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Summary: Mendelian randomization (MR) utilizes genetic variants as instrumental variables (IVs) to estimate the

causal effect of an exposure variable on an outcome of interest even in the presence of unmeasured confounders.

However, the popular inverse-variance weighted (IVW) estimator could be biased in the presence of weak IVs, a

common challenge in MR studies. In this article, we develop a novel penalized inverse-variance weighted (pIVW)

estimator, which adjusts the original IVW estimator to account for the weak IV issue by using a penalization approach

to prevent the denominator of the pIVW estimator from being close to zero. Moreover, we adjust the variance

estimation of the pIVW estimator to account for the presence of balanced horizontal pleiotropy. We show that the

recently proposed debiased IVW (dIVW) estimator is a special case of our proposed pIVW estimator. We further

prove that the pIVW estimator has smaller bias and variance than the dIVW estimator under some regularity

conditions. We also conduct extensive simulation studies to demonstrate the performance of the proposed pIVW

estimator. Furthermore, we apply the pIVW estimator to estimate the causal effects of five obesity-related exposures

on three coronavirus disease 2019 (COVID-19) outcomes. Notably, we find that hypertensive disease is associated

with an increased risk of hospitalized COVID-19; and peripheral vascular disease and higher body mass index are

associated with increased risks of COVID-19 infection, hospitalized COVID-19 and critically ill COVID-19.

Key words: COVID-19; Horizontal pleiotropy; Instrumental variables; Mendelian randomization; Penalization;

Weak instruments.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2021.09.25.21264115doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.09.25.21264115
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

1. Introduction

It is of scientific interest to estimate the causal effects of modifiable risk factors on various

health outcomes in epidemiological studies. For example, estimating the causal effects of

modifiable risk factors on the coronavirus disease 2019 (COVID-19) outcomes is currently one

of the most pressing global public health problems (Jordan et al., 2020; Zheng et al., 2020).

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has posed a serious threat to human health all over the world (Pascarella et al.,

2020). It is crucial to identify causal risk factors associated with COVID-19 incidence and

mortality so that we can develop more effective prevention and intervention strategies. One

major challenge is the unmeasured confounding bias for the exposure-outcome relationship

in observational epidemiological studies.

To address this challenge, Mendelian randomization (MR) utilizes genetic variants as

instrumental variables (IVs) to estimate the causal effect of an exposure variable on an

outcome of interest even in the presence of unmeasured confounders (Smith and Ebrahim,

2003, 2004; Sheehan et al., 2008). With the increasing availability of summary-level data from

genome-wide association studies (GWASs), many MR methods have been developed based

on GWAS summary-level data (Lawlor, 2016; Zheng et al., 2017). However, the validity of

MR analysis critically depends on the following three core assumptions defining a valid IV

(Didelez and Sheehan, 2007; Lawlor et al., 2008):

(1) IV relevance: the IV must be associated with the exposure;

(2) IV independence: the IV is independent of any confounder of the exposure-outcome

relationship;

(3) Exclusion restriction: the IV affects the outcome only through the exposure.

When any one of these three IV assumptions is violated, conventional MR analysis may yield

biased estimation of the causal effect. In particular, the IV relevance assumption can be
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nearly violated when the IVs are only weakly associated with the exposure variable (Burgess

and Thompson, 2011; Burgess et al., 2011; Davies et al., 2015). In MR studies, the weak IV

bias may occur when the genetic variants only explain a small proportion of variance for the

exposure variable. On the other hand, the widespread horizontal pleiotropy in human genome

can also lead to the violation of the exclusion restriction assumption (Verbanck et al., 2018;

Hemani et al., 2018), which is a phenomenon that the genetic variants directly affect the

outcome not mediated by the exposure variable (see Figure 1 for a graphical illustration).

The inverse-variance weighted (IVW) estimator is one of the most popular MR methods

that has been widely used in health studies (Burgess et al., 2013). It has a simple and explicit

expression, which combines the estimated causal effects from multiple IVs into a weighted

average with the idea borrowed from the fixed-effect meta-analysis literature (Brockwell and

Gordon, 2001). Despite its widespread popularity, recent studies pointed out that the IVW

estimator can be seriously biased in the presence of weak IVs (Zhao et al., 2020; Ye et al.,

2021). MR-RAPS is a maximum profile likelihood estimator, which was shown to be robust

to weak IVs (Zhao et al., 2020). However, MR-RAPS has no closed-form solution and might

not have unique estimates. Recently, the debiased IVW (dIVW) estimator was proposed to

account for the weak IV issue by a simple modification to the IVW estimator (Ye et al.,

2021). The dIVW estimator has been proved to be consistent even in the presence of many

weak IVs under certain conditions. Nevertheless, as a ratio estimator, the dIVW estimator

is still likely to yield a biased estimate when its denominator is close to zero. In fact, when

the denominator is close to zero, a ratio estimator may have a heavy-tailed distribution and

thus may not even have finite moments (Press, 1969; Piegorsch and Casella, 1985).

In this article, we develop a novel penalized inverse-variance weighted (pIVW) estimator,

where the original IVW estimator is adjusted by a proposed penalized log-likelihood function.

Through the penalization, we can prevent the denominator in the ratio estimator from being
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close to zero and thus provide improved estimation in the presence of weak IVs. Moreover,

we account for the balanced horizontal pleiotropy by adjusting the variance estimation of

the pIVW estimator. The proposed pIVW estimator has some attractive features. First,

our theoretical and numerical results show that the proposed pIVW estimator has smaller

bias and variance than the dIVW estimator under some regularity conditions. Second, it is

consistent and asymptotically normal even in the presence of many weak IVs, and requires no

more assumptions than the dIVW estimator. Third, it has a unique and closed-form solution,

whereas some other robust MR methods (e.g., MR-RAPS) do not have a closed-form solution

and might not have unique estimates in practice.

