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ABSTRACT
Although significant advancements in computer-aided diagnostics using artificial intelligence (AI)
have been made, to date, no viable method for radiation-induced skin reaction (RISR) analysis and
classification is available. The objective of this single-center study was to develop machine learning
and deep learning approaches using deep convolutional neural networks (CNNs) for automatic clas-
sification of RISRs according to the Common Terminology Criteria for Adverse Events (CTCAE)
grading system. ScarletredⓇ Vision, a novel and state-of-the-art digital skin imaging method capable
of remote monitoring and objective assessment of acute RISRs was used to convert 2D digital skin
images using the CIELAB color space and conduct SEV* measurements. A set of different machine
learning and deep convolutional neural network-based algorithms has been explored for the automatic
classification of RISRs. A total of 2263 distinct images from 209 patients were analyzed for training
and testing the machine learning and CNN algorithms. For a 2-class problem of healthy skin (grade
0) versus erythema (grade ≥ 1), all machine learning models produced an accuracy of above 70%,
and the sensitivity and specificity of erythema recognition were 67-72% and 72-83%, respectively.
The CNN produced a test accuracy of 74%, sensitivity of 66%, and specificity of 83% for predicting
healthy and erythema cases. For the severity grade prediction of a 3-class problem (grade 0 versus
1 versus 2), the overall test accuracy was 60-67%, and the sensitivities were 56-82%, 35-59%, and
65-72%, respectively. For estimating the severity grade of each class, the CNN obtained an accu-
racy of 73%, 66%, and 82%, respectively. Ensemble learning combines several individual predictions
to obtain a better generalization performance. Furthermore, we exploited ensemble learning by de-
ploying a CNN model as a meta-learner. The ensemble CNN based on bagging and majority voting
shows an accuracy, sensitivity and specificity of 87%, 90%, and 82% for a 2-class problem, respec-
tively. For a 3-class problem, the ensemble CNN shows an overall accuracy of 66%, while for each
grade (0, 1, and 2) accuracies were 76%, 69%, and 87%, sensitivities were 70%, 57%, and 71%, and
specificities were 78%, 75%, and 95%, respectively. This study is the first to focus on erythema in
radiation-dermatitis and produces benchmark results using machine learning models. The outcome
of this study validates that the proposed system can act as a pre-screening and decision support tool
for oncologists or patients to provide fast, reliable, and efficient assessment of erythema grading.

1. Introduction

Radiotherapy is the primary treatment for several types
of malignant tumors and has become a central and effec-
tive component of modern oncologic strategies. One of the
most common side effects of therapeutic ionizing radiation
is an acute radiation-induced skin reaction (RISR), which
is characterized as structural tissue damage, nonspecific in-
flammation, and the release of free radicals, interacting and
promoting each other [1]. Depending on the total dose ap-
plied, fractionation scheme, volume of irradiated skin, and
the patient’s individual radiosensitivity, acute changes to the
skin become visible and often lead to pain, discomfort, itch-
ing, and a diminished esthetic appearance, all of which af-
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fect the patient’s quality of life and the progress of the can-
cer treatment [2, 3, 4]. In clinical practice, acute RISRs are
still evaluated using subjective visual classifications such as
those provided by the Common Terminology Criteria for
Adverse Events (CTCAE) and the Radiation Therapy On-
cologyGroup/EuropeanOrganization for Research and Treat-
ment of Cancer (RTOG/EORTC) [5, 6]. According to the
degree of severity, the morphological changes are divided
into distinct grades, starting with grade 1, characterized by
faint erythema or dry desquamation, and ending with skin
necrosis and ulceration of the dermis in grade 4 reactions
(Table 1).

