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Abstract

Mendelian randomization (MR) utilizes genetic variants as instrumental variables

(IVs) to estimate the causal effect of an exposure variable on an outcome of interest even

in the presence of unmeasured confounders. However, many MR methods including the

most popular inverse-variance weighted (IVW) estimator could be biased by the weak

IVs that are weakly associated with the exposure. In this article, we develop a novel

method called penalized inverse-variance weighted (pIVW) estimator, where we adjust

the IVW estimator to account for the weak IVs by a proposed penalization method to

prevent the denominator of the pIVW estimator from being close to zero. Moreover,

we account for the horizontal pleiotropy—a widespread phenomenon in human genome

that could bias the inference for the causal effect—by adjusting the variance estimation

of the pIVW estimator. The proposed pIVW estimator can reduce to the debiased IVW

(dIVW) estimator—another extension of the the IVW estimator—when the number of
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IVs and the IV strength increase. More generally, we prove that the pIVW estimator

can achieve smaller bias and variance than the dIVW estimator under some regular-

ity conditions. We also illustrate the improved performance of the proposed pIVW

estimator over competing MR methods through a comprehensive simulation study.

Further, we analyze the causal effects of the obesity-related traits and diseases on the

Coronavirus disease 2019 (COVID-19). Notably, we find that hypertensive disease

is associated with increased risk of hospitalized COVID-19, while peripheral vascular

disease and higher body mass index are associated with increased risks of COVID-19

infection, hospitalized COVID-19 and critically ill COVID-19. The R package for the

pIVW method is publicly available at https://github.com/siqixu/mr.pivw.

1 Introduction

It is of major interest in health studies to identify causal risk factors associated with var-

ious clinical outcomes. For example, identifying the causal risk factors of the Coronavirus

disease 2019 (COVID-19) is currently one of the most pressing global public health problems

(Jordan et al., 2020; Zheng et al., 2020). The COVID-19 pandemic, caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to human

health all over the world (Pascarella et al., 2020). As of July 1, 2021, the COVID-19 pan-

demic has led to over 180 million cases and more than 3.9 million deaths, which has brought

unprecedented medical and economic burdens worldwide (Dong et al., 2020). To reduce the

risks of COVID-19 incidence and mortality, it is crucial to identify the causal risk factors

for the development of public health policies and clinical strategies for prevention and in-

tervention. So far, associations between some exposure variables such as obesity and the

COVID-19 outcomes have been reported by several epidemiological studies (Popkin et al.,

2020; Stefan et al., 2020). However, the associations identified from the observational data

might be subject to unmeasured confounding of the exposure-outcome relationship.

To address the unmeasured confounding issue in observational studies, Mendelian ran-

domization (MR) utilizes genetic variants as instrumental variables (IVs) to estimate the

causal effect of an exposure variable on an outcome of interest even in the presence of un-

measured confounders (Smith and Ebrahim, 2003, 2004; Sheehan et al., 2008). Due to the
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availability of summary-level data from the genome-wide association studies (GWASs), a

plenty of methods were developed for GWAS summary-level data using multiple genetic

variants as IVs (Zheng et al., 2017; Lawlor, 2016), which facilitate the wide use of MR anal-

ysis in health studies. However, the validity of MR strictly depends on the following three

core assumptions defining a valid IV (Lawlor et al., 2008; Didelez and Sheehan, 2007):

• IV Relevance: the IV is associated with the exposure;

• IV Independence: the IV is independent of any confounders of the exposure-outcome

relationship;

• Exclusion Restriction: the IV only affects the outcome via the exposure.

When either of these IV assumptions is violated, the MR analysis may also yield biased

estimation of the causal effect. In particular, the first IV assumption (IV Relevance) can be

nearly violated when the IVs are only weakly associated with the exposure variable (Burgess

and Thompson, 2011; Burgess et al., 2011; Davies et al., 2015). In MR studies, the weak IV

bias may occur when the genetic variants only explain a small proportion of variance for the

exposure variable. On the other hand, the widespread horizontal pleiotropy in human genome

can also lead to the violation of the third IV assumption (Exclusion Restriction) (Verbanck

et al., 2018; Hemani et al., 2018), which is a phenomenon that the genetic variants directly

affect the outcome not mediated by the exposure variable (see Figure 1 for a graphical

illustration).

The inverse-variance weighted (IVW) estimator (Burgess et al., 2013) is the most popular

MR method being widely used in health studies. It has a simple and explicit expression,

which combines the estimated causal effects from multiple IVs into a weighted average with

the idea borrowing from the fixed-effect meta-analysis literature. Despite its widespread

popularity, studies (Zhao et al., 2020; Ye et al., 2019) pointed out that the IVW estimator

can be seriously biased by the weak IVs. Besides the IVW estimator, many common MR

methods were found to be subject to the weak IV bias, such as MR-Egger (Bowden et al.,

2015) which estimates the causal effect by a weighted linear regression, and MR-Median

(Bowden et al., 2016) which is a weighted median estimator of the estimated causal effects

from each of multiple IVs. MR-RAPS (Zhao et al., 2020) is a maximum profile likelihood
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estimator, which was shown to be robust to weak IVs. However, in contrast to the IVW

estimator, MR-RAPS has no closed form of solution and might have multiple roots. Recently,

the debiased IVW (dIVW) estimator (Ye et al., 2019) was proposed to account for the weak

IV by a simple modification to the IVW estimator. Comparing to the IVW estimator, the

dIVW estimator was proved to be consistent under weaker conditions that allow the presence

of many weak IVs. Nevertheless, as a ratio estimator, the dIVW estimator is likely to yield

an inflated estimate when its denominator is close to zero, which might occur in the presence

of many weak IVs. Moreover, when the denominator is close to zero, a ratios estimator may

have heavy tailed distributions and may not possess finite moments, such as the ratio of two

normal random variables (Piegorsch and Casella, 1985; Marsaglia et al., 2006; Press, 1969).

In the economic literature, many IV methods as ratio estimators also encounter similar issues

especially under the the weak IV setting (Nelson and Startz, 1990; Andrews et al., 2019).