We demonstrate the improved performance of the proposed pIVW estimator compared to

the other competing MR methods via extensive simulation studies. Furthermore, we apply

the pIVW estimator to estimate the causal effects of five obesity-related exposures (i.e.,

peripheral vascular disease, dyslipidemia, hypertensive disease, type 2 diabetes and body

mass index (BMI)) on three COVID-19 outcomes (i.e., COVID-19 infection, hospitalized

COVID-19 and critically ill COVID-19). We find that hypertensive disease is significantly

associated with an increased risk of hospitalized COVID-19; and peripheral vascular disease

and higher BMI are significantly associated with increased risks of COVID-19 infection,

hospitalized COVID-19 and critically ill COVID-19.

2. The Two-Sample MR Design and Prior Work

2.1 Linear Structural Models

Suppose that there are p independent genetic variants {Gj}pj=1. When there is no horizontal

pleiotropy, the relationships among the genetic variants Gj, the exposure X, the outcome Y

and the unmeasured confounder U (as in Figure 1) can be formulated by the linear structural
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models as follows (Bowden et al., 2015):

X =

p∑
j=1

γjGj + U + ϵX , (1)

Y = βX + U + ϵY , (2)

where γj is the genetic effect of Gj on X, β is the causal effect of our interest, and ϵX and

ϵY are mutually independent random errors. Let Γj denotes the effect of Gj on Y , then we

have Γj = βγj by substituting Equation (1) for X in Equation (2).

Let γ̂j and Γ̂j be the estimates of γj and Γj with the variances σ2
γ̂j

and σ2
Γ̂j
, respectively.

In the two-sample MR design,
{
γ̂j, σγ̂j

}p
j=1

and
{
Γ̂j, σΓ̂j

}p

j=1
can be obtained from two

independent GWASs (Lawlor, 2016). Since the GWASs generally involve large sample sizes,

it is common to assume that γ̂j and Γ̂j are independently distributed as γ̂j ∼ N
(
γj, σ

2
γ̂j

)
and Γ̂j ∼ N

(
Γj, σ

2
Γ̂j

)
with known σ2

γ̂j
and σ2

Γ̂j
, respectively (Zhao et al., 2020).

[Figure 1 about here.]

2.2 The IVW Estimator and Debiased IVW (dIVW) Estimator

The popular inverse-variance weighted estimator combines the estimated causal effects β̂j =

Γ̂j/γ̂j from multiple genetic variants with the weights wj = σ−2

Γ̂j
γ̂2
j as follows (Burgess et al.,

2013):

β̂IVW =

∑p
j=1 wjβ̂j∑p
j=1wj

=

∑p
j=1 σ

−2

Γ̂j
γ̂jΓ̂j∑p

j=1 σ
−2

Γ̂j
γ̂2
j

.

Let µ1 =
∑p

j=1 σ
−2

Γ̂j
γjΓj and µ2 =

∑p
j=1 σ

−2

Γ̂j
γ2
j . We have β = µ1/µ2 since Γj = βγj under

models (1)-(2). As shown by Zhao et al. (2020), the IVW estimator can be approximated by

β̂IVW ≈
E
(∑p

j=1 σ
−2

Γ̂j
γ̂jΓ̂j

)
E
(∑p

j=1 σ
−2

Γ̂j
γ̂2
j

) =
µ1

µ2 +
∑p

j=1 σ
−2

Γ̂j
σ2
γ̂j

=
β

1 + µ−1
2

∑p
j=1 σ

−2

Γ̂j
σ2
γ̂j

.

When there is no measurement error for γj (i.e., σ
2
γ̂j

= 0), we have β̂IVW ≈ β. However, some

recent studies have shown that the IVW estimator can be seriously biased toward zero for
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ignoring the measurement errors of γj especially in the presence of many weak IVs that have

small σ−2
γ̂j
γ2
j (Zhao et al., 2020; Ye et al., 2021) .

To handle the bias due to weak IVs, the debiased IVW (dIVW) estimator (Ye et al., 2021)

replaces the denominator in the IVW estimator by an unbiased estimator µ̂2 of µ2 as

β̂dIVW =
µ̂1

µ̂2

=

∑p
j=1 σ

−2

Γ̂j
γ̂jΓ̂j∑p

j=1 σ
−2

Γ̂j

(
γ̂2
j − σ2

γ̂j

) .
The dIVW estimator has been shown to be consistent and asymptotically normal under

weaker conditions than the IVW estimator. However, we find that the dIVW estimator is

more likely to yield extreme estimates in the presence of weak IVs (as shown in Web Figure

1 under the simulation study in Section 4). It can be shown that the denominator of the

dIVW estimator has the same variance as the denominator of the IVW estimator, but the

expectation of the former is closer to zero than that of the latter (see Web Appendix A for

details). Because zero is a singular point for the denominator of a ratio, it may result in

the extreme estimates of the dIVW estimator in the presence of weak IVs. To overcome the

limitations of the IVW estimator and the dIVW estimator, we adjust the IVW estimator to

account for the weak IVs by using a penalized log-likelihood function for µ1 and µ2, which

can prevent the estimator of µ2 from being close to zero.

3. Method

3.1 The Penalized IVW (pIVW) Estimator

Assume that the estimators µ̂1 =
∑p

j=1 σ
−2

Γ̂j
γ̂jΓ̂j and µ̂2 =

∑p
j=1 σ

−2

Γ̂j

(
γ̂2
j − σ2

γ̂j

)
jointly follow

the following bivariate normal distributionµ̂1

µ̂2

 ∼ N


µ1

µ2

 ,

 v1 v12

v12 v2


 . (3)
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We propose the following penalized log-likelihood function to adjust the estimates of µ1 and

µ2

lp (µ1, µ2) = log f (µ1, µ2) + λ log |µ2| , (4)

where f (µ1, µ2) denotes the bivariate normal density function of µ̂ = (µ̂1, µ̂2)
′
and λ >

0 is the penalty parameter. The penalized log-likelihood lp (µ1, µ2) becomes small when

µ2 approaches zero due to the penalty term λ log |µ2| (see Web Figure 2 for a graphical

illustration). Therefore, an estimate of µ2 being close to zero is less preferable by lp (µ1, µ2).