However, a purely visual inspection is prone to a con-
siderable risk of interobserver variability [7]. To overcome
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Figure 1: Workflow from clinical image to machine learning and deep learning-based CTCAE grade classification. A skin reaction is visually assessed
according to CTCAE criteria. Using the ScarletredⓇVision app and a calibration sticker, an image is taken and uploaded to the online platform. The images
are then analyzed by measuring L∗, +a∗, +b∗, and SEV ∗ values in defined areas of interest and then augmented. They are then used in machine learning
and deep learning respectively. To train both a CNN and standard machine learning models, CTCAE grades from a visual assessment are used and the
trained algorithms are applied to automatically predict the CTCAE grade for new images or measurements.

these shortcomings, efforts have been made to develop al-
ternative approaches for erythema assessment. An increas-
ing number of data have demonstrated that methods objec-
tively measuring the skin color or dermal oxygenation of
hemoglobin can provide additional information [8, 9, 10,
11, 12]. Spectra-based methods illuminate the patient’s skin
with a certain wavelength or whole spectrum and measure
the reflected light. The instruments are comparably inex-
pensive and yield reliable results; however, they have to be
applied to patients irradiated with skin, which can be very
painful. Furthermore, the area of the skin that can be mea-
sured is extremely small. Therefore, it is sometimes nec-
essary to perform multiple measurements to obtain repro-
ducible results; however, this makes the data collection and
analysis process time intensive, and the method is thus inel-
igible for everyday clinical use. Another approach is apply-
ing an image-basedmethod that enables an image to be taken
under standardized light conditions. To obtain standardized
images, a large amount of expensive equipment and exper-
tise is required. In addition, this method requires no contact
with the skin and large areas can be evaluated [13]. Hyper-
spectral imaging combines the advantages of both methods
by illuminating the skin and measuring the reflected light at
a distance. This newmethod has yielded the most promising
results [14, 15]. However, a lack of standardization remains,
and a time-consuming preparation as well as the high cost of
a manual analysis have limited the application of these new
methods in routine clinical practice.

In one of our previous studies, we introduced ScarletredⓇ
Vision, a novel and state-of-the-art digital skin imagingmethod

capable of remote monitoring and objective assessment of
acute RISRs [16]. A normalization patch was attached to
the region of interest and a color-calibrated picturewas taken
with a smartphone app. After marking the area of interest,
the images were automatically transformed into the three-
dimensional CIELAB color space defined by the Commis-
sion International d’Eclairage (CIE). The three coordinates
are the L∗ parameter, which stands for the lightness; the a∗
parameter, which reflects the green/red axis; and the b∗ pa-
rameter, which reflects the blue/ yellow axis. This patented
medical device overcomes the pitfalls of previous described
image- and spectra-based methods by introducing a stan-
dardized erythema value (SEV ∗) derived from the algo-
rithm (L∗max - L∗) x +a∗ in combination with a color nor-
malization sticker [17]. From a practical standpoint, we be-
lieve that there is a high need for further automation of the
image-analysis method to find its applicability in daily clin-
ical practice. Overcoming this last hurdle requires further
developing and integrating novel state-of-the-art machine
learning (ML) methods.

In recent years, artificial intelligence (AI) has increasingly
found its way into clinical research as well as in medical rou-
tines. AI algorithms have already been successfully used for
diagnostic [18, 19, 20] and predictive tasks [21] and deep
learning neural networks have led to state-of-the-art results
for image classification, object detection, and image seg-
mentation in a broad field of medical applications. Several
studies have demonstrated that AI algorithms are even supe-
rior to a clinician performance [22]. By contrast, the use of
AI approaches for the classification of acute RISRs has been
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CTCAE Terms: Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Dermatitis radiation Faint erythema or dry
desquamation

Moderate to brisk ery-
thema; patchy moist
desquamation, mostly
confined to skin folds
and creases; moderate
edema

Moist desquamation
in areas other than
skin folds and creases;
bleeding induced by
minor trauma or
abrasion

Life threatening conse-
quences; skin necro-
sis or ulceration of full
thicknessdermis; spon-
taneous bleeding from
involved site; skin graft
indicated

Death

Table 1: Injury, poisoning and procedural complications: Different CTCAE grades and their clinical description published by the U.S. DoHSS

Definition: A reaction occurring as a result of exposure to biologically effective levels of ionizing radiation.
Navigational Note: Synonym: Radiation induced skin toxicities (CTCAE v4.03)

relatively less studied. In this study, we aimed at develop-
ing ML models and a novel deep convolutional neural net-
work (CNN) based architecture to automatically analyze and
classify the RISR severity according to the CTCAE grading
system (Figure 1).