In this article, we develop a novel method called penalized inverse-variance weighted

(pIVW) estimator, where the IVW estimator is further adjusted by a proposed penalized

log-likelihood function. Through the penalization, we prevent the denominator in the ratio

estimator from being close to zero and thus provide improved causal estimation. Moreover,

we account for the horizontal pleiotropy by adjusting the variance estimation of the pIVW

estimator. The proposed pIVW estimator have some nice features. First, our theoretical

and numerical results show that the proposed pIVW estimator can achieve smaller bias

and variance than the dIVW estimator under some regularity conditions. Second, it is

consistent and asymptotically normal even in the presence of many weak IVs, and requires

no further assumptions than the dIVW estimator. Third, it has a unique and explicit form

of solution, whereas some other robust MR methods like MR-RAPS might have multiple

roots and diverging solutions. We also illustrate the improved performance of the proposed

pIVW estimator over the competing MR methods by a comprehensive simulation study.

Furthermore, we focus our interest on the causal effects of the obesity-related exposures

on the COVID-19 outcomes. Some recent epidemiological studies have found that obesity

and some obesity-related diseases (e.g., hypertension) were associated with increased risks

of COVID-19 infection and severity (Popkin et al., 2020; Nakeshbandi et al., 2020; Klang

et al., 2020; Zhang et al., 2020; de Almeida-Pititto et al., 2020), however, their associations

might arise from the unobserved confounders rather than the causality. Although some
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MR studies have also found associations between body mass index (BMI) on COVID-19

outcomes (Leong et al., 2021; Ponsford et al., 2020; Aung et al., 2020; Freuer et al., 2021),

but the associations between the obesity-related diseases and COVID-19 outcomes have

seldom been studied. Moreover, current MR analyses mostly relied on the traditional MR

methods such as the IVW estimator that may suffer from the weak IV bias. In particular,

the weak IVs are likely to exist when the exposure variables are some complex traits and

diseases. Therefore, we aim to provide more robust estimation by utilizing the proposed

pIVW estimator to account for the weak IVs. Specifically, we apply the pIVW estimator to

analyzing the causal effects of five obesity-related traits and diseases (i.e., peripheral vascular

disease, dyslipidemia, hypertensive disease, type 2 diabetes and BMI) on three COVID-19

outcomes (i.e., COVID-19 infection, hospitalized COVID-19 and critically ill COVID-19).

Among them, we find that hypertensive disease is significantly associated with increased risk

of hospitalized COVID-19, while peripheral vascular disease and higher BMI are significantly

associated with increased risks of COVID-19 infection, hospitalized COVID-19 and critically

ill COVID-19.

2 Preliminary

2.1 Linear Structural Models

Suppose that there are p independent genetic variants {Gj}pj=1. When there exists no

horizontal pleiotropy, the relationships among the genetic variants Gjs, the exposure X, the

outcome Y and the unmeasured confounder U depicted in Figure 1 can be formulated by

the linear structural models as follows (Bowden et al., 2015):

X =

p∑
j=1

γjGj + U + εX , (1)

Y = βX + U + εY , (2)

where γj is the genetic effect of Gj on X, β is the causal effect of our interest, and εX and

εY are mutually independent random errors. Let Γj denotes the effect of Gj on Y , then we
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have Γj = βγj by substituting Equation (1) for X in Equation (2). When Y is a binary

outcome and Equation (2) is replaced by a logistic model, Γj = βγj can still be justified by

a probit approximation of the logistic model (Zhao et al., 2020; Vansteelandt et al., 2011).

Let γ̂j and Γ̂j be the estimates of γj and Γj with the variances σ2
γ̂j

and σ2
Γ̂j

, respectively.

In the two-sample MR design (Lawlor, 2016),
{
γ̂j, σγ̂j

}p
j=1

and
{

Γ̂j, σΓ̂j

}p
j=1

can be obtained

from two independent GWASs. Since the GWASs generally involve large population, it is

common to assume that γ̂j and Γ̂j are independently distributed as γ̂j ∼ N
(
γj, σ

2
γ̂j

)
and

Γ̂j ∼ N
(

Γj, σ
2
Γ̂j

)
with known σ2

γ̂j
and σ2

Γ̂j
, respectively.

Gj X Y

U

γj

αj

Figure 1: The relationships among the jth genetic variantGj, the exposureX, the outcome Y
and the unmeasured confounder U . The effect of Gj on X is γj, the direct effect (pleiotropic
effect) of Gj on Y is αj, and the causal effect of X on Y is β.

2.2 IVW Estimator and Debiased IVW (dIVW) Estimator

The popular inverse-variance weighted (IVW) estimator combines the estimated causal

effects β̂j = Γ̂j/γ̂j from each genetic variant with the weights wj = σ−2

Γ̂j
γ̂2
j as follows:

β̂IV W =

∑p
j=1wjβ̂j∑p
j=1 wj

=

∑p
j=1 σ

−2

Γ̂j
γ̂jΓ̂j∑p

j=1 σ
−2

Γ̂j
γ̂2
j

.

Let µ1 =
∑p

j=1 σ
−2

Γ̂j
γjΓj and µ2 =

∑p
j=1 σ

−2

Γ̂j
γ2
j . We have β = µ1/µ2 since Γj = βγj under

models (1)-(2). Then, as shown by Zhao et al. (2020), the IVW estimator can be approxi-

mated by

β̂IV W ≈
E
[∑p

j=1 σ
−2

Γ̂j
γ̂jΓ̂j

]
E
[∑p

j=1 σ
−2

Γ̂j
γ̂2
j

] =
µ1

µ2 +
∑p

j=1 σ
−2

Γ̂j
σ2
γ̂j

=
β

1 +

∑p
j=1 σ

−2

Γ̂j
σ2
γ̂j∑p

j=1 σ
−2

Γ̂j
γ2
j

.

When there is no measurement error for γj (i.e., σ2
γ̂j

= 0), we have β̂IV W ≈ µ1/µ2 = β.
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However, studies (Ye et al., 2019; Zhao et al., 2020) indicated that the IVW estimator can

be seriously biased toward zero for ignoring the measurement errors of γj especially in the

presence of many weak IVs that have small σ−2
γ̂j
γ2
j .