Specifically, we obtain the following estimators of µ1 and µ2 by maximizing lp (µ1, µ2) with

closed-form expressions:

µ̃1 = µ̂1 +
v̂12
v̂2

(µ̃2 − µ̂2) and µ̃2 =

(
1

2
+

√
1

4
+ λĉ2v

)
µ̂2 = rλµ̂2, (5)

where rλ = 1/2 +
√

1/4 + λĉ2v, ĉv =
√
v̂2/µ̂2 is the estimated coefficient of variation of µ̂2,

v̂12 = 2
∑p

j=1 σ
−4

Γ̂j
σ2
γ̂j
Γ̂j γ̂j and v̂2 = 2

∑p
j=1 σ

−4

Γ̂j
σ4
γ̂j

{
2
(
γ̂2
j − σ2

γ̂j

)
σ−2
γ̂j

+ 1
}

are the estimators

of v12 and v2 respectively (see Web Appendix B for detailed derivation). Note that the

bivariate normality assumption of µ̂ can be relaxed. In fact, we can take µ̃1 and µ̃2 as the

estimators that minimize the squared error loss function ||Σ−1/2(µ̂ − µ)||22 with a penalty

term −2λ log |µ2|, that is, ||Σ−1/2(µ̂ − µ)||22 − 2λ log |µ2|, where µ and Σ denote the mean

and the covariance matrix of µ̂ respectively. Then we propose the following penalized IVW

(pIVW) estimator as a ratio of µ̃1 and µ̃2

β̂pIVW =
µ̃1

µ̃2

=
1

rλ
β̂dIVW +

v̂12
v̂2

(
1− 1

rλ

)
. (6)

Note that, rλ acts like a correction factor for β̂dIVW. When the penalty parameter λ = 0,

the correction factor rλ = 1 and then β̂pIVW reduces to β̂dIVW. When λ > 0, we can see that

rλ > 1 and rλ increases with the estimated coefficient of variation ĉv. Therefore, when the

estimated coefficient of variation ĉv is large (e.g., in the presence of many weak IVs), β̂pIVW

adjusts β̂dIVW by rλ to prevent the denominator µ̃2 from being close to zero (see Web Figure

3 for the difference between β̂pIVW and β̂dIVW against various rλ). A good numerical example
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can be found in Section 5 (Table 4), where β̂dIVW yields an extreme estimate of the causal

effect of peripheral vascular disease on hospitalized COVID-19, and β̂pIVW adjusts it by the

correction factor rλ in the case where no IV selection is performed.

To study the asymptotic properties of the pIVW estimator, we make the following As-

sumptions 1 and 2, which were also required for the consistency of the dIVW estimator (Ye

et al., 2021).

Assumption 1: The number of IVs p diverges to infinity.

Assumption 2:
{
γ̂j, Γ̂j

}p

j=1
are independently distributed as γ̂j ∼ N

(
γj, σ

2
γ̂j

)
and Γ̂j ∼

N
(
βγj, σ

2
Γ̂j

)
with known variances σ2

γ̂j
and σ2

Γ̂j
. The ratio of variances σ2

γ̂j
/σ2

Γ̂j
is bounded

away from zero and infinity for all j = 1, . . . , p.

Assumptions 1 and 2 are reasonable in the two-sample MR design settings since the GWASs

often have large sample sizes and a large number of genetic variants. The independence of{
γ̂j, Γ̂j

}p

j=1
across genetic variants can be achieved by the linkage-disequilibrium clumping

(Purcell et al., 2007).

Following Ye et al. (2021), we define the IV strength as

κ =

∑p
j=1 γ

2
jσ

−2
γ̂j

p
,

which is estimated by κ̂ = p−1
∑p

j=1

(
γ̂2
j − σ2

γ̂j

)
σ−2
γ̂j
. We also follow Ye et al. (2021) to define

the effective sample size η = κ
√
p. Note that the effective sample size η is determined by

the IV strength and the number of IVs in the summary-level data, which is not the sample

size of the original individual-level data in GWASs. Under Assumptions 1 and 2, it can be

shown that ĉ−2
v = Op (ξ) and β̂pIVW− β̂dIVW = Op (ξ), where ξ = (η

√
p)−1+ η−2 converges to

zero as η → ∞. Therefore, given the consistency of β̂dIVW, it is straightforward that β̂pIVW

is also consistent as η → ∞. In the following Theorem 1 (a), we show that the bias of β̂pIVW

converges to zero at a faster rate than that of β̂dIVW under the optimal λopt = 1. In Theorem
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1 (b) together with Remark 2, we show that the variance of β̂pIVW is smaller than that of

β̂dIVW when λ > 0. In Theorem 1 (c), we also establish the asymptotic normality of β̂pIVW,

which requires no more assumptions comparing to β̂dIVW.

Theorem 1: Suppose that Assumptions 1-2 hold and the effective sample size η → ∞.

Then, we have the following results:

(a) The bias of β̂dIVW is of order O (ξ), and the bias of β̂pIVW is

E(β̂pIVW − β) = (1− λ)E(β̂dIVW − β) + o (ξ) .

The optimal λopt = 1 minimizes the absolute bias of β̂pIVW, which is only of order o (ξ).

(b) The variances of β̂pIVW and β̂dIVW are both of order O (ξ). But the difference between the

variances of β̂dIVW and β̂pIVW is

Var(β̂dIVW)− Var(β̂pIVW) =
2λβ2

µ4
2

∆+ o
(
ξ2
)
,

where ∆ =
3(µ1v2 − µ2v12)

2

µ2
2β

2
+

v1v2 − v212
β2

+ 8µ2

(
v12
v2β

− 1

) p∑
j=1

σ4
γ̂j
σ−6

Γ̂j
(γj + σ2

γ̂j
).

