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Abstract

SARS-CoV-2 is spread primarily through person-to-person contacts. Quantifying population contact
rates is important for understanding the impact of physical distancing policies and for modeling COVID-
19, but contact patterns have changed substantially over time due to shifting policies and behaviors.
There are surprisingly few empirical estimates of age-structured contact rates in the United States both
before and throughout the COVID-19 pandemic that capture these changes. Here, we use data from
six waves of the Berkeley Interpersonal Contact Survey (BICS), which collected detailed contact data
between March 22, 2020 and February 15, 2021 across six metropolitan designated market areas (DMA)
in the United States. Contact rates were low across all six DMAs at the start of the pandemic. We
find steady increases in the mean and median number of contacts across these localities over time, as
well as a greater proportion of respondents reporting a high number of contacts. We also find that
young adults between ages 18 and 34 reported more contacts on average compared to other age groups.
The 65 and older age group consistently reported low levels of contact throughout the study period. To
understand the impact of these changing contact patterns, we simulate COVID-19 dynamics in each DMA
using an age-structured mechanistic model. We compare results from models that use BICS contact rate
estimates versus commonly used alternative contact rate sources. We find that simulations parameterized
with BICS estimates give insight into time-varying changes in relative incidence by age group that are
not captured in the absence of these frequently updated estimates. We also find that simulation results
based on BICS estimates closely match observed data on the age distribution of cases, and changes in
these distributions over time. Together these findings highlight the role of different age groups in driving
and sustaining SARS-CoV-2 transmission in the U.S. We also show the utility of repeated contact surveys
in revealing heterogeneities in the epidemiology of COVID-19 across localities in the United States.
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Introduction1

SARS-CoV-2, the causative agent for COVID-19, is transmitted primarily through close person-to-person interactions2

(Cevik, Kuppalli, Kindrachuk, & Peiris, 2020). The transmission dynamics of SARS-CoV-2, and subsequent mor-3

bidity and mortality from COVID-19, are therefore fundamentally dependent on changing patterns of interpersonal4
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interaction in the population. The multiple waves that have characterized the epidemic so far in the USA have been5

caused by shifting contact rates, as populations have responded to the pandemic with various physical distancing6

policies. Quantifying population contact patterns and changes in these patterns over time is especially important for7

identifying demographic groups that are driving and sustaining disease transmission in a population.8

Age-specific contact patterns are especially relevant for COVID-19 because clinical outcomes, and likely suscep-9

tibility to infection, vary by age (Davies et al., 2020). While the age structure of COVID-19 infections has changed10

over time, with more cases reported among younger age groups during the summer of 2020 compared to the initial11

wave (Boehmer, 2020), evidence is limited regarding the relative importance of changing testing rates versus changing12

contact patterns in driving this finding. Further, the extent to which different demographic groups shifted in driving13

and sustaining transmission over time remains unclear (Monod et al., 2021).14

The unprecedented adoption of physical distancing policies during the COVID-19 pandemic has, meanwhile,15

created dynamic contact rates and patterns that are challenging to capture in the absence of frequently collected16

data. Interpersonal contact rates declined significantly after lockdown and shelter-in-place mandates were announced17

in US cities in mid-March, and slowly increased over the summer after restrictions began to ease by late April (Feehan18

& Mahmud, 2021). There is, however, considerable heterogeneity across the US in terms of both the infection and19

mortality burden of COVID-19, as well as the types of non-pharmaceutical interventions (NPI) adopted. As such,20

quantifying the variation in contact rates between cities over time is key to understanding spatial and temporal21

variations in contact patterns and infection burden by age and demographics, as well as the effectiveness of physical22

distancing policies in different localities over time.23

Surveys have been used previously to quantify population contact rates to understand transmission dynamics24

of respiratory pathogens (Rohani, Zhong, & King, 2010; Kucharski et al., 2014; Eames, Tilston, Brooks-Pollock, &25

Edmunds, 2012; Melegaro, Jit, Gay, Zagheni, & Edmunds, 2011). In the absence of existing surveys for the US,26

many age-structured mathematical models of SARS-CoV-2 transmission in the US rely on pre-pandemic estimates27

of contact patterns (Hay, Haw, Hanage, Metcalf, & Mina, 2020; Miller, Becker, Grenfell, & Metcalf, 2020; Enns28

et al., 2020), based on the POLYMOD study in Europe (Mossong et al., 2008), or on synthetic (modeled) contact29

rates (Davies et al., 2020; Bubar et al., 2021; Prem et al., 2020; Larremore et al., 2021) based on POLYMOD and30

country-specific socio-demographic data (Prem, Cook, & Jit, 2017; Prem et al., 2021). While there has been an31

increase in contact surveys conducted globally since the landmark POLYMOD study (Hoang et al., 2019), there have32

been few studies conducted in the US that allow for estimation of age-specific contact patterns (Zagheni et al., 2008;33

A. Dorelien, Ramen, & Swanson, 2020), and there have been no studies to date in the US covering more than one34

locality (A. M. Dorelien et al., 2020) over the course of the COVID-19 pandemic. In general, there is a deficit in35

contact survey studies conducted in the US both before the pandemic and especially during its course.36