To handle the bias due to weak IVs, the debiased IVW (dIVW) estimator replaces the

denominator in the IVW estimator with an unbiased estimator µ̂2 of µ2 as

β̂dIV W =
µ̂1

µ̂2

=

∑p
j=1 σ

−2

Γ̂j
γ̂jΓ̂j∑p

j=1 σ
−2

Γ̂j

(
γ̂2
j − σ2

γ̂j

) .
The dIVW estimator was shown to be consistent and asymptotically normal under weaker

conditions than the IVW estimator that allow the presence of weak IVs. However, the dIVW

estimator is more likely to yield extreme estimates in the presence of weak IVs, because its

denominator µ̂2 has larger coefficient of variation and thus higher probability of being close

to zero than that of the IVW estimator. Therefore, in the following Section 3, we extend the

IVW estimator to account for the weak IVs by proposing a penalized log-likelihood function

for µ1 and µ2, which can prevent the estimator of µ2 from being close to zero and then

provide improved causal estimation.

3 Method

3.1 The Penalized IVW (pIVW) Estimator

Assume that the estimators µ̂1 =
∑p

j=1 σ
−2

Γ̂j
γ̂jΓ̂j of µ1 and µ̂2 =

∑p
j=1 σ

−2

Γ̂j

(
γ̂2
j − σ2

γ̂j

)
of

µ2 follow a bivariate normal distribution as

µ̂1

µ̂2

 ∼ N2

µ1

µ2

 ,Σ

with the covariance

matrix Σ =

 v1 v12

v12 v2

. We propose a penalized log-likelihood function to adjust the

estimates of µ1 and µ2 as

lp (µ1, µ2) = log f (µ̂1, µ̂2) + λ log |µ2| ,

7
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where f (µ̂1, µ̂2) denotes the bivariate normal density function of (µ̂1, µ̂2)′ and λ > 0 is the

penalty parameter. We adopt the penalty term log |µ2| inspiring by Wang et al. (2020), which

was also used to handle the issue of near-zero denominator when deriving the confidence

interval for a ratio estimator. Through the penalty, the penalized log-likelihood lp (µ1, µ2)

will become smaller when µ2 approaches to zero. Therefore, an estimate of µ2 being close

to zero is less preferable by lp (µ1, µ2). Specifically, by maximizing lp (µ1, µ2), we can obtain

the adjusted estimators of µ1 and µ2 as

µ̃1 = µ̂1 +
v̂12

v̂2

(µ̃2 − µ̂2) , (3)

µ̃2 =

(
1

2
+

√
1

4
+ λ

v̂2

µ̂2
2

)
µ̂2, (4)

respectively, where v̂12 = 2
∑p

j=1 σ
2
γ̂j
σ−4

Γ̂j
Γ̂j γ̂j and v̂2 =

∑p
j=1 σ

−4

Γ̂j

[
4
(
γ̂2
j − σ2

γ̂j

)
σ2
γ̂j

+ 2σ4
γ̂j

]
are the estimates of v12 and v2, respectively. Then, we propose the penalized IVW (pIVW)

estimator as a ratio of µ̃1 and µ̃2, that is

β̂pIV W =
µ̃1

µ̃2

=
µ̂1

µ̃2

+
v̂12

v̂2

(
1− µ̂2

µ̃2

)
. (5)

Note that when the penalty parameter λ = 0, we have µ̃2 = µ̂2 and therefore β̂pIV W reduces

to β̂dIV W . When λ > 0, β̂pIV W will also be close to β̂dIV W when v̂2/µ̂
2
2 approaches to zero.

To see this, we define the IV strength as

κ =

∑p
j=1 γ

2
jσ
−2
γ̂j

p
,

which can be estimated by κ̂ = 1
p

∑p
j=1

(
γ̂2
j − σ2

γ̂j

)
σ−2
γ̂j

. Further, we make the following

assumptions:

Assumption 1. The number of IVs, p, diverges to infinity.

Assumption 2.
{
γ̂j, Γ̂j

}p
j=1

are independently distributed as γ̂j ∼ N
(
γj, σ

2
γ̂j

)
and Γ̂j ∼

N
(
βγj, σ

2
Γ̂j

)
with known variances σ2

γ̂j
and σ2

Γ̂j
. The ratio of variances σ2

γ̂j
/σ2

Γ̂j
is bounded

away from zero and infinity for all j.
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We notice that Assumptions 1 and 2 are also required for the consistency of the dIVW

estimator (Ye et al., 2019). They are reasonable in the two-sample MR design since the

GWASs often involve large population and a large amount of genetic variants. And the

independence among
{
γ̂j, Γ̂j

}p
j=1

can be guaranteed by the linkage-disequilibrium clumping.

Then, under Assumptions 1 and 2, v̂2/µ̂
2
2 = Op

(
1
κp

+ 1
κ2p

)
and hence β̂pIV W reduces to

β̂dIV W as κ
√
p → ∞. More importantly, in the following Theorem 3.1 (a)-(b), we show

that β̂pIV W can achieve smaller bias and variance than β̂dIV W under proper choice of the

penalty parameter λ. Further, in the Theorem 3.1 (c), we show that β̂pIV W is consistent and

asymptotically normal under some regularity conditions.

Theorem 3.1. Suppose that models (1)-(2) and Assumptions 1-2 hold. Then, as κ
√
p→∞,

we have the following conclusions.

(a) The approximate bias of β̂dIV W is of order O
(

1
κp

+ 1
κ2p

)
, while that of β̂pIV W is only of

order o
(

1
κp

+ 1
κ2p

)
when λ = 1.

(b) The approximate variance of β̂pIV W is smaller than that of β̂dIV W at the order O
(

1
κp

+ 1
κ2p

)
when λ > 0.

(c) Further assume that maxjγ
2
jσ
−2
γ̂j
/(κp + p) → 0. Then, β̂pIV W is consistent and asymp-

totically normally distributed as

V −
1
2

(
β̂pIV W − β

)
d−→ N (0, 1) ,

where

V = µ−2
2

p∑
j=1

[
σ−2

Γ̂j

(
γ2
j + σ2

γ̂j

)
+ β2σ2

γ̂j
σ−4

Γ̂j

(
γ2
j + 2σ2

γ̂j

)]
.

