SRY
LIAN_NEUTROPHIL_GRANULE_CONSTITUENTS
GO_POSITIVE_REGULATION_OF_APOPTOTIC_SIGNALING_PATHWAY
THEILGAARD_NEUTROPHIL_AT_SKIN_WOUND_DN
STAT6
CEBPD
SMAD1
OLIG2
ZNF217
SREBF2
CUI_TCF21_TARGETS_2_DN
GO_CARBOHYDRATE_METABOLIC_PROCESS
AHR
GRYDER_PAX3FOXO1_ENHANCERS_IN_TADS
ASH2L
WT1
GO_B_CELL_ACTIVATION
REACTOME_SEMAPHORIN_INTERACTIONS
GO_NEGATIVE_REGULATION_OF_WNT_SIGNALING_PATHWAY
GO_REGULATION_OF_WNT_SIGNALING_PATHWAY
GO_POSITIVE_REGULATION_OF_T_CELL_PROLIFERATION
GO_REGULATION_OF_T_CELL_PROLIFERATION
GO_POSITIVE_REGULATION_OF_CELL_ACTIVATION
GO_REGULATION_OF_CELL_ACTIVATION

outcome_value outcome_value
high
low

−2

−1

0

1

2

3

Type I IFNs
TNFa
IL1

TGFb signaling
Immunometabolism

Breadth

nAbs
DV1

DV2
DV3

DV4

PBMC RNA-Seq
Plasma Proteomics

D

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Figure 3.

B

C

BILE_ACID_METABOLISM

MONOACYLGLYCEROL

GLUTATHIONE_METABOLISM

SPHINGOMYELINS

BENZOATE_METABOLISM

PHOSPHATIDYLCHOLINE_PHOSPHATIDYLETHANOLAMINE_METABOLISM

−2 −1 0 1
NES (Normalized Enrichment Score)

M
et

ab
ol

ic
 P

at
hw

ay

−2

−1

0

1

2
NES

BILE_ACID_METABOLISM

MONOACYLGLYCEROL

GLUTATHIONE_METABOLISM

SPHINGOMYELINS

BENZOATE_METABOLISM

PHOSPHATIDYLCHOLINE_PHOSPHATIDYLETHANOLAMINE_METABOLISM

−2 −1 0 1
NES (Normalized Enrichment Score)

M
et

ab
ol

ic
 P

at
hw

ay

−2

−1

0

1

2
NES

Breadth

BILE_ACID_METABOLISM

MONOACYLGLYCEROL

SPHINGOMYELINS

BENZOATE_METABOLISM

PHOSPHATIDYLCHOLINE_PHOSPHATIDYLETHANOLAMINE_METABOLISM

−2 −1 0 1
NES (Normalized Enrichment Score)

M
et

ab
ol

ic
 P

at
hw

ay

−2

−1

0

1

2
NES

1,2−dipalmitoyl−GPC (16:0/16:0)
1−myristoyl−2−palmitoyl−GPC (14:0/16:0)
1−stearoyl−2−arachidonoyl−GPC (18:0/20:4)
1−palmitoyl−2−linoleoyl−GPE (16:0/18:2)
1−stearoyl−2−oleoyl−GPC (18:0/18:1)
1−palmitoyl−2−arachidonoyl−GPC (16:0/20:4n6)
1−palmitoyl−2−stearoyl−GPC (16:0/18:0)
1−stearoyl−2−arachidonoyl−GPE (18:0/20:4)
1−palmitoyl−2−arachidonoyl−GPE (16:0/20:4)*
1−oleoyl−2−docosahexaenoyl−GPC (18:1/22:6)*
1−myristoyl−2−arachidonoyl−GPC (14:0/20:4)*
1−palmitoyl−2−gamma−linolenoyl−GPC (16:0/18:3n6)*
1−palmitoyl−2−oleoyl−GPE (16:0/18:1)
1−palmitoyl−2−oleoyl−GPC (16:0/18:1)
choline phosphate
1−palmitoyl−2−docosahexaenoyl−GPC (16:0/22:6)
1−stearoyl−2−docosahexaenoyl−GPC (18:0/22:6)
1−palmitoyl−2−docosahexaenoyl−GPE (16:0/22:6)*
1−stearoyl−2−docosahexaenoyl−GPE (18:0/22:6)*
3−phenylpropionate (hydrocinnamate)
3−(3−hydroxyphenyl)propionate
catechol sulfate
methyl−4−hydroxybenzoate sulfate
3−hydroxyhippurate
hippurate
4−vinylphenol sulfate
p−cresol sulfate
4−hydroxyhippurate
propyl 4−hydroxybenzoate sulfate
guaiacol sulfate
4−allylcatechol sulfate
lignoceroyl sphingomyelin (d18:1/24:0)
sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)*
behenoyl sphingomyelin (d18:1/22:0)*
tricosanoyl sphingomyelin (d18:1/23:0)*
sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0)*
sphingomyelin (d18:1/20:0, d16:1/22:0)*
sphingomyelin (d18:1/14:0, d16:1/16:0)*
sphingomyelin (d18:1/24:1, d18:2/24:0)*
palmitoyl sphingomyelin (d18:1/16:0)
sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0)*
sphingomyelin (d17:1/14:0, d16:1/15:0)*
stearoyl sphingomyelin (d18:1/18:0)
sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0)
sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)*
sphingomyelin (d18:2/16:0, d18:1/16:1)*
sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)*
sphingomyelin (d18:2/24:1, d18:1/24:2)*
sphingomyelin (d18:2/21:0, d16:2/23:0)*
sphingomyelin (d18:1/19:0, d19:1/18:0)*
sphingomyelin (d18:2/18:1)*
sphingomyelin (d18:2/14:0, d18:1/14:1)*
1−oleoylglycerol (18:1)
2−oleoylglycerol (18:1)
1−linoleoylglycerol (18:2)
1−dihomo−linolenylglycerol (20:3)
1−linolenoylglycerol (18:3)
2−palmitoleoylglycerol (16:1)*
2−linoleoylglycerol (18:2)
glycodeoxycholate
heme
glyco−beta−muricholate**
glycochenodeoxycholate
taurochenodeoxycholate
taurodeoxycholate
deoxycholate
chenodeoxycholate
cholate
glycocholate