2. Materials and methods

2.1. Study design and patient demographics

In this prospective clinical single-center study, 209 con-
secutive patients with histologically confirmed cancer and
treated with radiotherapy between January and July 2019
at a tertiary academic center were included. The median
age in years was 67.8 (range of 36.3-86.2), 65.9 (mean), and
±12 (SD). In this study, 25.4% had fair skin and blue eyes
(Fitzpatrick type I-II), 67.9% had darker olive to light brown
skin (Fitzpatrick type III), 6.2% had light brown skin (Fitz-
patrick type IV), and 0.5% had dark brown skin (Fitzpatrick
type V) (Table 2). The study complied with the Declara-
tion of Helsinki and was conducted according to the national
law. The study protocol was approved by the local ethical
committee (approval number, EK 30-023 ex 17/18 from 06
March 2018). All patients provided informed consent.
2.2. Radiotherapy setup

All patients were irradiated in a clinical routine setup us-
ing ClinacⓇ iX and Novalis Tx system linear accelerators.
Depending on the tumor stage, localization, and performance
status, the radiation method is either three-dimensional con-
formal radiotherapy or intensity-modulated radiotherapy (IM-
RT), including volumetric modulated arc therapy (VMAT)
with normal or hypofractionated photon beams. According
to the study protocol, RISR was scored daily by a board-
certified radiation oncologist, based on the EORTC/RTOG-
CTCAE v4.03 classification system beginning at baseline
before the start of radiotherapy.
2.3. Image analysis

Skin imaging conditions play an important role in the suc-
cess of remote classification. In total, 2263 distinct images

of the irradiated area were taken before the treatment and at
regular intervals during the treatment by using a CE certified
medical device, i.e., ScarletredⓇVision. To reflect a more
realistic clinical scenario, the study design foresaw variable
acquisition conditions in terms of illumination, viewpoint,
and background. Before taking an image, a ScarletredⓇ Skin
patch was applied to the healthy skin of the patients next to
the irradiated area. The ScarletredⓇ Mobile App automat-
ically recognized the ScarletredⓇ Skin Patch and enabled
standardization of exposure, colors, imaging distance, and
angle. The image was uploaded to the ScarletredⓇ Online
Platform, and the total irradiated area was marked for a sub-
sequent image analysis. In breast cancer, the analysis area
was further subdivided into four quadrants to exclude irra-
diation markings (Figure 1). A single reference area was
drawn around the patch to normalize the healthy skin and
individual skin tone of the person. For each pixel inside a
drawn area, theL∗,+a∗ (posA), and+b∗ (posB) coordinates
of the CIELAB-color space and the standardized erythema
value (SEV ∗) were determined. The means of L∗, +a∗,
+b∗, and SEV ∗ for every area were saved in the database.

In addition to the “mean” values, the difference of these
values over time was calculated, resulting in the “meandt”
value for every analyzed parameter. Further, the difference
over time was calculated for the reference area. This value
was then subtracted from the “meandt” value of the area of
interest in the same picture. The resulting “meandt-refdt”
value was saved in the database and used in the following
analysis. The images were scored according to the CTCAE
v4.03 criteria by a board-certified radiation oncologist. Con-
tinuous parameters were expressed as the mean, standard
deviation, median, interquartile range, minimum, and max-
imum and visualized using histograms, boxplots, and QQ-
plots. Categorical data were presented as absolute and rel-
ative frequencies, and bar charts were used for visualization.