The consistency and asymptotic normality of β̂pIV W still hold, when we replace V with the

estimator

V̂ = µ̃−2
2

p∑
j=1

[
σ−2

Γ̂j
γ̂2
j + β̂2

pIV Wσ
2
γ̂j
σ−4

Γ̂j

(
γ̂2
j + σ2

γ̂j

)]
.

Under the setting of many weak IVs, we may have κ → 0 as p → ∞ because more weak

IVs are likely to be included into the analysis as the number IVs p increases, which may

reduce the IV strength κ. Nevertheless, the above theorem can still hold in this case as long

as κ
√
p → ∞, which means that it allows the presence of many weak IVs. On the other

hand, although many ratio estimators may not have finite moments when their denominators
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are close to zero (Piegorsch and Casella, 1985; Marsaglia et al., 2006; Press, 1969), for the

denominator µ̂2 of β̂dIV W , we have P (|µ̂2| > ε) → 1 for any ε > 0 as κ
√
p → ∞. And

we have same result for the denominator µ̃2 of β̂pIV W since µ̃2 is in larger magnitude than

µ̂2 due to Equation (6). Therefore, we can still approximate the biases and variances of

β̂dIV W and β̂pIV W in this case. Moreover, when κ
√
p → ∞, Therorem 3.1 (a)-(b) indicate

that the approximate bias of β̂pIV W converges to zero in a faster rate than that of β̂dIV W

when λ = 1, while the approximate variance of β̂pIV W is also smaller than that of β̂dIV W ,

which implies that we may choose λ = 1 for the pIVW estimator in practice to achieve

improved performances over the dIVW estimator. Further, in the Theorem 3.1 (c), we show

that β̂pIV W is consistent and asymptotically normal, which requires no further assumptions

comparing to β̂dIV W .

In the following sections, we show that these nice properties of the proposed pIVW

estimator still hold when we conduct selection to exclude some weak IVs from the analysis

and account for the horizontal pleiotropy.

3.2 Selection for Candidate Instruments

To handle the weak IV bias, it is common in MR studies to exclude the weak IVs with

small σ−2
γ̂j
γ̂2
j from the analysis. However, the IV selection based on the exposure dataset{

γ̂j, σγ̂j
}p
j=1

might lead to selection bias or winner’s curse that would also bias the causal

estimation (Zhao et al., 2020). To address this problem, in the three-sample MR design (Zhao

et al., 2019), IV selection is performed on a third dataset
{
γ̂∗j , σ

∗
γ̂j

}p
j=1

which is independent

of the exposure dataset and the outcome dataset. Specifically, an IV is included into the

analysis when |γ̂∗j | > δσ∗γ̂j with a pre-set threshold δ > 0. Ye et al. (2019) showed that

IV selection with an appropriate threshold δ could reduce the bias of the IVW estimator

and improve the efficiency of the dIVW estimator. They also recommended a threshold

δ =
√

2 log p to guarantee small probability of selecting any null IVs (i.e., γj = 0).

When IV selection is performed at a threshold δ, we define the IV strength as

κδ =

∑p
j=1 γ

2
jσ
−2
γ̂j
qδ,j

pδ
,
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where qδ,j = P
(
|γ̂∗j | > δσ∗γ̂j

)
and pδ =

∑p
j=1 qδ,j . Let Sδ =

{
j : |γ̂∗j | > δσ∗γ̂j

}
be the set of

selected IVs. Then, we can estimate κδ by κ̂δ = p̂−1
δ

∑
j∈Sδ

(
γ̂2
j − σ2

γ̂j

)
σ−2
γ̂j

, where p̂δ is the

number of selected IVs within Sδ. To study the theoretical properties of the proposed pIVW

estimator under IV selection, we have the following Assumption 3 for the summary-level

data in the selection dataset.

Assumption 3.
{
γ̂∗j , γ̂j, Γ̂j

}p
j=1

are mutually independent and γ̂∗j ∼ N
(
γj, σ

∗2
γ̂j

)
with known

variance σ∗2γ̂j for every j. The ratio of variances σ2
γ̂j
/σ∗2γ̂j is bounded away from zero and

infinity for all j.

Given a selection threshold δ, we evaluate the dIVW estimator β̂δ,dIV W = µ̂1,δ/µ̂2,δ and the

proposed pIVW estimator β̂δ,pIV W = µ̃1,δ/µ̃2,δ using the selected IVs within the set Sδ. In

the following Theorems 3.2, we show that, β̂δ,pIV W can still have smaller bias when λ = 1 and

has smaller variance when λ > 0 than β̂δ,dIV W , and β̂δ,pIV W is consistent and asymptotically

normal under some regularity conditions.

Theorem 3.2. Suppose that models (1)-(2) and Assumptions 1-3 hold, and κδ
√
pδ/max(1, δ2)→

∞. Then, we have the following conclusions.

(a) The approximate bias of β̂δ,dIV W is of order O
(

1
κδpδ

+ 1+δ4

κ2
δpδ

)
, while that of β̂δ,pIV W is only

of order o
(

1
κδpδ

+ 1+δ4

κ2
δpδ

)
when λ = 1.

(b) The approximate variance of β̂δ,pIV W is smaller than that of β̂δ,dIV W at the order O
(

1
κδpδ

+ 1+δ4

κ2
δpδ

)
when λ > 0.

(c) Further assume that maxjγ
2
jσ
−2
γ̂j
qδ,j/(κδpδ + pδ) → 0. Then, β̂δ,pIV W is consistent and

asymptotically normally distributed as

V
− 1

2
δ

(
β̂δ,pIV W − β

)
d−→ N (0, 1) ,

where

Vδ =

[
p∑
j=1

σ−2

Γ̂j
γ2
j qδ,j

]−2 p∑
j=1

[
σ−2

Γ̂j

(
γ2
j + σ2

γ̂j

)
+ β2σ2

γ̂j
σ−4

Γ̂j

(
γ2
j + 2σ2

γ̂j

)]
qδ,j.

The consistency and asymptotic normality of β̂δ,pIV W still hold, when we replace Vδ with the

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.25.21264115doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.25.21264115
http://creativecommons.org/licenses/by-nc/4.0/


estimator

V̂δ = µ̃−2
2,δ

∑
j∈Sδ

[
σ−2

Γ̂j
γ̂2
j + β̂2

δ,pIV Wσ
2
γ̂j
σ−4

Γ̂j

(
γ̂2
j + σ2

γ̂j

)]
.