To this end, the ongoing Berkeley Interpersonal Contact Survey (BICS) has been collecting detailed contact data37

in the US over the course of the COVID-19 pandemic. The BICS consists of six survey waves that have collected38

information on respondents’ total number of contacts, demographic information about their contacts, and the nature39

of these contacts (e.g. location, duration). Existing work has used BICS data to quantify changes in contact rates40

over time and to assess the effectiveness of social distancing measures nationally (Feehan & Mahmud, 2021). Here,41

we focus on the BICS quota samples collected from six US designated market areas (DMA) surrounding Atlanta,42

the San Francisco Bay Area, Boston, New York City, Philadelphia, and Phoenix. We first quantify overall contact43

patterns across the six DMAs over time to understand the impact of NPIs on interpersonal contact. We then use these44

data to parameterize an age-structured mechanistic model of SARS-CoV-2 transmission to understand changes in45

age-specific infection burden over time. We show that the median number of reported contacts was fairly stable over46

time across DMAs, but that the mean number of reported contacts generally increased over time. Moreover, across47

DMAs, 18-34 year olds reported the highest mean number of contacts compared to other age groups in most survey48

waves. Our simulation results from a mathematical model parameterized with empirical contact rates from the BICS49

study closely match observed data on the proportion of COVID-19 cases by age group; in contrast, simulation results50

from a model parameterized with alternative contact rate estimates commonly used in the literature are unable to51
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capture the shift in proportion of cases by age group. This approach provides a way to improve model estimates52

during outbreaks, which will be critical for responding to COVID-19 and future outbreaks.53

Results54

We use data from six waves of the BICS study collected between March 22 and April 8, 2020 (Wave 0); between April55

10 and May 4, 2020 (Wave 1); between June 17 and 23, 2020 (Wave 2); between September 11 and 26, 2020 (Wave56

3); between November 29 and December 16, 2020 (Wave 4); and between February 7 and February 15, 2021 (Wave57

5). We quantified the mean and median number of contacts in each BICS survey wave across the six DMAs (Figure58

1A). Despite the differences in COVID-19 epidemic trajectories and NPIs enforced across the different DMAs, all59

localities show similar dynamics in the mean and median number of reported contacts over time. Although median60

values across DMAs were fairly stable across survey waves, the means varied substantially because the distribution of61

the number of contacts was highly right-skewed across all locations, with the mean number of contacts exceeding the62

median for most survey waves. These differences were driven by changes in contact rates among those reporting large63

numbers of contacts per day (Figure 1B). In the first wave, the vast majority of respondents reported having five or64

fewer contacts per day, but the mean generally increased across survey waves and peaked in Wave 3 (September 11-26,65

2020) for Atlanta, the Bay Area, New York City, and Philadelphia. Respondents in Atlanta reported the highest66

mean number of contacts during the BICS study at 7.4 contacts in Wave 3. The mean number of contacts in Boston67

increased relatively steadily to a value of 6.1 by Wave 5 (February 7-15, 2021). Phoenix respondents, meanwhile,68

reported a peak in Wave 4 at 6.2 mean contacts (November 29-December 16, 2020). While the median number of69

reported contacts remained relatively stable, the distribution of the number of contacts changed across survey waves,70

with a larger proportion of respondents reporting more than five contacts over time.71

Figure 1: Descriptive analyses of the number of contacts estimated for the 6 DMAs across BICS Waves 0-5.
A) Mean number of contacts (red line) and median number of contacts (blue line) reported during survey
Waves 0-5 in each DMA in the BICS study. B) Proportion of BICS respondents reporting 0-5, 6-10, 11-20,
and >20 contacts during survey Waves 0-5 in each DMA of the BICS study. The y-axis is truncated and
begins at the value 0.5.
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To investigate factors related to reporting a high number of contacts, we fit a logistic regression to the outcome72

of reporting more than seven contacts (Supplementary Figure S2). The cutoff of seven contacts represents the 80th73

percentile in the BICS data across survey waves and DMAs. We find that compared to the reference group of 18-2474

year olds, 25-34 and 35-44 year olds had a higher odds of reporting more than seven contacts, while 65+ year olds75

were least likely to report more than seven contacts. Atlanta residents had a higher odds of reporting more than76

seven contacts compared to the other DMAs in the BICS study. Black and other non-Hispanics had a lower odds77

of reporting more than seven contacts relative to White non-Hispanics and Hispanics. Consistent with trends in the78

mean number of contacts, the odds of respondents reporting more than seven contacts increased from Wave 0 to79

Wave 3 and 4 before slightly declining. Males had a higher odds relative to females of reporting more than seven80

contacts; and the odds of reporting more than seven contacts was higher on a weekday compared to the weekend.81

Figure 2: The mean number of contacts reported by BICS participants aged 18-34, 35-64, and 65+ years old
during survey Waves 0-5 in each DMA of the BICS study.