Cumulative_Breadth_dichot
DV3_AUCp_log DV3_AUCp_log

12

7

Cumulative_Breadth_dichot
high
low

pathway
BILE_ACID_METABOLISM
METABOLON_BENZOATE_METABOLISM
METABOLON_MONOACYLGLYCEROL
METABOLON_SPHINGOMYELINS
PHOSPHATIDYLCHOLINE_PHOSPHATIDYLETHANOLAMINE_METABOLISM

−1.5

−1

−0.5

0

0.5

1

1.5

A

Breadth

nAbs
DV1

DV2
DV3

DV4PBMC RNA-Seq
Plasma Proteomics

D

Plasma 
Metabolomics

Primary bile acids
Monoacylglycerols

Phosphatidylcholines/
Phosphatidylethanolamines

Type I IFNs
TNFa
IL1

TGFb signaling
Immunometabolism

Positive correlation

Negative correlation

Inner Circle
Transcriptomic module

Metabolomics module

Outer Circle Color
Breadth NES

Link color
-log10(p.value) *sign(rho)

Outer Circle Width
Number of significant associations

1,2−dipalmitoyl−GPC (16:0/16:0)
1−myristoyl−2−palmitoyl−GPC (14:0/16:0)
1−palmitoyl−2−linoleoyl−GPE (16:0/18:2)
1−palmitoyl−2−stearoyl−GPC (16:0/18:0)
1−stearoyl−2−arachidonoyl−GPE (18:0/20:4)
1−palmitoyl−2−arachidonoyl−GPE (16:0/20:4)*
1−oleoyl−2−docosahexaenoyl−GPC (18:1/22:6)*
1−myristoyl−2−arachidonoyl−GPC (14:0/20:4)*
1−palmitoyl−2−gamma−linolenoyl−GPC (16:0/18:3n6)*
1−palmitoyl−2−oleoyl−GPE (16:0/18:1)
1−palmitoyl−2−docosahexaenoyl−GPC (16:0/22:6)
1−stearoyl−2−docosahexaenoyl−GPC (18:0/22:6)
1−palmitoyl−2−docosahexaenoyl−GPE (16:0/22:6)*
1−stearoyl−2−docosahexaenoyl−GPE (18:0/22:6)*
3−phenylpropionate (hydrocinnamate)
3−(3−hydroxyphenyl)propionate
catechol sulfate
methyl−4−hydroxybenzoate sulfate
3−hydroxyhippurate
hippurate
4−vinylphenol sulfate
p−cresol sulfate
4−hydroxyhippurate
lignoceroyl sphingomyelin (d18:1/24:0)
sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)*
behenoyl sphingomyelin (d18:1/22:0)*
tricosanoyl sphingomyelin (d18:1/23:0)*
sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0)*
sphingomyelin (d18:1/20:0, d16:1/22:0)*
sphingomyelin (d18:1/14:0, d16:1/16:0)*
sphingomyelin (d18:1/24:1, d18:2/24:0)*
1−oleoylglycerol (18:1)
2−oleoylglycerol (18:1)
heme
cholate
glycocholate