Boxplots were used to visualize the differences in themea-
surements between images scoredwith different CTCAEgra-
des based on a visual assessment. Furthermore, statistical
hypothesis tests were applied to our biostatistics tool to de-
termine if the groups were significantly different. Since the
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Characteristics N % median / mean / SD

Patients 209

Sex (%) Female: 90.0%
Male: 10.0%

Age (years) 67.8 / 65.9 / ±12.1

Fitzpatrick type
(%)

I-II: 25.4%
III: 67.9%
IV: 6.2%
V: 0.5%

Treated region
(%)

Breast: 86.1%
HNC: 11.5%
Pelvis: 0.5%
Thorax: 1.2%

Images 2263

Table 2: Patient characteristics (N = 209)

underlying distribution of the data often did not follow a nor-
mal distribution (Supplementary Figure 14), we used a non-
parametric test to compare the different groups. To avoid
overpowered testing, which is the generation of significant
results from small differences between groups owing to the
large sample size, we chose a random sample of 35 data
points per group. The Kruskal-Wallis test was applied to
compare themeasurements (meandt-refdt) ofmultiple groups
at a significance level of 5%.
2.4. Signal intensity mapping

The calculated signal intensity map was extracted from
the original images used as gray scale value images, and sub-
sequently, the high dynamic pseudo-gray scale images were
transformed into pseudo-colored images to optimize for hu-
man perception. Each signal intensity value was mapped to
a color according to our developed color maps, which were
designed and tailored to the underlying signal (Figure 2).
Eachmap defines a color gradient over theminimum tomax-
imum signal range, which enables the visualization of more
details and potential signal saturation.
2.5. Machine learning

To deduce the erythema grade from L∗, +a∗, +b∗, and
SEV ∗ (meandt-refdt)measurements, machine learningmod-
els were built, including multinomial logistic regression, de-
cision trees, random forest, and support vector machines.
Because L∗ and +a∗ show a high correlation to SEV ∗, we

used either the former two or the latter parameter as a fea-
ture. In addition, we also used +b∗ as the potential feature.
To build and evaluate the models, the dataset was split ran-
domly into two groups, 75% were assigned to the training
set and the remaining 25% were assigned to the test set. To
compare the different machine learning models, three effi-
cacy parameters were used (Table 3). The overall accuracy
indicates what percentage of cases the machine learning and
visual assessment resulted in the same grade. The sensitivity
(true positive rate) was calculated as the number of true pos-
itive results divided by the sum of all the true positive and
false negative results, whereas the specificity (true negative
rate) was calculated as the number of true negative results
divided by the sum of all true negative and false positive re-
sults. Furthermore, the model with the highest accuracy was
visualized using a confusion matrix and ROC curves. ROC
curves then plot the false positive rate on the x-axis against
the true positive rate on the y-axis for every grade. The false
positive rate (1-specificity) is all false positive instances di-
vided by all true negative and false positive instances.
2.6. CNN classification

In this task, we implemented a CNN algorithm to distin-
guish between healthy and erythematous classes along with
estimating the severity grade. The input dataset consisted of
pseudo gray images resulting fromL∗,+a∗,+b∗, andSEV ∗

signal mapping. A total of 75% of the dataset was used for
training, whereas the remaining 25% was used for testing.

Once the images were processed and collected, we imple-
mented a series of pre-processing techniques, including data
preparation and augmentation. For data augmentation, the
input images were rescaled (1./255), rotated 15–45 degrees,
shuffled, batched, and resized to a pixel resolution of 128
× 128. Figures 3 and 4, provide a visual representation of
the total number of images for training CNNs; a closer and
representative look on single images is provided in Figure
2). The images in the figures show randomness since the
input dataset has been shuffled to prevent the model from
overfitting and to generalise better on test dataset. The fig-
ures contain images from different color-spaces (SEV ∗,L∗,
+a∗, and +b∗). Data augmentation is one of the approaches
used to reduce the chances of overfitting; however, it is in-
sufficient because the augmented data are still highly cor-
related (we therefore implemented a dropout and regular-
ization to prevent an overfitting). Multiple approaches have
been implemented to prevent the model from overfitting, in-
cluding dropouts, early stopping, and regularization. Fur-
ther, we implemented ensemble learning to reduce the ef-
fect of the variance in the input data. According to Shen et
al. the neural networks (NNs) are the main building blocks
of the deep learning architecture [23], which has three ac-
tions: receiving an input, processing information and gener-
ating an output. A neural network consists of an input layer,
hidden layers, and an output layer. The feed-forward neural
network is the simplest form of a neuronal network (Figure
5). It comprises weights, activation functions, and biases.
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Figure 2: Calibrated RGB original image is shown on the left. Images were signal augmented and analysed by measuring the SEV ∗, L∗, +a∗ and +b∗
values in pseudo gray scale in defined areas of interest, as shown in the top row. The signal intensity map was generated using pseudo-gray scale value
images and by mapping each signal value to a pseudo color according to our developed color maps, which are designed and tailored to the underlying
signals. In this study, the pseudo-gray scale images were used for training the CNN algorithms. In the first and second rows, the pseudo-gray scale and
pseudo-colored signal intensity mapped images are in the following order: SEV ∗, L∗, +a∗ (posA) and +b∗ (posB)