Under the IV selection at a threshold δ, Theorem 3.2 provides similar conclusions to The-

orems 3.1. It indicates that the pIVW estimator can have smaller bias and variance than

the dIVW estimator, and it is consistent and asymptotically normal regardless of whether or

not the IV selection is conducted. In comparison, Theorem 3.2 also involves the IV selection

threshold δ which may vary with the number of IV p, for instance, δ =
√

2 log p. In the

special case when δ = 0 (i.e., no IV selection), Theorems 3.2 is equivalent to Theorems 3.1.

3.3 Accounting for Horizontal Pleiotropy

When there exists horizontal pleiotropy (i.e., direct effect of Gj on Y not mediated by

X), the linear structural model (2) can be modified as

Y = βX +

p∑
j=1

αjGj + U + εY , (6)

where αj denotes the direct genetic effect of Gj on the outcome Y (i.e., pleiotropic effect).

In this case, we have Γj = βγj + αj. We follow a common practice in many MR methods to

assume that the horizontal pleiotropy is balanced (i.e., the pleiotropic effect has mean zero)

(Ye et al., 2019; Zhao et al., 2020; Bowden et al., 2017; Cheng et al., 2020) and treat αj as

random effect following αj ∼ N (0, τ 2). Then, Γ̂j ∼ N
(
βγj, σ

2
Γ̂j

+ τ 2
)

has larger variance in

the presence of horizontal pleiotropy due to the non-zero τ 2. To account for the horizontal

pleiotropy, we adjust the variance estimation of β̂δ,pIV W by

V ∗δ =

[
p∑
j=1

σ−2

Γ̂j
γ2
j qδ,j

]−2 p∑
j=1

[
σ−2

Γ̂j

(
γ2
j + σ2

γ̂j

)(
1 + τ 2σ−2

Γ̂j

)
+ β2σ2

γ̂j
σ−4

Γ̂j

(
γ2
j + 2σ2

γ̂j

)]
qδ,j.

Following Ye et al. (2019), we derive an estimator of τ 2 as

τ̂2 =

∑p
j=1

[(
Γ̂j − β̂pIV W γ̂j

)2

− σ2
Γ̂j
− β̂2

pIV Wσ
2
γ̂j

]
σ−2

Γ̂j∑p
j=1 σ

−2

Γ̂j

. (7)

12
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Then, we estimate V ∗δ by

V̂ ∗δ = µ̃−2
2,δ

∑
j

[
σ−2

Γ̂j
γ̂2
j

(
1 + τ̂ 2σ−2

Γ̂j

)
+ β̂2

δ,pIV Wσ
2
γ̂j
σ−4

Γ̂j

(
γ̂2
j + σ2

γ̂j

)]
.

To establish the theoretical results for the bias, the variance and the asymptotic property

for β̂δ,pIV W , we replace Γ̂j ∼ N
(

Γj, σ
2
Γ̂j

)
in the Assumption 2 by Γ̂j ∼ N

(
Γj, σ

2
Γ̂j

+ τ 2
)

.

We further assume that τ 2 < c1σ
2
Γ̂j

with a constant c1 for all j, and that maxj σ
−2

Γ̂j
<

c2p
−1
∑p

j=1 σ
−2

Γ̂j
for a constant c2 in Theorem 3.2 (c). Then, Theorem 3.2 still hold with Vδ

and V̂δ replaced by V ∗δ and V̂ ∗δ , respectively.

4 Simulation Study

4.1 Simulation Settings

We randomly generate the summary-level data for 1000 IVs from γ̂j ∼ N
(
γj, σ

2
γ̂j

)
and

Γ̂j ∼ N
(

Γj, σ
2
Γ̂j

)
independently. For the true γj, we consider three scenarios as follows.

• Scenario A (some strong IVs and many null IVs): 10 IVs have γj ∼ N (0, 0.032) and

the rest of IVs have γj = 0. As such, the IV strength of 10 non-null IVs is around

15.54 and that of all 1000 IVs is around 0.16.

• Scenario B (many weak IVs and many null IVs): 100 IVs have γj ∼ N (0, 0.022) and

the rest of IVs have γj = 0. As such, the IV strength of 100 non-null IVs is around

3.11 and that of all 1000 IVs is around 0.31.

• Scenario C (all weak IVs):all IVs have γj ∼ N (0, 0.022). The IV strength is around

4.07.

Then, we let Γj = βγj + αj, where αj ∼ N (0, τ 2). We set β = 0.5, and τ = 0 and

0.01 representing the absence and the presence of horizontal pleiotropy, respectively. For the

variances σ2
γ̂j

and σ2
Γ̂j

, we calculate them by σ2
γ̂j

=
var(X)−γ2

j var(Gj)

nXvar(Gj)
and σ2

Γ̂j
=

var(Y )−Γ2
jvar(Gj)

nY var(Gj)
,

where nX and nY denote the sample sizes of the GWASs for the exposure and the outcome,

respectively. We set nX = nY = 100, 000. For var(Gj), we let Gj ∼ Bin(2,MAFj) and ran-

domly generate the minor allele frequencies by MAFj ∼ U(0.1, 0.5). For var(X) and var(Y ),
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we calculate them from Equations (1) and (6) with the variances of U , εX and εY being

2, respectively. Furthermore, we generate an independent dataset with γ̂∗j ∼ N
(
γj, σ

2
γ̂j
/2
)

for the IV selection at threshold δ =
√

2 log p = 3.72. The simulation is based on 10,000

replicates.

In the simulation study, we first investigate the impact of the penalty parameter λ on the

performance of the proposed pIVW estimator, where λ increases from 0 to 2.5 by 0.5. Then,

we compare the proposed pIVW estimator with λ = 1 to competing MR methods, including

the IVW, MR-Egger (Bowden et al., 2015), MR-Median (Bowden et al., 2016), MR-RAPS

(Zhao et al., 2020) and dIVW estimators. For fair comparison, we use l2 loss function for

MR-RAPS. The overview of the competing methods can be found in the Supplementary.

The performances among various methods are compared in terms of the relative bias (bias

divided by the true β) and the empirical standard error of the estimated causal effect, as

well as the coverage probability of 95% confidence interval.