Breadth

pathw
ay

Breadth
high
low

pathway
BILE_ACID_METABOLISM
METABOLON_BENZOATE_METABOLISM
METABOLON_MONOACYLGLYCEROL
METABOLON_SPHINGOMYELINS
PHOSPHATIDYLCHOLINE_PHOSPHATIDYLETHANOLAMINE_METABOLISM

−1.5

−1

−0.5

0

0.5

1

1.5

1,2−dipalmitoyl−GPC (16:0/16:0)
1−myristoyl−2−palmitoyl−GPC (14:0/16:0)
1−stearoyl−2−arachidonoyl−GPC (18:0/20:4)
1−palmitoyl−2−linoleoyl−GPE (16:0/18:2)
1−stearoyl−2−oleoyl−GPC (18:0/18:1)
1−palmitoyl−2−arachidonoyl−GPC (16:0/20:4n6)
1−palmitoyl−2−stearoyl−GPC (16:0/18:0)
1−stearoyl−2−arachidonoyl−GPE (18:0/20:4)
1−palmitoyl−2−arachidonoyl−GPE (16:0/20:4)*
1−oleoyl−2−docosahexaenoyl−GPC (18:1/22:6)*
1−myristoyl−2−arachidonoyl−GPC (14:0/20:4)*
1−palmitoyl−2−gamma−linolenoyl−GPC (16:0/18:3n6)*
1−palmitoyl−2−oleoyl−GPE (16:0/18:1)
1−palmitoyl−2−oleoyl−GPC (16:0/18:1)
choline phosphate
1−palmitoyl−2−docosahexaenoyl−GPC (16:0/22:6)
1−stearoyl−2−docosahexaenoyl−GPC (18:0/22:6)
1−palmitoyl−2−docosahexaenoyl−GPE (16:0/22:6)*
1−stearoyl−2−docosahexaenoyl−GPE (18:0/22:6)*
3−phenylpropionate (hydrocinnamate)
3−(3−hydroxyphenyl)propionate
catechol sulfate
methyl−4−hydroxybenzoate sulfate
3−hydroxyhippurate
hippurate
4−vinylphenol sulfate
p−cresol sulfate
4−hydroxyhippurate
propyl 4−hydroxybenzoate sulfate
guaiacol sulfate
4−allylcatechol sulfate
lignoceroyl sphingomyelin (d18:1/24:0)
sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)*
behenoyl sphingomyelin (d18:1/22:0)*
tricosanoyl sphingomyelin (d18:1/23:0)*
sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0)*
sphingomyelin (d18:1/20:0, d16:1/22:0)*
sphingomyelin (d18:1/14:0, d16:1/16:0)*
sphingomyelin (d18:1/24:1, d18:2/24:0)*
palmitoyl sphingomyelin (d18:1/16:0)
sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0)*
sphingomyelin (d17:1/14:0, d16:1/15:0)*
stearoyl sphingomyelin (d18:1/18:0)
sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0)
sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)*
sphingomyelin (d18:2/16:0, d18:1/16:1)*
sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)*
sphingomyelin (d18:2/24:1, d18:1/24:2)*
sphingomyelin (d18:2/21:0, d16:2/23:0)*
sphingomyelin (d18:1/19:0, d19:1/18:0)*
sphingomyelin (d18:2/18:1)*
sphingomyelin (d18:2/14:0, d18:1/14:1)*
1−oleoylglycerol (18:1)
2−oleoylglycerol (18:1)
1−linoleoylglycerol (18:2)
1−dihomo−linolenylglycerol (20:3)
1−linolenoylglycerol (18:3)
2−palmitoleoylglycerol (16:1)*
2−linoleoylglycerol (18:2)
glycodeoxycholate
heme
glyco−beta−muricholate**
glycochenodeoxycholate
taurochenodeoxycholate
taurodeoxycholate
deoxycholate
chenodeoxycholate
cholate
glycocholate

Cumulative_Breadth_dichot
DV3_AUCp_log DV3_AUCp_log

12

7

Cumulative_Breadth_dichot
high
low

pathway
BILE_ACID_METABOLISM
METABOLON_BENZOATE_METABOLISM
METABOLON_MONOACYLGLYCEROL
METABOLON_SPHINGOMYELINS
PHOSPHATIDYLCHOLINE_PHOSPHATIDYLETHANOLAMINE_METABOLISM

−1.5

−1

−0.5

0

0.5

1

1.5

Bile acid metabolism

TN
FA

 s
ig

na
lin

g 
#1

NF
KB

Hu
m

or
al 

re
sp

on
seNFK

B #2IL10 sig
naling

Chemotaxis

IL1R signaling

TNFA signaling #2

TNFA signaling #3

PC:PE m
etabolism

SM
AD

4
Lip

id 
ca

tab
oli

sm

SMAD2 SMAD3

Phosphatidylcholine metabolism

SMAD1

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Supplementary Figure 5.