(c) Further assume that maxjγ
2
jσ

−2
γ̂j
/(κp+ p) → 0. Then, β̂pIVW is asymptotically normal

V̂ − 1
2

(
β̂pIVW − β

)
d−→ N (0, 1) ,

where

V̂ = µ̃−2
2

p∑
j=1

{
σ−2

Γ̂j
γ̂2
j + β̂2

pIVWσ2
γ̂j
σ−4

Γ̂j

(
γ̂2
j + σ2

γ̂j

)}
.

The proof of Theorem 1 is provided in Web Appendix C.

Remark 1: Theorem 1(a) states that β̂pIVW has smaller absolute bias than β̂dIVW when

0 < λ < 2. In particular, the bias of β̂pIVW with λopt = 1 converges to zero at a faster rate

than that of β̂dIVW.

Remark 2: Theorem 1(b) shows that Var(β̂pIVW) is smaller than Var(β̂dIVW) when ∆ > 0.

In fact, we have shown that ∆ > 0 is generally true for complex traits, of which a single
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genetic variant can only explain a very small amount of total variances (Park et al., 2010;

Shi et al., 2016; Boyle et al., 2017). More technical details can be found in Web Appendix

D. Therefore, when λ > 0, Var(β̂pIVW) is smaller than Var(β̂dIVW) in MR settings. Together

with Theorem 1(a), β̂pIVW with λopt = 1 has smaller bias and variance than β̂dIVW.

Remark 3: In Theorem 1(c), we show that β̂pIVW is asymptotically normal as η → ∞.

Therefore, the confidence interval of β can be derived from the normal approximation of

β̂pIVW. Alternatively, we can derive the confidence interval of β based on bootstrapping

Fieller’s method (Fieller, 1954; Hwang and Hwang, 1995), which has been shown to have

better coverage level than that based on the normal approximation. More details can be

found in Web Appendix E.

In the setting of many weak IVs, we may have κ → 0 as p → ∞ because more weak IVs are

likely to be included into the analysis as the number of IVs p increases, which may reduce

the IV strength κ. The above theorem holds in this case as long as the effective sample size

η → ∞, which means that it allows the presence of many weak IVs.

3.2 Selection of Candidate Instruments

In this section, we extend Theorem 1 to the setting where IV selection is conducted to remove

some weak IVs from the analysis, which is a common practice in MR studies to handle the

weak IV bias.

Suppose that there is a selection dataset
{
γ̂∗
j , σ

∗
γ̂j

}p

j=1
that is independent of the exposure

and the outcome datasets. Then, an IV is included into the analysis when |γ̂∗
j | > δσ∗

γ̂j
with

a pre-set threshold δ > 0 (Zhao et al., 2019). Ye et al. (2021) showed that IV selection

with an appropriate threshold δ could reduce the bias of the IVW estimator and improve

the efficiency of the dIVW estimator. They also recommended a threshold δ =
√
2 log p to
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guarantee a small probability of selecting any null IVs (i.e., γj = 0). When the IV selection

is performed at a threshold δ, we follow Ye et al. (2021) to define the IV strength as

κδ =

∑p
j=1 γ

2
jσ

−2
γ̂j
qδ,j

pδ
,

where qδ,j = P
(
|γ̂∗

j | > δσ∗
γ̂j

)
and pδ =

∑p
j=1 qδ,j. Let Sδ =

{
j : |γ̂∗

j | > δσ∗
γ̂j

}
be the set

of selected IVs, and p̂δ be the number of selected IVs within Sδ. Then, we can estimate

κδ by κ̂δ = p̂−1
δ

∑
j∈Sδ

(
γ̂2
j − σ2

γ̂j

)
σ−2
γ̂j
. In the IV selection setting, we define the effec-

tive sample size ηδ = κδ
√
pδ/max(1, φ) and ξδ =

(
ηδ
√
p
δ
max(1, φ)

)−1
+ η−2

δ , where φ =√
p−1
δ

∑p
j=1 γ

4
jσ

−4
γ̂j
qδ,j(1− qδ,j). To study the theoretical properties of the proposed pIVW

estimator under IV selection, we have the following Assumption 3 for the summary-level

data in the selection dataset.

Assumption 3:
{
γ̂∗
j , γ̂j, Γ̂j

}p

j=1
are mutually independent and γ̂∗

j ∼ N
(
γj, σ

∗2
γ̂j

)
with

known variance σ∗2
γ̂j

for every j. The ratio of variances σ2
γ̂j
/σ∗2

γ̂j
is bounded away from zero

and infinity for all j = 1, . . . , p.

Given a selection threshold δ, we evaluate the dIVW estimator β̂δ,dIVW = µ̂1,δ/µ̂2,δ and the

proposed pIVW estimator β̂δ,pIVW = µ̃1,δ/µ̃2,δ using the selected IVs within the set Sδ. Under

Assumptions 1-3, we have β̂δ,pIVW − β̂δ,dIVW = Op (ξδ). The following Theorem 2 shows that

the asymptotic properties of the pIVW estimator in Theorem 1 still hold under the IV

selection as the effective sample size ηδ → ∞.

Theorem 2: Suppose that Assumptions 1-3 hold and the effective sample size ηδ → ∞.

Then, we have the following results:

(a) The bias of β̂δ,dIVW is of order O (ξδ), and the bias of β̂δ,pIVW is

E(β̂δ,pIVW − β) = (1− λ)E(β̂δ,dIVW − β) + o (ξδ) .

The optimal λopt = 1 minimizes the absolute bias of β̂δ,pIVW, which is only of order o (ξδ).