4.2 Simulation Results

In Table 1, we investigate the performances of the pIVW estimator with various penalty

parameter λ when no horizontal pleiotropy exists and no IV selection is conducted. Note that,

when λ = 0, the pIVW estimator reduces to the dIVW estimator. The pIVW estimator has

smallest bias at λ = 1 under Scenarios A and B. Specifically, the bias decreases as λ increases

from 0 to 1 and increases as λ increases from 1 to 2.5. On the other hand, the empirical

standard error decreases as the increase of λ. The coverage probability of confidence interval

is generally around 95%. In Scenario C where there is larger IV strength than Scenarios

A and B, the pIVW estimator has nearly the same performance when λ varies from 0 to

2.5. We observe similar impact of λ on the performances of the pIVW estimator when there

exists horizontal pleiotropy and when the IVs are selected from an independent dataset

(Supplementary Tables S1.1-S1.3).

In Table 2, we compare the proposed pIVW estimator with the competing MR meth-

ods when no horizontal pleiotropy exists and no IV selection is conducted. Here, we use

the penalty parameter λ = 1 for the pIVW estimator. In Scenarios A and B, the IVW,

MR-Egger and MR-Median estimators have serious biases and poor coverage probabilities.
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Table 1: The performances of the pIVW estimator with various penalty parameter λ. The
relative bias (bias divided by the true causal effect), the empirical standard error and the
coverage probability of the 95% confidence interval. The true causal effect β = 0.5. No
horizontal pleiotropy exists (τ = 0). No IV selection is conducted. The simulation is based
on 10,000 replicates

Scenario
Penalty

parameter λ
Relative bias

(%)

Empirical
standard

error

Coverage
probability

(%)

A 0.0 15.3 1.272 96.1
(some strong and 0.5 4.7 0.382 95.6
many null IVs) 1.0 -1.1 0.341 94.9

1.5 -5.5 0.317 94.2
2.0 -9.1 0.299 93.6
2.5 -12.1 0.285 92.8

B 0.0 3.4 0.190 96.1
(many weak and 0.5 1.7 0.185 95.9
many null IVs) 1.0 0.2 0.181 95.7

1.5 -1.2 0.177 95.3
2.0 -2.6 0.173 95.0
2.5 -3.8 0.170 94.6

C 0.0 0.0 0.025 95.2
(all weak IVs) 0.5 0.0 0.025 95.2

1.0 0.0 0.025 95.2
1.5 -0.1 0.025 95.1
2.0 -0.1 0.025 95.1
2.5 -0.2 0.025 95.1

In comparison, the MR-RAPS and dIVW estimators have smaller biases, but we find that

they are likely to produce extreme estimates which result in their relatively large empirical

standard errors in Scenarios A (see Supplementary Figure S1.1 for the box plot of the es-

timates from 10,000 simulation replicates). In contrast, the proposed pIVW estimator has

smallest bias among six methods and also has smaller empirical standard errors than the

dIVW estimators. In Scenario C where the IV strength is larger, all the methods have im-

proved performances. However, the IVW, MR-Egger and MR-Median estimators still have

substantial biases, whereas the proposed pIVW estimator is nearly unbiased. The MR-RAPS

and dIVW estimators perform similarly to the pIVW estimator in this case. In addition,

we study the impact of the number of IVs (i.e., p) by increasing p from 1000 to 5000 in

all three scenarios and using 50 and 500 non-null IVs in Scenarios A and B, respectively

(Supplementary Tables S1.4). We find that the increase in p has little impact on the biases
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Table 2: Comparison among six methods. The relative bias (bias divided by the true causal
effect), the empirical standard error and the coverage probability of the 95% confidence
interval. The true causal effect β = 0.5. No horizontal pleiotropy exists (τ = 0). No IV
selection is conducted. The simulation is based on 10,000 replicates

Scenario Method
Relative bias

(%)

Empirical
standard

error

Coverage
probability

(%)

A IVW -86.5 0.039 0.0
(some strong and MR-Egger -73.1 0.060 0.0
many null IVs) MR-Median -70.9 0.061 0.0

MR-RAPS 9.2 1.595 94.2
dIVW 15.3 1.272 96.1
pIVW∗ -1.1 0.341 94.9

B IVW -76.8 0.037 0.0
(many weak and MR-Egger -63.2 0.057 0.0
many null IVs) MR-Median -65.7 0.054 0.0

MR-RAPS 1.6 0.167 95.0
dIVW 3.4 0.190 96.1
pIVW∗ 0.2 0.181 95.7

C IVW -19.7 0.019 0.1
(all weak IVs) MR-Egger -18.4 0.031 16.5

MR-Median -18.8 0.026 9.4
MR-RAPS 0.0 0.024 95.1
dIVW 0.0 0.025 95.2
pIVW∗ 0.0 0.025 95.2

∗The pIVW estimator with penalty parameter λ = 1

of the IVW, MR-Egger and MR-Median estimators, while it can further decrease the biases

and empirical standard errors of the MR-RAPS, dIVW and pIVW estimators.

Table 3 lists the results with IV selection at threshold δ =
√

2 log p. In Scenarios A and

B with many null IVs, the IV selection reduces the biases of the IVW, MR-Egger and MR-

Median estimators to a great extent, and it also reduces the empirical standard errors of the

MR-RAPS and dIVW and pIVW estimators. However, the IV selection is not necessarily

helpful for all methods in Scenario C where all the IVs are weak. In this case, the IV

selection increases the bias of MR-Egger and it also raises the empirical standard errors

of the MR-RAPS and dIVW and pIVW estimators. It is probably because the number of

IVs largely decreases under the IV selection but the gain in the IV strength is small, which

therefore reduces the efficiencies of methods. Nevertheless, the proposed pIVW estimator still

has smallest bias among six methods and smaller empirical standard error than the dIVW
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Table 3: Comparison among six methods. The relative bias (bias divided by the true causal
effect), the empirical standard error and the coverage probability of the 95% confidence
interval. The true causal effect β = 0.5. No horizontal pleiotropy exists (τ = 0). The IV
selection threshold δ =

√
2 log p. The simulation is based on 10,000 replicates

Scenario Method
Relative bias

(%)