A

B

p−cresol glucuronide*
N−acetylasparagine
N−acetylarginine
N−acetylcitrulline
N−acetyl−1−methylhistidine*
pyroglutamine*
indolepropionate
ribulonate/xylulonate/lyxonate*
beta−cryptoxanthin
5alpha−androstan−3beta,17alpha−diol disulfate
1−cerotoyl−GPC (26:0)*
1−palmitoyl−2−docosahexaenoyl−GPC (16:0/22:6)
1−stearoyl−2−docosahexaenoyl−GPC (18:0/22:6)
1−palmitoyl−2−arachidonoyl−GPE (16:0/20:4)*
1−stearoyl−2−docosahexaenoyl−GPE (18:0/22:6)*
1−palmitoyl−2−docosahexaenoyl−GPE (16:0/22:6)*
3−aminoisobutyrate
glutamine conjugate of C6H10O2 (1)*
dihydrocaffeate sulfate (2)
3−phenylpropionate (hydrocinnamate)
dihydroferulate
2−aminophenol sulfate

Cumulative_Breadth_dichot Cumulative_Breadth_dichot
high
low

SUB_PATHWAY_FILT
Androgenic Steroids
Lysophospholipid
Phosphatidylcholine (PC)
Phosphatidylethanolamine (PE)

−1.5

−1

−0.5

0

0.5

1

1.5

Z-score

PC:PE metabolism
Benzoate metabolismSphingomyelins

SMAD4
Lipid catabolism

ETS1

MYCNTFAP2

E2F4

TCF3

NA
D 

m
et

ab
ol

ism
 #

1

AP
2

Fr
uc

to
se

 M
et

ab
ol

ism

TF
AP

2A

SM
AD

2 S
MAD

3

Oxid
ati

ve
 st

res
sEGR1Glycolysis

Amino acid metabolism

Phosphatidylcholine metabolismSMAD1Glycolysis #2
STAT4

Endocytosis

Notch3 activation

Histone deacytylation

Pyrimidine metabolism

NFE2L2

Glycerophospholipid metabolism

Amino acid metabolism #2

Notch signaling

MYB

Bile acid metabolism

Monoacylglycerol

Glutathione m
etabolism

TCA cycle
RELA

Type I IFN #1

TNFA signaling #1 NF
KB

Ty
pe

 I 
IF

N 
#2

Hu
m

or
al

 re
sp

on
se

NF
KB

 #
2

Ty
pe

 II 
IF

N 
#1

RIG
−1

 TL
R si

gn
ali

ng

IL1
0 s

ign
ali

ng

DNA Sen
sin

g

Chemotaxis

Th1_Th17 response

IL1R signaling

TNFA signaling #2

ATF4

TNFA signaling #3

IRF8

Inner Circle
Transcriptomic module

Metabolomics module

Outer Circle Color
Breadth NES

Link color
-log10(p.value) *sign(rho)

Outer Circle Width
Size of leading edge

Link Width
Number of correlated metabolites

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Prog
en

ito
rs

B Naiv
e

B NSM
B SM

B Ex

Plas
mab

las
ts

T CD4 N
aiv

e
Tre

gs Tfh Th1

Th1
/Th1

7
Th1

7
Th2

T CD4 T
E

T CD8 N
aiv

e

T CD8 C
M

T CD8 E
M

T CD8 T
E

T gd
 Vd2

T gd
 no

n−
Vd2

MAIT NK
pD

Cs
mDCs

Mon
oc

yte
s C

Mon
oc

yte
s I

Mon
oc

yte
s N

C

Neu
tro

ph
ils 

LD

Bas
op

hils
 LD

GPBAR1 (TGR5)
NR1H4 (FXR)
S1PR2 (S1PR2)
VDR (VDR)

classification V classification V
B cells
Granulocytes LD
Myeloid Phagocytes
NK
pDCs
Progenitors
T CD4
T CD8
T Innate

−2

0

2

4

6
z-score

Supplementary Figure 6.