(b) The variances of β̂δ,pIVW and β̂δ,dIVW are both of order O (ξδ). But the difference between
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the variances of β̂δ,dIVW and β̂δ,pIVW is

Var(β̂δ,dIVW)− Var(β̂δ,pIVW) =
2λβ2

µ4
2,δ

∆δ + o
(
ξ2δ
)
,

where ∆δ =
3(µ1,δv2,δ − µ2,δv12,δ)

2

µ2
2,δβ

2
+
v1,δv2,δ − v212,δ

β2
+8µ2,δ

(
v12,δ
v2,δβ

− 1

) p∑
j=1

σ4
γ̂j
σ−6

Γ̂j
(γj+σ2

γ̂j
)qδ,j.

(c) Further assume that maxjγ
2
jσ

−2
γ̂j
qδ,j/(κδpδ + pδ) → 0. Then, β̂δ,pIVW is asymptotically

normal

V̂
− 1

2
δ

(
β̂δ,pIVW − β

)
d−→ N (0, 1) ,

where

V̂δ = µ̃−2
2,δ

∑
j∈Sδ

{
σ−2

Γ̂j
γ̂2
j + β̂2

δ,pIVWσ2
γ̂j
σ−4

Γ̂j

(
γ̂2
j + σ2

γ̂j

)}
.

The proof of Theorem 2 is provided in Web Appendix F. Theorem 2 shows that β̂δ,pIVW has

smaller absolute bias than β̂δ,dIVW when 0 < λ < 2. The bias of β̂δ,pIVW with the optimal

λopt = 1 converges to zero faster than that of β̂δ,dIVW. We also prove that ∆δ > 0 generally

holds in the genetic studies, and therefore Var(β̂δ,pIVW) is smaller than Var(β̂δ,dIVW) when

λ > 0. The pIVW estimator is still consistent and asymptotically normal after accounting

for the IV selection. We extend the results for the dIVW estimator in Ye et al. (2021) to the

pIVW estimator. Note that, the independent datasets for IV selection might not be available

for some traits in practice. However, the pIVW estimator is still useful in this case, since it

can handle the weak IV bias even without IV selection as shown in Theorem 1.

3.3 Accounting for Balanced Horizontal Pleiotropy

When there exists horizontal pleiotropy (i.e., non-zero direct effect of Gj on Y not mediated

by X), the linear structural model (2) can be modified as follows (Bowden et al., 2015):

Y = βX +

p∑
j=1

αjGj + U + ϵY , (7)

where αj denotes the direct genetic effect of Gj on the outcome Y (i.e., pleiotropic effect).

In this case, we have Γj = βγj + αj. We follow a common practice in many MR methods to
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assume that the horizontal pleiotropy is balanced (i.e., the pleiotropic effect has mean zero)

and treat αj as random effect following αj ∼ N (0, τ 2) (Bowden et al., 2017; Zhao et al.,

2020; Ye et al., 2021). Then, we have Γ̂j ∼ N
(
βγj, σ

2
Γ̂j

+ τ 2
)
in the presence of balanced

horizontal pleiotropy. To account for the balanced horizontal pleiotropy, we estimate the

variance of β̂δ,pIVW by

V̂ ∗
δ = µ̃−2

2,δ

∑
j∈Sδ

{
σ−2

Γ̂j
γ̂2
j

(
1 + τ̂ 2σ−2

Γ̂j

)
+ β̂2

δ,pIVWσ2
γ̂j
σ−4

Γ̂j

(
γ̂2
j + σ2

γ̂j

)}
,

where we follow Ye et al. (2021) to derive the estimator of τ 2 as

τ̂ 2 =

∑p
j=1

{(
Γ̂j − β̂pIVWγ̂j

)2
− σ2

Γ̂j
− β̂2

pIVWσ2
γ̂j

}
σ−2

Γ̂j∑p
j=1 σ

−2

Γ̂j

.

To establish the theoretical results for the pIVW estimator in the presence of balanced

horizontal pleiotropy, we replace Γ̂j ∼ N
(
βγj, σ

2
Γ̂j

)
by Γ̂j ∼ N

(
βγj, σ

2
Γ̂j

+ τ 2
)
in Assump-

tion 2, and assume that τ 2 < c1σ
2
Γ̂j

with a constant c1 > 0 for all j. We further assume

that maxj σ
−2

Γ̂j
< c2p

−1
∑p

j=1 σ
−2

Γ̂j
for a constant c2 > 0 in Theorems 1 (c) and 2 (c). Then,

Theorems 1 and 2 can be extended to the situation with balanced horizontal pleiotropy. The

proofs are provided in Web Appendices C and F respectively.

4. Simulation Study

4.1 Simulation Settings

We generate the summary-level data for 1000 IVs from γ̂j ∼ N
(
γj, σ

2
γ̂j

)
and Γ̂j ∼ N

(
Γj, σ

2
Γ̂j

)
independently. For the true γj, we consider a scenario with many weak IVs and many null

IVs as in Ye et al. (2021), where we randomly generate γj ∼ N (0, 0.022) for the weak IVs

and let γj = 0 for the null IVs. We set the proportion of null IVs to be 95%, 90% and

80% corresponding to the effective sample size η around 4.33, 9.52 and 21.85, respectively.

Then, we let Γj = βγj + αj, where αj ∼ N (0, τ 2). We set β = 0.5, and τ = 0 and 0.01

which represent the absence and the presence of balanced horizontal pleiotropy, respectively.
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The variances σ2
γ̂j

and σ2
Γ̂j

are given by σ2
γ̂j

=
{
Var(X)− γ2

jVar(Gj)
}
/ {nXVar(Gj)} and

σ2
Γ̂j

=
{
Var(Y )− Γ2

jVar(Gj)
}
/ {nYVar(Gj)}, where nX and nY denote the sample sizes of

the GWASs for the exposure and the outcome, respectively. We set nX = 0.5nY = 100, 000.