To understand the demographic groups driving and sustaining transmission, we analyzed the mean number of82

reported contacts by respondent age groups. Across DMAs, 18-34 year olds consistently reported the highest mean83

number of contacts (Figure 2). In particular, the mean number of contacts reported by 18-34 year olds in the Bay84

Area increased from 3.2 mean contacts in Wave 0 to a peak of 9.0 mean contacts in Wave 3 before declining. The85

middle age group of 35-64 year olds in general exhibited a steady increase in the mean number of contacts over86

time across DMAs. In Phoenix and Atlanta, 35-64 year olds had the highest mean number of contacts in Waves 487

and 5. Lastly, 65+ year olds consistently reported the lowest mean number of contacts relative to other age groups88

across time and DMAs. Supplementary Figure S3 shows the corresponding figure with the mean number of reported89

contacts for five age groups.90

Importantly, transmission dynamics depend not only on the mean number of contacts reported by age group, but91

also on which age groups interact with one another due to age-specific differences in susceptibility to infection and92

likelihood of presenting with symptomatic disease. The age-structured contact matrices estimated for all reported93

contacts and reported non-household contacts in each survey wave and DMA are shown in Supplementary Figures94

S4 and S5. The age-structured matrices are similar across DMAs, with consistent evidence of assortative mixing and95

a higher mean number of contacts reported by 25-34 and 35-44 year olds starting in Wave 3.96

To understand the impact of changing contact rates and patterns on disease burden, we simulated SARS-CoV-97
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Figure 3: Mechanistic model results of total incidence for four age groups using BICS contact rate data, with
comparisons to observed data where possible. A) Simulated incidence rate ratio (IRR) representing total
incidence for each DMA and BICS survey wave comparing 18-34, 35-64, and 65+ year olds to the reference
age group of 0-17 year olds. 90% uncertainty bounds are estimated from running 1,000 simulations with 1,000
different values of R0. The mathematical model is parameterized using empirical contact rate estimates from
the BICS study. B) Scatterplot comparing the proportion of COVID-19 cases in each age group (represented
by symbol shape) and survey wave (represented by symbol color) estimated in the simulation based on clinical
incidence vs. reported in actual epidemiological data for New York City. The empirical data for New York
City represent the proportion of positive COVID-19 molecular tests by age group for New York City. C)
Scatterplot comparing the proportion of COVID-19 cases in each age group (represented by symbol shape)
and survey wave (represented by symbol color) estimated in the simulation based on clinical incidence vs.
reported in actual epidemiological data for Phoenix. The empirical data for Phoenix represent the proportion
of confirmed and probable COVID-19 cases reported in Maricopa County.

2 transmission in each of the six DMAs using an age-structured mechanistic model parametrized with the BICS98

contact rate data. We present the model results in terms of four age groups for visual simplicity given the similarity99

in patterns between certain age groups, but the results for all six age groups are presented in Supplementary Figures100

S6 and S7. We present simulation results in terms of the reference group of 0-17 year olds, and also compare with101

observed data where possible.102

We find that 18-34 year olds and 35-64 year olds had a higher total incidence (including both clinical and103

subclinical cases) of COVID-19 relative to the reference group of 0-17 year olds across DMAs and time (Figure 3A).104

Despite their much higher susceptibility to infection, the oldest age group of 65+ year olds had comparable or lower105

total incidence relative to 0-17 year olds in the simulation results, particularly in later waves, as a result of 65+ year106

olds’ substantially lower contact rates. When we look at clinical incidence, as expected, we find that all age groups107

have higher clinical incidence relative to the reference group of 0-17 year olds across survey waves due to the model’s108

incorporation of age-dependent propensity to have clinical symptoms (Supplementary Figure S8).109

Where possible based on data availability, we compare the proportion of simulated cases by age group using110

clinical incidence results and the proportion of observed COVID-19 cases by age group. We find a very high correlation111

between the simulated and observed proportions of COVID-19 cases by age group for both New York City and Phoenix112

(Figures 3B and 3C). Our simulations are also consistent with the changing proportion of clinical cases observed in113
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empirical data. For instance, we are able to simulate the observed decline in the proportion of cases in the 65+ age114

group in New York and Phoenix after the first wave of the outbreak in March to May 2020 (Supplementary Figure115

S9). This suggests that this observed trend was not simply the result of changes in testing rates by age group, but116

rather a result of the very low contact rates in the 65 and older age group compared to younger age groups. In the117

Bay Area, our simulations captured the relatively high proportion of cases among 25-45 year olds, again reflecting118

the age group’s relatively higher contact rates.119

The changes in the incidence rate ratio across survey waves and DMAs that are evident in Figure 3 contrast with120

the time- and DMA-invariant estimates from the simulation results when the model is parameterized with alternative121

contact rate estimates commonly used in the literature (Supplementary Figure S10). Although these alternative122

contact matrices are scaled at each wave to change the intensity of contacts based on information from the BICS123

survey, the age-structured contact patterns are invariant over time, highlighting the need for frequent up-to-date124

empirical estimates. As a result, the estimated IRRs for different age groups relative to the youngest age group of125