Prog
en

ito
rs

B Naiv
e

B NSM
B SM

B Ex

Plas
mab

las
ts

T CD4 N
aiv

e
Tre

gs Tfh Th1

Th1
/Th1

7
Th1

7
Th2

T CD4 T
E

T CD8 N
aiv

e

T CD8 C
M

T CD8 E
M

T CD8 T
E

T gd
 Vd2

T gd
 no

n−
Vd2

MAIT NK
pD

Cs
mDCs

Mon
oc

yte
s C

Mon
oc

yte
s I

Mon
oc

yte
s N

C

Neu
tro

ph
ils 

LD

Bas
op

hils
 LD

BILE_ACID_METABOLISM
PHOSPHATIDYLCHOLINE_METABOLIC_PROCESS

classification V classification V
B cells
Granulocytes LD
Myeloid Phagocytes
NK
pDCs
Progenitors
T CD4
T CD8
T Innate

−2

0

2

4

6
z-score

A

B

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

T−test, p = 0.0024

400

600

800

1000

high low
Group

Fr
eq

ue
nc

y

Cumulative_Breadth_dichot ● ●high low

T−test for cluster 16 in panel innate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

T−test, p = 0.0062

40

80

120

high low
Group

Fr
eq

ue
nc

y

Cumulative_Breadth_dichot ● ●high low

T−test for cluster 8 in panel innate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T−test, p = 0.0028

250

500

750

1000

1250

high low
Group

Fr
eq

ue
nc

y

Cumulative_Breadth_dichot ● ●high low

T−test for cluster 1 in panel innate

Figure 4.

B

CLow High

Innate

CD68 high Classical Monocytes
Cluster 1

CD68 low Classical Monocytes
Cluster 16

A

C
D
16

C
D
123

C
D
71

C
D
68

C
C
R
2

H
LA.D

R
C
D
45

C
D
80

C
D
11c

C
X3C

R
1

C
D
11b

C
D
14

C
D
206

C
D
124

C
D
163

21
7
17
9
5
12
10
14
11
6
4
1
16
2
22
3
13
15
19
8
18
20

0

1

2

3

4

5

6

C
D
16

C
D
123

C
D
71

C
D
68

C
C
R
2

H
LA.D

R
C
D
45

C
D
80

C
D
11c

C
X3C

R
1

C
D
11b

C
D
14

C
D
206

C
D
124

C
D
163

21
7
17
9
5
12
10
14
11
6
4
1
16
2
22
3
13
15
19
8
18
20

0

1

2

3

4

5

6

C
D
16

C
D
123

C
D
71

C
D
68

C
C
R
2

H
LA.D

R
C
D
45

C
D
80

C
D
11c

C
X3C

R
1

C
D
11b

C
D
14

C
D
206

C
D
124

C
D
163

21
7
17
9
5
12
10
14
11
6
4
1
16
2
22
3
13
15
19
8
18
20

0

1

2

3

4

5

6

Breadth

Fr
eq

ue
nc

y

Breadth

Fr
eq

ue
nc

y

Breadth

Cluster 8
pDCE

Breadth

nAbs
DV1

DV2
DV3

DV4

CD68high monocytes
CD68low monocytes
pDC
Naïve B cells
GC B cells

Flow Cytometry

Innate panel

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Supplementary Figure 4

C
D
16

C
D
123

C
D
71

C
D
68

C
C
R
2

H
LA.D

R
C
D
45

C
D
80

C
D
11c

C
X3C

R
1

C
D
11b

C
D
14

C
D
206

C
D
124

C
D
163

21
7
17
9
5
12
10
14
11
6
4
1
16
2
22
3
13
15
19
8
18
20

0

1

2

3

4

5

6

Innate panel

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Figure 5.

A

0.0

0.2

0.4

0.6

0.8

1 2 3 4
CD68.x

de
ns
ity

Vaccine_response
high

low

B C

D

●

T−test, p = 0.028

1.80

1.85

1.90

1.95

2.00

high low
Vaccine_response

C
D

68
_m

ed
ia

n

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Figure 6.

−3

−2

−1

0

1

2

3

CD68 hi monocytes

Monoacylglycerols

Bile acid Metabolism

STAT5A

IF
N

B1
 ta

rg
et

s

TN
FA

 si
gn

ali
ngIL1

R sig
na

ling
Chemotaxis

DNA Sensing

NFKB

Type I IFN

RELA

pDC

CD68 low m
onocytes PC

:P
E 

m
et

ab
ol

ism

B 
ce

ll a
cti

va
tio

n

STAT6

SMAD4

Breadth signed 
–log10(P’)

−0.4

−0.2

0

0.2

0.4

Median coefficient

Outer Circle Color

Link color

Inner Circle
Transcriptomic module
Metabolomics module

Outer Circle Width
Number of significant associations

Proteomics pathway
Flow cytometry population

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.25.21264123doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264123


Supplementary Figure 5.
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