Classification in CTCAE-grade Positive outcome: visual assessment Negative outcome: visual assessment

Positive outcome: ML models True positive (TP) False positive (FP)

Negative outcome: ML models False negative (FN) True negative (TN)

Accuracy = (TP+TN)
(TP+TN+FP+FN)

Sensititvity = (TP )
(TP+FN)

Specificity = TN
(TN+FP )

False positive rate (FPR)= FP
(FP+TN) = 1-Specificity

Table 3: Overview on the meaning of true positive, false positive, false negative, true negative, false positive rate, true positive rate, sensitivity, specificity,
and accuracy. It is exemplary for classification into CTCAE grade, which can either be positive or negative (any other grade) in a visual assessment and
random forest.

At each node, the output can be computed as follows:
� = f (W T × x + b) (1)

The softmax function is used as an activation function at
the layer to convert the output values as probabilistic, which
are added up to 1.

A neural network accepts an input as a vector, whereas a
CNN can take both structured and unstructured data. CNNs
have shown promising results in image classification and ob-
ject detection [24, 25, 26]. The training process involves two
steps: forward and backward propagation. A CNN algo-
rithm consists of convolutional layers and subsampling lay-
ers, followed by a fully connected layer. The output from
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Figure 3: Input data (pseudo-gray) used for training the CNN architec-
ture. The images are from L∗, +a∗, +b∗, and SEV ∗. During the image
augmentation technique, images were re-scaled by 1./255, rotated, batched,
shuffled, and resized images.
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Figure 4: Pseudo-color input data for training a CNN. These images be-
long to the L∗, +a∗, +b∗, and SEV ∗ color-space. During the image aug-
mentation technique, images were re-scaled by 1./255, rotated, batched,
shuffled, and resized.

the convolutional layer can be computed as follows:

Alj = f (
M l−1
∑

i=1
Al−1i ×wlij + blj) (2)

Where
M l−1 is the number of feature maps in the (l-1) layer,
Aij is the activation output at the ltℎ layer,
wij is the kernel weights from feature map j at (l-1) layer,
and bij is the bias.

The convolutional layers help in feature extraction, and
maxpooling layers are mainly used for downsampling the
features from convolutional layers, which is followed by a
fully connected layer and consists of flattened and dense lay-
ers (with a ReLU and softmax activation layer). In convo-
lutional layers, the filter weights shared by the CNN in each
receptive field (particular layer) are the same, which ulti-
mately reduces the memory storage of different weights and
improves the performance of the CNN architecture. Convo-
lutional layers also help in dimensionality reduction.