Empirical
standard

error

Coverage
probability

(%)

A IVW -1.8 0.116 95.3
(some strong and MR-Egger -4.7 0.285 95.4
many null IVs) MR-Median -1.8 0.127 96.4

MR-RAPS 0.8 0.120 95.7
dIVW 1.5 0.121 95.6
pIVW∗ 0.1 0.119 95.1

B IVW -7.6 0.106 93.8
(many weak and MR-Egger -43.6 0.277 87.0
many null IVs) MR-Median -11.6 0.131 95.6

MR-RAPS 1.1 0.117 95.4
dIVW 1.8 0.120 95.5
pIVW∗ 0.4 0.118 95.2

C IVW -7.4 0.025 70.3
(all weak IVs) MR-Egger -40.6 0.064 11.3

MR-Median -10.8 0.033 74.4
MR-RAPS 0.0 0.028 95.2
dIVW 0.0 0.028 95.2
pIVW∗ 0.0 0.028 95.3

∗The pIVW estimator with penalty parameter λ = 1

estimator regardless of the use of IV selection. When there exists horizontal pleiotropy

(Supplementary Tables S1.5-S1.6), we find similar results to those in Tables 2-3 except that

all the methods have increased standard errors in these cases.

On the other hand, although the IVW estimator suffers from substantial bias in the

presence of weak IVs, Ye et al. (2019) indicated that the IVW estimator was still consistent

when the the true causal effect β was zero. Therefore, we conduct further simulation under

β = 0 (Supplementary Table S1.7). In this case, we find that all six methods are nearly

unbiased even in the the presence of weak IVs under Scenarios A-C. However, the MR-RAPS

and dIVW estimators still have some extremely large estimates and relatively large empirical

standard errors in Scenario A (Supplementary Figure S1.2). Overall, the proposed pIVW

estimator is applicable to more general situations than the competing methods, which has

smallest bias among all six methods and has smaller standard error than the dIVW estimator
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under the situations considered.

5 Obesity-related exposures and COVID-19 outcomes

In this section, we focus our interest on the causal effects of five obesity-related dis-

eases and traits (i.e., peripheral vascular disease, dyslipidemia, hypertensive disease, type 2

diabetes and BMI) on COVID-19. Specifically, we consider three categories of COVID-19

outcomes including (1) COVID-19 infection, (2) hospitalized COVID-19 and (3) critically ill

COVID-19, which involve population controls versus (1) cases with reported SARS-CoV-2

infection, (2) cases with moderate or severe COVID-19 defined as those hospitalized due to

symptoms associated with the infection, and (3) cases required respiratory support in hos-

pital or were deceased due to COVID-19, respectively (COVID-19 Host Genetics Initiative,

2021). The GWAS summary-level data of three categories of COVID-19 outcomes is obtained

from the GWAS meta-analysis round 5 of the COVID19 Host Genetics Initiative (COVID-19

Host Genetics Initiative, 2020), which involves up to 49,562 cases and two million controls

from 47 distinct studies with populations of different genetic ancestries, including European,

Admixed American, African, Middle Eastern, South Asian and East Asian. For BMI, the

selection dataset is from Akiyama et al. (Akiyama et al., 2017) with 173,430 individuals

of Asian ancestry and exposure dataset is from UK BioBank (Abbott et al., 2018) with

359,983 individuals of European ancestry. For the other four obesity-related diseases, the

selection datasets and the exposure datasets are from the GWAS meta-analyses (Zhu et al.,

2018) of Genetic Epidemiology Research on Adult Health and Aging (GERA) (Banda et al.,

2015) with 53,991 individuals of European ancestry and UK BioBank (Abbott et al., 2018)

with 108,039 individuals of European ancestry, respectively. More detailed data description

is provided in the Supplementary Table S2.1. To exclude correlated IVs, we perform the

linkage-disequilibrium clumping to remove the correlated genetic variants within 10Mb pairs

and with the linkage disequilibrium r2 < 0.001.

Figures 2 displays the estimated causal effects, the estimated standard errors and the

corresponding P values when no IV selection is conducted. Among the five obesity-related

diseases and traits, we find significant positive causal effects of hypertensive disease on hos-

pitalized COVID-19 and BMI on three COVID-19 outcomes by the pIVW estimator at 0.05
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(a) Outcome: COVID-19 infection

(b) Outcome: hospitalized COVID-19

(c) Outcome: critically ill COVID-19

Figure 2: Estimated causal effects of five obesity-related diseases and traits on (a) COVID-
19 infection (b) hospitalized COVID-19 (c) critically ill COVID-19. No IV selection is con-
ducted. In each cell, the first row displays the estimated causal effect and the estimated
standard error (in bracket), and the second row displays the P value which is labelled with
”∗” when less than 0.05 significance level. The pIVW estimator with penalty parameter
λ = 1
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significance level, which are concordant with some recent epidemiological studies indicating

that hypertensive disease and higher BMI were significantly associated with increased risks

of the COVID-19 outcomes (Popkin et al., 2020; Nakeshbandi et al., 2020; Klang et al., 2020;

Zhang et al., 2020; de Almeida-Pititto et al., 2020). Some previous MR studies have also

found significant causal effects of BMI on the COVID-19 outcomes (Leong et al., 2021; Aung

et al., 2020; Freuer et al., 2021; Ponsford et al., 2020), but there is still no MR analysis on

the hypertensive disease to the best of our knowledge. Additionally, the pIVW estimator

suggests that peripheral vascular disease is significantly associated with higher risks of three

COVID-19 outcomes under the IV selection at threshold δ =
√

2 log p (see Supplementary

Figure S2.1), which may improve the efficiency of the pIVW estimator. To our knowledge,

there also lack epidemiological studies and MR studies on the associations between periph-

eral vascular disease and the COVID-19 outcomes, despite a high incidence of peripheral

vascular disease as complication in COVID-19 patients (Garćıa-Ortega et al., 2021; Hanff

et al., 2020; Piazza and Morrow, 2020). For type 2 diabetes and dyslipidemia, the pIVW

estimator gives no evidence of their associations with the COVID-19 outcomes regardless

of the IV selection, while their associations with COVID-19 remain unclear due to discor-

dant findings among previous epidemiological studies and MR studies (Ponsford et al., 2020;

Leong et al., 2021; Zheng et al., 2020; Hariyanto and Kurniawan, 2020; Yang et al., 2021;

Aung et al., 2020).