0-17 year olds are stable over time, and differences between DMAs are driven by differences in their demography126

rather than changes in the contact patterns.127

Discussion128

The ongoing COVID-19 pandemic and physical distancing policies have fundamentally altered interpersonal interac-129

tions across the US and globally. Yet, little is known about how contact rates and patterns have changed and the130

implications for SARS-CoV-2 transmission dynamics. We studied contact rate patterns across six DMAs in the US131

over the course of the COVID-19 pandemic, and modeled the impact of changing contact patterns on incidence across132

different age groups. We find that the median and mean number of contacts reported across survey waves steadily133

increased from March 2020 to September 2020 before declining slightly. Mean contact rate differences were driven by134

shifting distributions of rates, with some individuals reporting many contacts per day. We find consistent differences135

across age groups; 18-34 year olds reported among the highest mean number of contacts across survey waves in all136

DMAs, while 65+ year olds reported the lowest. The similarity in contact patterns across DMAs is surprising given137

their heterogeneity in the timing and reinforcement of different physical distancing policies, although this may reflect138

the fact that the six DMAs included in the BICS study are all large, urban metropolitan areas.139

Our simulation results suggest time- and DMA-varying differences in the relative incidence of COVID-19 infections140

by age groups. Despite 65+ year olds having a higher susceptibility to infection relative to other age groups, they141

had comparable or lower incidence rates of COVID-19 in our simulations relative to younger age groups due to their142

substantially lower mean daily contact rates. In contrast to the results from the model parameterized with empirical143

contact rate estimates from BICS, the simulation results using synthetic contact data fail to capture shifts in the144

proportion of COVID-19 cases by age group. This difference reinforces the value of collecting empirical contact rate145

estimates in order to capture spatial and temporal changes in contact rates and patterns.146

This analysis has several limitations to consider. First, BICS uses a quota sample from an online panel instead of147

a probability sample. However, respondent-level calibration weights were estimated to adjust for sample composition148

to produce representative surveys for each DMA. Moreover, information bias is a concern for contact surveys due to149

difficulties with recall and social desirability bias, which may be expected to be especially pronounced in the middle150

of a pandemic. Respondents may therefore have under-reported their number of contacts in the survey. At the same151

time, the BICS survey captures only two-way conversational and physical contacts. Other types of contacts that152

might be relevant to SARS-CoV-2 transmission, including, for example, contacts that happen from being in close153

proximity to others, were not captured in this analysis. The analyses also did not take into account the nature of these154

conversational and physical contacts, such as mask wearing, distance maintained during the contact, and duration of155

the contact. In terms of generalizability, the BICS is only offered in English, limiting the ability to generalize results156

to Americans whose primary language is not English. Lastly, since children, defined as less than age 18, are not157

included in the BICS, previously developed methods were used to fill missing data values for the youngest age group.158
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A key limitation of the simulation results is the significant parameter uncertainty of the compartmental model.159

To capture some of this uncertainty, we used a range of values for our estimate of R0. Our method for estimating the160

reproduction number (Wallinga & Teunis, 2004) assumes that all cases in our dataset acquired infections from others161

in the dataset, and it thereby excludes unreported cases and asymptomatic individuals; this may bias the estimate162

if the proportion of unreported cases changed over time. Lastly, comparisons between the proportion of simulated163

cases by age group and the proportion of observed COVID-19 cases are difficult to make due to differences in age164

categorization of the observed data, as well as temporal changes in testing rates by age, which are not captured in165

our model. We therefore only presented these comparisons for New York City and Phoenix.166

Contact rate estimates from the BICS study offer unique insight into how age-structured contact patterns have167

changed across time and localities in the US during the COVID-19 pandemic. Since the BICS study is an ongoing168

effort, data from additional survey waves will continue to provide invaluable information on how contact rate patterns169

continue to change as the COVID-19 pandemic evolves. Examining whether and when contact rates return to pre-170

pandemic levels, and understanding the relationship between contact rates and NPIs for SARS-CoV-2 and other171

respiratory pathogens, are key directions for future research.172

Materials and Methods173

Survey Population174

The BICS data collection occurred in six waves: between March 22 and April 8, 2020 (Wave 0); between April 10175

and May 4, 2020 (Wave 1); between June 17 and 23, 2020 (Wave 2); between September 11 and 26, 2020 (Wave176

3); between November 29 and December 16, 2020 (Wave 4); and between February 7 and February 15, 2021 (Wave177

5). A total of 15,712 respondents were surveyed in the US (Wave 0 n=1,437; Wave 1 n=2,627; Wave 2 n=2,431;178

Wave 3 n=3,248; Wave 4 n=2,993; Wave 5 n=2,976) (Supplementary Table S1). Respondents were recruited using179

Lucid, an online panel provider. Two samples were obtained in each survey wave: 1) a quota sample intended to180

be representative of the US (national sample); and 2) smaller quota samples from the DMAs of New York City, the181

San Francisco Bay Area, Atlanta, Phoenix, Boston, and Philadelphia (city-level samples). Philadelphia was added in182

Wave 1.183

The survey methodology is described in more detail in Feehan and Mahmud (2021) (Feehan & Mahmud, 2021).184