For var(Gj), we let Gj ∼ Bin(2,MAFj) and randomly generate the minor allele frequencies

from MAFj ∼ U(0.1, 0.5). For Var(X) and Var(Y ), we calculate them from Equations

(1) and (7) with the variances of U , ϵX and ϵY being 2, respectively. Furthermore, we

generate an independent dataset with γ̂∗
j ∼ N

(
γj, 0.5σ

2
γ̂j

)
for the IV selection at threshold

δ =
√
2 log p = 3.72. The simulation is based on 10,000 replicates.

We first investigate the impact of the penalty parameter λ on the performance of the

proposed pIVW estimator, where λ increases from 0 to 2.5 by 0.5. Then, we compare the

proposed pIVW estimator with λopt = 1 to other competing MR methods, including the

IVW, the MR-Egger (Bowden et al., 2015), the MR-Median (Bowden et al., 2016), the

MR-RAPS (Zhao et al., 2020) and the dIVW estimators. The performances among various

methods are compared in terms of the relative bias (bias divided by the true β) and the

empirical standard error of the estimated causal effect, as well as the coverage probability

of nominal 95% confidence interval. For the pIVW etsimator, we present the coverage

probability of bootstrapping Fieller’s confidence interval in this simulation. In Section 4.3,

we also compare bootstrapping Fieller’s interval with the confidence interval derived from

the normal approximation of the pIVW estimator under a wide range of parameter settings.

4.2 Simulation Results

[Table 1 about here.]

The pIVW estimator has the smallest bias at λ = 1 as summarized in Table 1. The

empirical standard error of the pIVW estimator decreases as λ increases. As the effective

sample size η increases, the value of λ tends to have less influence on the performance of the
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pIVW estimator. We find similar results in the presence of balanced horizontal pleiotropy

and IV selection (see Web Tables 1-3). Therefore, we recommend to choose the optimal

λopt = 1 for the pIVW estimator in practice due to its smallest bias.

[Table 2 about here.]

We next compare the pIVW estimator (λopt = 1) against the other five competing MR

methods under the situations without horizontal pleiotropy and IV selection with the results

summarized in Table 2. The pIVW estimator has negligible bias which is the smallest among

all six methods. In contrast, the IVW, the MR-Egger and the MR-Median estimators have

serious biases and poor coverage probabilities. The MR-RAPS and the dIVW estimators have

relatively large empirical standard errors when the effective sample size η is small (η = 4.33),

and we find that they yield some extreme estimates in this case (see Web Figure 1). As η

increases, the differences in the performance among the MR-RAPS, the dIVW and the pIVW

estimators become smaller.

[Table 3 about here.]

The results with IV selection at threshold δ =
√
2 log p = 3.72 are given in Table 3. The

proposed pIVW estimator still has the smallest bias among six methods and has smaller

empirical standard error than the dIVW estimator. We obtain similar results in the presence

of balanced horizontal pleiotropy (see Web Tables 4-5).

We conduct an additional simulation study to mimic the individual-level data-generating

mechanisms in GWASs. We first simulate the individual-level data based on the linear

structural models (1) and (7). Then, we obtain the summary-level data by estimating the

marginal effects and their standard errors from the linear regressions as in Ye et al. (2021)

and Wang et al. (2022). We have similar findings in the simulation with individual-level data.

More details are given in Web Appendix G and Web Tables 6-9.
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4.3 Empirical Guidelines on η for Asymptotics

In Theorem 1, the asymptotic properties of β̂pIVW require the effective sample size η → ∞. To

investigate how large of η is enough for the asymptotics, we conduct further simulations for

β̂pIVW with λopt = 1 under a wide range of parameter settings, including: (1) γj ∼ N (0, σ2)

with σ varying from 0.01 to 0.05, (2) the proportion of null IVs from 0 to 99%, and (3)

nx = cny = 100, 000 with c ranging from 0.1 to 10. The results show that the relative

bias of β̂pIVW decreases more rapidly than that of β̂dIVW as η increases (see Figure 2 (a)).

β̂pIVW is nearly unbiased when η > 5, while β̂dIVW requires η > 15 to have a negligible bias.

The variance of β̂pIVW is much smaller than that of β̂dIVW when η < 5, and they get close

to each other as η increases (see Figure 2 (b)). The confidence interval derived from the

normal approximation of β̂pIVW maintains nominal coverage probability when η > 10, while

bootstrapping Fieller’s interval maintains nominal confidence probability when η > 5 (see

Figure 2 (c)).

We have similar findings for ηδ under the IV selection (see Web Figure 4), where we

consider a grid of two additional parameters, including the selection threshold δ from 1 to 4

and γ̂∗
j ∼ N

(
γj, cσ

2
γ̂j

)
with c from 0.1 to 10. We also find similar results in the presence of

balanced horizontal pleiotropy (see Web Figures 5-6). Therefore, we recommend that η (or

ηδ) should be larger than 5 for the pIVW estimator to have a negligible bias and a nominal

coverage probability of the confidence interval. On the other hand, although the bias and

variance of the pIVW estimator might not be negligible when η (or ηδ) is less than 5, they

are still much smaller than those of the dIVW estimator (see Figure 2 (a) and (b)).

[Figure 2 about here.]
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5. Real Data Applications to COVID-19 Outcomes

In this section, we focus on estimating the causal effects of five obesity-related exposures

(i.e., peripheral vascular disease, dyslipidemia, hypertensive disease, type 2 diabetes and

BMI) on three COVID-19 outcomes: (1) COVID-19 infection, (2) hospitalized COVID-19

and (3) critically ill COVID-19 (COVID-19 Host Genetics Initiative, 2021). The GWAS

summary-level data for the three COVID-19 outcomes is obtained from the COVID-19 Host

Genetics Initiative (COVID-19 Host Genetics Initiative, 2020), which includes up to 49,562

cases and two million controls from 47 distinct studies. For BMI, the selection dataset is

from Akiyama et al. (2017) with 173,430 individuals and the exposure dataset is from UK

BioBank with 359,983 individuals (Abbott et al., 2018). For the other four obesity-related

exposures, the selection datasets are from the GWAS meta-analysis of Genetic Epidemiology

Research on Adult Health and Aging (GERA) with 53,991 individuals (Zhu et al., 2018),

and the exposure datasets are from the GWAS meta-analysis of UK BioBank with 108,039

individuals (Zhu et al., 2018). More detailed data description is provided in Web Table 10.