Like the pIVW estimator, the competing MR methods also have significant findings

for the causal effects of peripheral vascular disease, hypertension disease and BMI on the

COVID-19 outcomes. But there are still large differences in the magnitude of estimates

among the methods in some cases. In particular, all methods provide very different estimates

for peripheral vascular disease, where the IV strength is relatively small (κ̂ = 0.04) indicating

the presence of a large amount of weak or null IVs. In this case, the IVW, MR-Egger and MR-

Median estimators have much smaller estimates than the pIVW estimator since they might

be biased toward zero in the presence of many weak IVs. On the contrary, the RAPS and

dIVW estimators generally have larger estimates than the pIVW estimator. In particular,

in the peripheral vascular disease and hospitalized COVID-19 data, the dIVW estimator has

a relatively large causal effect estimate (4.413) with an extreme estimated standard error

(95.942) when no IV selection is conducted. It is possibly because the denominator of the
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dIVW estimator is very close to zero in the presence many weak IVs. For dyslipidemia

(κ̂ = 0.82) and type 2 diabetes (κ̂ = 0.31), all methods have insignificant findings and have

similar estimates even in the presence many weak IVs. It is likely because the competing

MR methods could be nearly unbiased when the true causal effect is zero as shown in the

simulation study. For hypertension disease (κ̂ = 0.62), the RAPS and dIVW estimators have

similar estimates to the pIVW estimator, whereas the IVW, MR-Egger and MR-Median

estimators have much smaller estimates which are likely to be biased toward zero under

many weak IVs. When the IV strength becomes larger under IV selection (κ̂δ = 4.41;

see Supplementary Figure S2.1), the estimates of the IVW, MR-Egger and MR-Median

estimators are closer to those of the pIVW estimator because their biases are likely to be

reduced by the IV selection. For the BMI which has larger IV strength (κ̂ = 5.02), there

is smaller discrepancy among the methods. The pIVW estimator also reduces to the dIVW

estimator in this case and therefore they provide nearly the same results.

6 Discussion

In MR analysis, the estimation of causal effect can be biased by the presence of weak IVs.

The IVW estimator is one of the most popular MR methods but also suffers from substantial

bias due to the weak IVs. In this paper, we develop a penalized IVW (pIVW) estimator,

where the IVW estimator is adjusted by a proposed penalization method which prevents

the denominator of the ratio from being zero in order to decrease the bias and the variance

of the estimator in the presence of many weak IVs. Moreover, we allow for the horizontal

pleiotropy by adjusting the variance estimation of the pIVW estimator.

The proposed pIVW estimator have some nice features. First, our theoretical and nu-

merical results show that the proposed pIVW estimator can achieve smaller bias and vari-

ance compared to the dIVW estimator—another recently proposed extension of the IVW

estimator—in the presence of many weak IVs. Second, it is consistent and asymptotically

normal even in the presence of many weak IVs, and requires no further assumptions than

the dIVW estimator. Third, it has a unique and explicit form of solution, whereas many

competing MR methods that are robust to the weak IVs may not have a closed form of

solution and may have multiple diverging roots. We also illustrate the superior performance
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of the pIVW estimator over other popular MR methods through comprehensive simulation

study. Our theoretical and numerical results also provide guidance for the choice of the

penalty parameter λ in the pIVW estimator, which plays a role in the trade-off between the

bias and the variance. We show that the pIVW estimator has smallest bias when λ = 1

and generally has decreased variance as the increase of λ. Thus, to guarantee the pIVW

estimator to achieve smallest bias and valid inference, we recommend to choose the penalty

parameter to be 1 in practice. Note that, the dIVW estimator is also a special case of the

pIVW estimator when λ = 0. As the number of IVs and the IV strength increase, the

choice of λ tends to have less influence on the performance of the pIVW estimator, and the

pIVW estimator can also reduce to the dIVW estimator in this case. Therefore, our pIVW

estimator is applicable to more general situations and is recommended for practical use.

Further, we analyze the causal effects of five obesity-related diseases and traits (i.e., pe-

ripheral vascular disease, dyslipidemia, hypertensive disease, type 2 diabetes and BMI) on

three COVID-19 outcomes (i.e., COVID-19 infection, hospitalized COVID-19 and critically

ill COVID-19). We find significant positive causal effects of hypertensive disease on hospi-

talized COVID-19 and BMI on three COVID-19 outcomes by the pIVW estimator at 0.05

significance level, which are accordant with the findings from some recent epidemiological

studies. Additionally, we find significant positive causal effects of peripheral vascular disease

on three COVID-19 outcomes under IV selection, while there still lack epidemiological and

MR studies on the association between peripheral vascular disease and COVID-19 despite

its high incidence in COVID-19 patients. And we find no evidence supporting the associ-

ations of type 2 diabetes and dyslipidemia with the COVID-19 outcomes, while their roles

on the COVID-19 outcomes also remain unclear due to discordant findings among previous

epidemiological and MR studies. Overall, our findings suggest that the preventive strategies

aiming at obesity and some related diseases, such as control of body weight and preven-

tion of hypertensive disease and peripheral vascular disease, may help to reduce the risks of

COVID-19 infection and severity. On the other hand, comparing to other MR estimators,

the proposed pIVW estimator may have smaller bias in the presence of many weak IVs.

For instance, the peripheral vascular disease has small IV strengths implying the existence

of many weak or null IVs. In this case, the IVW estimator has an estimate very close to

zero, but which might be underestimated as shown in the simulation studies. In contrast,
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the dIVW estimator yields a very large estimate with an extreme standard error, but which

might also be inflated because its denominator could be close to zero when many weak IVs

exist. The causal effect estimate from the proposed pIVW estimator may be more reliable

and have smaller bias, which lies between those of the IVW and dIVW estimators and has

much smaller standard error than that of the dIVW estimator.

In future study, it would also be possible to extend the proposed penalization method

in the pIVW estimator to more flexible model frameworks for handling the weak IVs and

other problems in MR simultaneously, such as the extension to MR-Egger for the unbalanced

pleiotropy.
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