In brief, respondents were asked to report the number of people with whom they had contact on the day before the185

survey interview. Contacts were defined as a two-way conversation with three or more words in the physical presence186

of another person. Starting in Wave 1, the survey also asked about physical contacts. Demographic information was187

collected on respondents (e.g. age, gender, race/ethnicity, household size, educational status). Respondents were188

asked to provide detailed information on up to three of their reported contacts, including demographic information of189

their contacts, as well as the duration and location of the contact. In Wave 0, respondents reported all contacts, and190

then reported how many of their contacts were non-household members. Beginning in Wave 1, respondents provided191

a household roster and then reported their non-household contacts.192

All survey respondents provided informed consent and the project was approved by the UC Berkeley IRB (Protocol193

2020-03-13128).194

Survey Weights195

Supplementary Table S2 presents the unweighted survey population’s demographics. Since some respondents were196

oversampled in select cities, weights were used to account for sample composition, as previously described (Feehan197

& Mahmud, 2021). Respondent-level weights were estimated to represent the number of people that respondent i198

represents in their city’s general population. These weights were designed based on a model-based inference approach,199

in which pseudo-probabilities of inclusion are calculated, and then calibrated based on age categories, sex, age200

by sex interactions, educations, race, Hispanicity, household size category, and whether the respondent lives in a201
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rural/surburban/urban county. We performed the calibration using the R packages autumn and leafpeepr (Rossell,202

n.d.; Aaron, n.d.). Characteristics of survey respondents in the unweighted vs. weighted samples are shown in203

Supplementary Figure S1. Contact-level weights were estimated since detailed information on reported contacts was204

only collected for a subset of a respondent’s total number of contacts (up to three contacts).205

Construction of Contact Matrices206

The methods for estimating age-structured contact matrices for each wave and DMA of the BICS study have been207

previously described (Feehan & Mahmud, 2021), and are summarized here. Respondents were grouped into six age208

categories: 0-17, 18-24, 25-34, 35-44, 45-64, and 65+. The raw contact matrix M has entries mij , representing the209

average number of daily contacts between respondents in age group, i, with their reported contacts in age group, j.210

We adjusted for survey weights, such that mij was calculated as:211

mij =

Ti∑
t=1

wt,iyt,j

Ti∑
t=1

wt,i

(1)

where wt,i is the weight for reports made by participant t, in age group i, and yt,j is the number of reported contacts212

made by respondent t in age group j. Ti is the total number of respondents in age group i.213

We next created a reciprocal contact matrix C, such that on the population level the total number of contacts that214

respondents in age group i report with individuals in age group j is equal to the number of contacts that respondents215

in age group j report with individuals in age group i :216

cij =
mijNi +mjiNj

2Ni
(2)

where cij are the entries of the reciprocal contact matrix, C, and Ni and Nj the population size in age class i and j,217

respectively.218

Since children, defined as <18 years old, were excluded from the BICS study, using methods previously developed219

and used (Klepac et al., 2020; Jarvis et al., 2020), we imputed the within age group average number of contacts for220

the youngest age group. Briefly, for each wave and DMA of the BICS study, we calculated the ratio of the dominant221

eigenvalue of the contact matrix estimated from the BICS data to the dominant eigenvalue of the contact matrix222

estimated for the US from Prem et al. (2021) (Prem et al., 2021), with school contacts removed to reflect school223

closure policies in 2020. The matrices for this calculation were subset to exclude age groups with missing values. We224

then multiplied the within age group average number of contacts for the youngest age group from Prem et al. (2021)225

by this ratio.226

Logistic Regression227

We examined factors associated with the probability of reporting >7 contacts, where seven represents the 80th228

percentile in the BICS data across all waves and DMAs. We fit a logistic regression model using maximum likelihood:229

logit(µi) = α+ XT
i β (3)

where µi is the probability of respondent i reporting >7 contacts, Xi is a vector of covariates, including age group,230

DMA, gender, race/ethnicity (Non-Hispanic White, Non-Hispanic Black/Hispanic/Non-Hispanic Other), survey wave,231

and whether the survey day was a weekday, and β is a vector of the estimated coefficients.232
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Age-structured Mechanistic Transmission Model233

Model Structure234

We used an age-structured Susceptible-Exposed-Infectious-Recovered (SEIR) model for each of the six DMAs (Figure235

4. The SEIR model has two infectious compartments – clinical and subclinical. Consistent with the definitions used236

in Davies et al. (2020) (Davies et al., 2020), we defined clinical, infectious individuals as symptomatic individuals,237

while subclinical, infectious individuals include both pauci-symptomatic and asymptomatic individuals who are likely238

to remain undetected by surveillance. For all compartments the index i references the age category (0-17, 18-24,239

25-34, 35-44, 45-64, and 65+). Individuals in the susceptible compartment, Si, transition to the exposed (but not yet240

infectious) compartment, Ei, through contact with a clinical or subclinical infectious individual at rate λi(t), which241

is a time-varying, age-group-specific force of infection. Individuals then transition to either the clinical or subclinical242

infectious compartment (ICi ,ISc
i ) at rate σ, which is the inverse of the mean latent period. Individuals in the infectious243

compartments recover at rate γ, which is the inverse of the mean infectious period. Two assumptions incorporated in244

the model are that subclinical infectious individuals are less infectious than clinical infectious individuals (represented245

by the reduction factor α), and that the probability of being a clinical vs. subclinical infectious individual is dependent246

only on age. This model structure is in line with compartmental models frequently used in existing COVID-19 research247