To exclude correlated IVs, we perform the linkage-disequilibrium clumping to remove the

correlated genetic variants within 10Mb pairs and with the linkage disequilibrium r2 < 0.001.

The numbers of IVs included into the analysis are from 1768 to 2338 for different datasets

(see Web Table 11 for details).

[Table 4 about here.]

From the results of the pIVW estimator with λopt = 1, we find significant positive causal

effects of hypertensive disease on hospitalized COVID-19, and BMI on the three COVID-19

outcomes at significance level 0.05 (see Table 4 and Web Figures 7-8). Our findings agree with

some recent epidemiological studies (Popkin et al., 2020; Nakeshbandi et al., 2020). Some

previous MR studies have also found significant causal effects of BMI on the COVID-19

outcomes (Ponsford et al., 2020; Leong et al., 2021), but there is still no MR analysis on the
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hypertensive disease to the best of our knowledge. Additionally, the pIVW estimator suggests

that peripheral vascular disease is significantly associated with higher risks of three COVID-

19 outcomes under the IV selection at threshold δ =
√
2 log p = 3.87. To our knowledge,

there is a lack of MR studies about the associations between peripheral vascular disease and

the COVID-19 outcomes, despite a high incidence of peripheral vascular disease in COVID-

19 patients (Hanff et al., 2020). For type 2 diabetes and dyslipidemia, the pIVW estimator

does not find any evidence of associations with the three COVID-19 outcomes. More results

can be found in Web Table 11 and Web Figures 7-8.

The other competing MR methods provide very different causal effect estimates when

the estimated effective sample size η̂ or η̂δ is small (see Table 4; see Web Appendix H

for the estimation of η̂ and η̂δ). For peripheral vascular disease with a very small η̂ when

no IV selection is performed, the IVW estimator has a very small estimate (0.007) which

might be biased toward zero, because its denominator is a biased estimator of µ2 and might

overestimate µ2 in the presence of many weak IVs (Ye et al., 2021). In contrast, the dIVW

estimator yields a relatively large estimate (4.413) with an extreme estimated standard

error (95.942), which possibly overestimates the causal effect due to the presence of many

weak IVs. In this case, the pIVW estimator adjusts the dIVW estimator by the correction

factor rλ = 20.86, and provides an estimate being 0.219 with the estimated standard error

being 0.429. After we perform IV selection to remove the weak IVs, the estimates from

all the methods are in similar magnitudes. For BMI with large η̂ and η̂δ, there is a smaller

discrepancy among these methods, and the pIVW estimator and the dIVW estimator provide

similar results in this case.

6. Discussion

The popular IVW estimator suffers from substantial bias in the presence of weak IVs, a

common challenge in MR studies. In this paper, we develop a novel penalized IVW (pIVW)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2021.09.25.21264115doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264115
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

estimator to prevent the denominator of the ratio from being close to zero to reduce the bias

due to the presence of many weak IVs. Moreover, we allow for the balanced horizontal

pleiotropy by adjusting the variance estimation of the proposed pIVW estimator. Both

simulation studies and real data analysis demonstrate the improved performance of the

proposed pIVW estimator compared to the original IVW estimator and the recent dIVW

estimator (Ye et al., 2021).

Our pIVW estimator has multiple advantages. First, our theoretical and numerical results

show that the bias of the pIVW estimator with the optimal λopt = 1 converges to zero at a

faster rate than that of the dIVW estimator as the effective sample size η (or ηδ) increases.

Meanwhile, the pIVW estimator with the optimal λopt = 1 has smaller variance than the

dIVW estimator. Second, the proposed pIVW estimator is consistent and asymptotically

normal even in the presence of many weak IVs, and requires no more assumptions than the

dIVW estimator. The dIVW estimator can also be viewed as a special case of our proposed

pIVW estimator, because the dIVW estimator is equivalent to the pIVW estimator with

λ = 0. When λ > 0, their difference converges to zero as the effective sample size η (or ηδ)

increases. Third, the pIVW has a unique and closed-form solution, whereas many competing

MR methods that are robust to the weak IVs do not have a closed-form solution and might

have multiple numerical solutions (Zhao et al., 2019, 2020). In future work, we plan to

extend the proposed penalization approach to other MR estimators to handle the weak IV

bias, for instance, a penalized MR-Egger estimator (Bowden et al., 2015) to account for the

unbalanced horizontal pleiotropy, and to account for the linkage disequilibrium (Wang et al.,

2022).

Data Availability Statement

The GWAS summary data used in this article are available at the URLs as follows: the

COVID-19 Host Genetics Initiative (release 5) https://www.covid19hg.org/results/r5/;
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the BMI selection data ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/

AkiyamaM_28892062_GCST004904; the BMI exposure data http://www.nealelab.is/uk-biobank/;

and four obesity-related diseases: the selection data (GERA data) and the exposure data

(UK BioBank data) https://cnsgenomics.com/content/data.
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Figure 1. The relationships among the jth genetic variant Gj, the exposure X, the
outcome Y and the unmeasured confounder U . The effect of Gj on X is γj, the direct
effect (pleiotropic effect) of Gj on Y is αj, and the causal effect of X on Y is β.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2021.09.25.21264115doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264115
http://creativecommons.org/licenses/by-nc-nd/4.0/


25

0

25

50

75

100

10 20 30

A
b

so
lu

te
 r

e
la

ti
ve

 b
ia

s 
(%

)

dIVW
pIVW

(a)

0

5

10

15

20

10 20 30

E
m

p
ir

ic
a

l s
ta

n
d

a
rd

 e
rr

o
r

dIVW
pIVW

(b)