(Davies et al., 2020; Miller et al., 2020; Prem et al., 2020). Parameters values used in the model are described in248

Supplementary Table S3.249

Figure 4: Age-structured SEIR model structure and corresponding equations representing susceptible (Si),
exposed but not yet infectious, (Ei), clinical infectious (ICi ), subclinical infectious (ISc

i ), and recovered
individuals (Ri). Age groups [0,18), [18,25), [25,35), [35,45), [45,65), [65,100] are denoted by the index i, ui
is the age-dependent probability of infection given contact with an infectious individual, Cij,t is the time-
varying number of individuals in age group j contacted by an individual in age group i per day at time t,
α is the multiplicative factor by which the probability of infection is reduced for subclinical infections, δi is
the age-dependent probability of being clinically infectious, σ is the inverse of the latent period, and γ is the
recovery rate.

Simulation Conditions250

Simulations start two weeks prior to the first reported case in each DMA and run to the last date of the Wave 5251

BICS survey, February 15, 2021. This assumption for the starting date, which attempts to account for delays in the252

reporting of the initial cases of COVID-19 in the US, results in a starting date across the six DMAs that ranges from253

the start of February to mid-February. This date range is consistent with estimated introduction times for SARS-254
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CoV-2 in the U.S. (Jorden et al., 2020). To initialize the outbreaks, each DMA starts with the same proportion255

of the population (p0 = 0.0001) exposed or infected, which is evenly spread across age groups in the exposed (Ei),256

clinical infectious (ICi ), and subclinical infectious (ISc
i ) compartments. The number of susceptible people in each257

age group at the start of the simulation, (Si), is therefore the number of people in age group in the city based258

on ACS demographic data, minus the number of people starting in the exposed, clinical infectious, and subclinical259

infectious compartments. All population values are from the 1-year extract of the 2018 American Community Survey260

provided by IPUMS (Ruggles et al., 2021). Our model results are robust to starting simulations with different initial261

proportions exposed or infected, as shown in sensitivity analyses (Supplementary Figure S11).262

The age-structured contact matrices for each DMA and wave from BICS were used as the time-varying contact263

matrices in the SEIR models. Contact matrices from each BICS wave were used during the period in which the264

survey wave was conducted. We linearly interpolated average reported contacts for each cell of the contact matrices265

between survey waves to obtain the daily contact matrices Cij,t. Since the Philadelphia DMA was added in Wave266

1, we used the Wave 0 national age-structured contact matrix as Wave 0 for contact rates in Philadelphia (Feehan267

& Mahmud, 2021). The BICS Wave 0 captures contact rates starting mid-March, when social distancing mandates268

were already enforced. To capture pre-pandemic baseline contact rates we used the model-based synthetic contact269

matrix estimated by Prem et al. (2021) for the US (Prem et al., 2021). Since the synthetic contact matrix from Prem270

et al. (2021) is available in 5-year age bands, to align the youngest age group, we assumed that the 15-17 year olds271

in the Prem et al. (2021) study have the same contact rates on average as 0-14 year olds.272

To examine simulation results in the absence of empirical estimates from BICS, we also ran simulations that
were parameterized using the same simulation conditions with one exception: the contact matrices were synthetic
age-structured contact rates for the US from the literature (Prem et al., 2021). For each BICS wave, we calculated
the ratio of the dominant eigenvalue of the DMA-specific BICS contact matrix and the dominant eigenvalue of the
Prem et al. (2021) US matrix, representing pre-pandemic contact rates. The estimated ratio from this calculation
represents a factor by which to scale the pre-pandemic contact rate estimates to capture changing contact rates over
the course of the pandemic. We multiplied the synthetic US contact matrix from Prem et al. (2021) by these scaling
factors to obtain the contact rates, Cs

ij,w in these simulations:

Cs
ij,w =

ρBw,d

ρR
∗Rij (4)

where ρBw,d is the dominant eigenvalue of the DMA-specific (d) and wave-specific (w) BICS contact matrix, ρR is273

the dominant eigenvalue of the Prem et al. (2021) US contact matrix, and Rij is the US contact matrix from Prem274

et al. (2021). We interpolated between survey waves to obtain daily contact matrices Cs
ij,t.275

Calibration to Target R0 Estimates276

The age-dependent probabilities of infection given contact with an infectious individual, ui, were scaled by calibrating277

to target R0 estimates. First, we estimated the daily effective reproductive number, Rt, for each DMA using the278

method developed by Wallinga and Teunis (2004) (Wallinga & Teunis, 2004), which is a likelihood-based method279

that considers pairs of cases and uses the distribution of the serial interval (i.e. the time interval between successive280

cases in a transmission chain) and a time series of incident cases. We assumed a serial interval with mean 3.96 days281

and standard deviation of 4.75 days (Du et al., 2020). We also used an alternate method (Cori, Ferguson, Fraser, &282

Cauchemez, 2013) for estimating Rt as a sensitivity analysis, although the two estimation methods are expected to283

yield similar results for our purposes of estimating only early Rt values in a retrospective manner (Gostic et al., 2020).284

Our target estimates of R0 for each DMA are the maximum mean value estimated from the Wallinga and Teunis285

(2004) and Cori et. al. (2013) methods in the first week of estimates. Lastly, we multiplied the next-generation286

matrix (NGM) by a constant to achieve the target dominant eigenvalue, which is R0. Using methods previously287

described to derive an expression for the NGM (Diekmann, Heesterbeek, & Roberts, 2010), we defined the NGM as288

the following:289
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NGMij = uiCij [δi + (1− δi)α] (5)

where ui is a vector of the age-group-specific probabilities of infection given contact with an infectious individual, Cij290

is the number of individuals in age group j contacted by an individual in age group i based on the Prem et al. (2021)291

US contact matrix, representing estimates of pre-pandemic contact rates, δi is the age-dependent probability of being292

clinically infectious, and α is the multiplicative factor by which the probability infection is reduced for subclinical293

infections.294

Parameter Uncertainty295

To incorporate parameter uncertainty, we drew 1,000 values of R0 for each DMA from a truncated normal distribution,296

with the mean estimated from the R0 estimation procedures (Atlanta = 2.4; Bay Area = 2.1; Boston = 2.9; New297

York City = 3.2, Philadelphia = 2.4; Phoenix = 2.8), a standard deviation of 0.54, and a minimum possible value of298

0.8. In a sensitivity analysis, we also varied the proportion of the population assumed to be latent or infectious at299

the start of the outbreak (p0) from 1/5 to 5 times p0 = 0.0001 (Supplementary Figure S11).300

Presentation of Results301

In presenting our results, we calculated the incidence rate ratio (IRR) of infections for each BICS survey wave and302

DMA as the following:303

IRRi,w,d =
Incidencei,w,d/Ni,d

Incidence[0,18),w,d/N[0,18),d

(6)

where i references the age categories 18-34, 35-64, and 65+, w references the BICS survey wave, d references one of304

the six DMAs, Incidence refers to the simulated incidence on the midpoint date of each BICS survey wave, and N305

refers to the population size of the age group based on ACS data. IRR estimates shown in Figure 3A are based on306

simulated total incidence while estimates in Supplementary Figure S8 are based on simulated clinical incidence. We307

used [0,18) year olds as the reference age group. We collapsed the simulation results into four age categories for visual308

simplicity due to similar findings in certain age groups, but we show the simulations results for all six age categories309

in Supplementary Figures S6 and S7.310

For New York City and Phoenix, we also compared the simulated proportion of clinical infections in each age311

group to the empirical proportion of COVID-19 infections in each age group. The New York City data are weekly data312

from the New York City Department of Health and Mental Hygiene (Coronavirus Data, 2021) on the proportions of313

positive COVID-19 molecular tests by age group. The data for Phoenix are weekly confirmed and probable COVID-19314

cases by age group reported by the Maricopa County Public Health Department (Dashboard: Weekly confirmed and315

probably COVID-19 cases over time by age group, 2021). Since the youngest age group reported by the Maricopa316

County Public Health Department data source is [0,19), we treated this age category as [0,18) in order to align this317

youngest group with our simulation results for plotting purposes. Comparing age-specific simulated and empirical318

COVID-19 proportions was not possible for the other DMAs due to the lack of empirical data on age categories that319

are comparable to those in our simulations.320

All analyses are conducted in R version 3.6.3.321
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Table S1: Survey sample size by BICS survey wave and DMA
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Table S2: Characteristics of BICS survey respondents (unweighted)
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Parameter Value Source

Time-varying contact rate between
age group i and j, Cij,t

Estimated for each city Berkeley Interpersonal
Contact Survey (BICS)

Relative infectiousness of subclinical
vs. clinical individuals, α

0.5 Assumption, in line with
the range presented in
(McEvoy et al., 2020)

Mean latent period, 1/σ 3 days (Davies et al., 2020)
Mean infectiousness period, 1/γ 6 days (Holmdahl, Kahn, Hay,

Buckee, & Mina, 2020)
Probability of having clinical symp-
toms per age group, δi

[0.26, 0.24, 0.30, 0.36, 0.48, 0.69] (Davies et al., 2020)

Susceptibility to infection per age
group, ui

[0.39, 0.62, 0.81, 0.83, 0.81, 0.74] (Davies et al., 2020)

Table S3: Parameters used in SEIR model
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Figure S1: Characteristics of BICS survey respondents when weighted vs. unweighted. We used calibra-
tion weights to improve the representativeness of our sample. Each facet shows the unweighted (red) and
calibration weighted (blue) composition of survey respondents for a given covariate.
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Figure S2: Estimated exponentiated coefficients from the logistic regression, where the outcome is the odds
of reporting >7 contacts, representing the 80th percentile in the BICS data.