80

85

90

95

100

10 20 30

C
o

v
e

ra
g

e
 P

ro
b

a
b

il
it

y
 (

%
)

dIVW
pIVW (normal approximation)
pIVW (bootstrapping Fieller)

(c)

Figure 2. The plots of (a) the absolute relative biases (biases divided by β); (b) the
empirical standard errors; and (c) the coverage probabilities of the 95% confidence intervals
for the dIVW estimator and the pIVW estimator (λopt = 1) against the effective sample size
η. The dashed line shows η = 5. The dots represent the simulation results under different
settings of parameters based on 10,000 replicates. There is no horizontal pleiotropy (τ = 0)
or IV selection. This figure appears in color in the electronic version of this article.
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Table 1
The pIVW estimator with various penalty parameter λ. The true causal effect β = 0.5. No horizontal pleiotropy

exists (τ = 0). No IV selection is conducted. The simulation is based on 10,000 replicates. Bias (%): bias divided by
β; SE: empirical standard error; CP (%): coverage probability of the 95% confidence interval.

η λ Bias SE CP

4.33 0 22.4 2.156 94.8
0.5 3.7 0.341 94.3
1 -3.3 0.293 94.0
1.5 -8.3 0.267 93.4
2 -12.3 0.248 92.8
2.5 -15.6 0.234 91.9

9.52 0 3.0 0.148 94.8
0.5 1.3 0.143 94.6
1 -0.2 0.139 94.6
1.5 -1.6 0.136 94.4
2 -2.9 0.133 94.2
2.5 -4.2 0.130 93.9

21.85 0 0.7 0.069 94.6
0.5 0.4 0.068 94.5
1 0.0 0.068 94.5
1.5 -0.3 0.067 94.4
2 -0.7 0.067 94.3
2.5 -1.0 0.067 94.1
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Table 2
Comparison of the pIVW estimator (λopt = 1) with other competing MR methods. The true causal effect β = 0.5. No
horizontal pleiotropy exists (τ = 0). No IV selection is conducted. The simulation is based on 10,000 replicates. Bias
(%): bias divided by β; SE: empirical standard error; CP (%): coverage probability of the 95% confidence interval.

η Method Bias SE CP

4.33 IVW -88.0 0.028 0.0
MR-Egger -80.2 0.045 0.0
MR-Median -83.1 0.041 0.0
MR-RAPS 7.4 0.743 93.5
dIVW 22.4 2.156 94.6
pIVW -3.3 0.293 94.0

9.52 IVW -76.9 0.027 0.0
MR-Egger -63.5 0.042 0.0
MR-Median -67.6 0.040 0.0
MR-RAPS 1.2 0.120 94.7
dIVW 3.0 0.148 95.5
pIVW -0.2 0.139 94.6

21.85 IVW -59.1 0.024 0.0
MR-Egger -42.0 0.036 0.0
MR-Median -46.7 0.036 0.0
MR-RAPS 0.3 0.060 94.8
dIVW 0.7 0.069 94.8
pIVW 0.0 0.068 94.5
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Table 3
Comparison of the pIVW estimator (λopt = 1) with other competing MR methods. The true causal effect β = 0.5.
No horizontal pleiotropy exists (τ = 0). The IV selection threshold δ =

√
2 log p. The simulation is based on 10,000

replicates. Bias (%): bias divided by β; SE: empirical standard error; CP (%): coverage probability of the 95%
confidence interval.

ηδ Method Bias SE CP

6.76 IVW -7.3 0.122 93.4
MR-Egger -41.9 0.376 89.3
MR-Median -11.6 0.140 95.1
MR-RAPS 1.4 0.137 95.8
dIVW 3.2 0.144 96.0
pIVW -0.1 0.136 95.3

10.26 IVW -7.9 0.079 91.4
MR-Egger -43.6 0.207 79.2
MR-Median -12.2 0.097 93.0
MR-RAPS 0.7 0.088 95.5
dIVW 1.4 0.090 95.5
pIVW 0.1 0.088 95.1

17.84 IVW -7.9 0.049 87.4
MR-Egger -48.6 0.130 51.2
MR-Median -12.5 0.062 88.3
MR-RAPS 0.4 0.055 94.9
dIVW 0.7 0.056 95.0
pIVW 0.2 0.055 94.7
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Table 4
Estimated causal effects (β̂) and estimated standard errors (SEs) of three obesity-related exposures (i.e., peripheral
vascular disease (PVD), hypertensive disease (HD) and BMI) on the risk of hospitalized COVID-19. The pIVW

estimator with the optimal λopt = 1

Exposure Method
No IV selection IV selection δ =

√
2 log p

η̂ β̂ (SE) η̂δ β̂ (SE)

PVD IVW 1.68 0.007 (0.013) 3.98 0.233 (0.055)
MR-Egger 0.022 (0.019) 0.292 (0.071)
MR-Median 0.032 (0.020) 0.367 (0.098)
MR-RAPS 0.379 (0.550) 0.419 (0.217)
dIVW 4.413 (95.942) 0.670 (0.317)
pIVW 0.219 (0.429) 0.594 (0.245)

HD IVW 28.85 0.089 (0.033) 12.04 0.135 (0.065)
MR-Egger 0.068 (0.047) 0.199 (0.091)
MR-Median 0.109 (0.059) 0.132 (0.099)
MR-RAPS 0.241 (0.095) 0.161 (0.080)
dIVW 0.246 (0.093) 0.163 (0.079)
pIVW 0.244 (0.093) 0.163 (0.078)

BMI IVW 218.93 0.382 (0.077) 37.36 0.371 (0.100)
MR-Egger 0.455 (0.105) 0.563 (0.140)
MR-Median 0.549 (0.141) 0.361 (0.176)
MR-RAPS 0.466 (0.097) 0.397 (0.106)
dIVW 0.468 (0.096) 0.397 (0.106)
pIVW 0.468 (0.096) 0.397 (0.106)
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