Figure S3: The mean number of contacts reported by BICS participants aged 18-24, 25-34, 35-44, 45-64,
and 65+ years old during survey Waves 0-5 in each DMA of the BICS study.
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Figure S4: Estimated age-structured contact matrices for all contacts reported in each survey wave and
DMA from the BICS.
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Figure S5: Estimated age-structured contact matrices for non-household contacts reported in each survey
wave and DMA from the BICS.
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Figure S6: Mechanistic model results of total incidence for six age groups using BICS contact rate data, with
comparisons to observed data where possible. Simulated incidence rate ratio (IRR) using total incidence for
each DMA and BICS survey wave comparing 18-24, 25-34, 35-44, 45-64, and 65+ year olds to the reference age
group of 0-17 year olds. 90% uncertainty bounds are estimated from running 1,000 simulations with 1,000
different values of R0. The mathematical model is parameterized using empirical contact rate estimates
from the BICS study. B) Scatterplot comparing the proportion of COVID-19 cases in each age group
(represented by symbol shape) and survey wave (represented by symbol color) estimated in the simulation vs.
reported in actual epidemiological data for New York City. The empirical data for New York City represent
the proportion of positive COVID-19 molecular tests by age group for New York City). C) Scatterplot
comparing the proportion of COVID-19 cases in each age group (represented by symbol shape) and survey
wave (represented by symbol color) estimated in the simulation vs. reported in actual epidemiological data
for Phoenix. The empirical data for Phoenix represent the proportion of confirmed and probable COVID-19
cases reported in Maricopa County.
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Figure S7: Mechanistic model results of total incidence for six age groups using alternative contact rate data.
Simulated incidence rate ratio (IRR) using total incidence for each DMA and BICS survey wave comparing
18-24, 25-34, 35-44, 45-64, and 65+ year olds to the reference age group of 0-17 year olds. 90% uncertainty
bounds are estimated from running 1,000 simulations with 1,000 different values of R0. The mathematical
model is parameterized using pre-pandemic synthetic contact rate estimates that have been scaled at each
BICS survey wave using information from the BICS study.
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Figure S8: Mechanistic model results of clinical incidence for four age groups using BICS contact rate
data. A) Simulated incidence rate ratio (IRR) using clinical incidence for each DMA and BICS survey wave
comparing 18-34, 35-64, and 65+ year olds to the reference age group of 0-17 year olds.. 90% uncertainty
bounds are estimated from running 1,000 simulations with 1,000 different values of R0. The mathematical
model is parameterized using empirical contact rate estimates from the BICS study.
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Figure S9: Comparisons of the proportion of clinical infections estimated from the mechanistic model vs.
observed data for each DMA. A) Proportion of simulated clinical infections by age group in each DMA,
aggregated by month. Note that the age groups presented for each DMA are different in order to align
the simulated and observed data as closely as possible. B) Observed proportion of cases by age group in
each DMA, aggregated by month. Note that except for New York City, the age groups presented in the
observed data do not perfectly match those from the simulation. Data for Atlanta DMA are based on the
daily number of new confirmed cases by age group for Georgia state (COVID-19 Status Report , 2021). Data
for the San Francisco Bay Area DMA are based on the daily number of new confirmed cases by age group
for the city of San Francisco (COVID-19 Cases Summarized by Age Group, 2021).Data for Boston DMA
are based on the weekly proportion of positive test results by age group for Massachusetts state (Archive
of COVID-19 cases in Massachusetts (COVID-19 Raw Data - March 22, 2021), 2021). Data for New York
City DMA are based on the weekly proportion of positive test results by age group for New York City
(Coronavirus Data, 2021). Data for Philadelphia DMA are based on the weekly number of confirmed cases
per 10,000 population by age group for the city of Philadelphia, which were then combined with demographic
data from ACS (Testing data (Trends, Infections by Age), 2021). Data for Phoenix DMA are based on the
weekly number of confirmed and probable COVID-19 cases by age group for Maricopa County (Dashboard:
Weekly confirmed and probably COVID-19 cases over time by age group, 2021). Except for Boston, data
were summed over days or weeks to aggregate to months. For Boston, the third week of each month was
selected to represent the month’s value.
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Figure S10: Mechanistic model results of total incidence for four age groups using alternative contact rate
data. Simulated incidence rate ratio (IRR) using total incidence for each DMA and BICS survey wave
comparing 18-34, 35-64, and 65+ year olds to the reference age group of 0-17 year olds. 90% uncertainty
bounds are estimated from running 1,000 simulations with 1,000 different values of R0. The mathematical
model is parameterized using pre-pandemic synthetic contact rate estimates that have been scaled at each
BICS survey wave using information from the BICS study.
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Figure S11: Mechanistic model results of total incidence for four age groups with varied p0, using BICS
contact rate data. Simulated incidence rate ratio (IRR) using total incidence for each DMA and BICS
survey wave comparing 18-34, 35-64, and 65+ year olds to the reference age group of 0-17 year olds. Solid
colored lines represent results when simulations are seeded with p0 = 0.0001. Lighter colored lines for each
age group represent simulations seeded with p0 = 0.00002 and p0 = 0.0005 as sensitivity analyses. The
mathematical model is parameterized using empirical contact rate estimates from the BICS study.
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