For this task, we addressed two main types of problems:
For the first, binary classification is applied in which the
CNN (Figure 5) was implemented to classify healthy (grade
0) versus erythema (grade≥ 1) using the radiation oncologist-
labeled images. For the second, a multi-class classification
is applied, the task of which was to estimate the severity
of the erythema into grades 0, 1, and 2 using a modified
CNN. For a 2-class problem, the CNN algorithm consists
of zero padding (ZeroPadding2D), which helps retain the
relevant erythema features present at the corner or border
points. The algorithm was followed by five convolutional
layers (Conv2D). These and the pooling layers are used to re-
tain the relevant features and reduce the dimensionality from
padded input images, which particularly reduces the compu-
tation cost and improves the performance of the CNNmodel.
Each convolutional layer was followed by a max pooling
layer, batch normalization, dropout layers, the approach de-
veloped by Srivastava et al. [27], and and fully connected
dense layers. The sigmoid activation layer was implemented
to bring the output within the probabilistic range of 0 and 1,
and a similar architecture was used for a 3-class problem.

We applied a dropout in convolutional layers because the
dropout in an FCL is different. In an FCL, it is equivalent to
zeroing out a column from the weight matrix associated with
the FCL, which is basically applied to drop certain neurons
from the neural network (to not train a neuron), whereas in
a convolutional layer, this does not produce the same effect
as zeroing out a column of the weight matrix corresponding
to the convolutional kernel and still allows the weights in
the column to be trained. We implemented a dropout in the
convolutional layers to multiply Bernoulli noise into the fea-
ture maps of the network [28]. To prevent the model from
overfitting (owing to a large number of total parameters and
low input sample size, the model is prone to overfitting),
we used dropout, early stopping, and reduced learning rate
techniques while training the CNN. Normalization is con-
ducted by subtracting the batch mean from each activation
and dividing it by the batch standard deviation. Fine-tuning
was applied to the following hyperparameters, including the
number of output layers:
• Learning rate (�) = 0.0001
• Activation = relu, sigmoid, and softmax
• Optimizer = adam
• Batch_size = 32
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Convolutional Neural Network (CNN) Architecture

Zero Padding Convolution + Pooling + Dropout + Batch Normalisation Flatten Dense + Softmax OutputInput

Figure 5: Convolutional neural network (CNN) architecture

• Padding = (3,3)
• Pool size = (3,3)
• Kernel_initializer = glorot_uniform
• Bias_initializer = normal
• Loss = binary_crossentropy, and categorial_crossentropy
• Metrics = accuracy
• Min (�) = 0.00001
2.6.1. Ensembled convolutional neural networks (eCNN)

For classification tasks, ensemble learning was originally
proposed in 1965; with the idea of training multiple base
learners as ensemble members and combining their predic-
tions into a single output, which should have a better per-
formance on average than any other ensemble member with
an uncorrelated error on the target datasets [29]. Many re-
searchers have demonstrated the outstanding performance of
ensemble learning for classification tasks [30, 31, 32, 33].
In ensemble learning, if one prediction is wrong, the other
predictions will counteract this. The ensemble models are
broadly categorized into ensemble models as follows:
• Majority voting or vote count
• Averaging
• Weighted average
• Stacking
• Blending
• Bagging
• Boosting
In this study, we implemented a combination of bagging and
majority voting or vote count to create an ensemble learn-
ing model using a CNN. Bagging is mainly used when data
must have variance; otherwise, bagging adds levels of addi-
tional iterations, and this approach irons out variance from
a dataset. To verify the presence of variance in the input
dataset, we trained and evaluated the CNNonmultiple chunks
(L∗, +a∗, +b∗, and SEV ∗) of the dataset separately and ob-
served that the predictions were different, which confirmed
such presence. In this experiment, the ensemble CNN con-
sisted of two main approaches: first, bagging was used to

split the dataset into different subsets to train and evaluate
different iterations of the CNN, which was followed by ma-
jority voting to aggregate the prediction (maximum counts)
to form a final prediction; in the case of an equal vote count,
the prediction on the SEV ∗ image was taken into account,
resulting in a final prediction. In the paper "128 shades
of Red", we discussed about a higher dynamic application
range of the measured erythema signal when compared to
the signal parameter +A∗ and the SEV ∗ enables objective
quantification of skin erythema. The SEV ∗, is also capable
of measuring erythema based skin alterations by simultane-
ously providing a long dynamic range from bright to very
dark skin tones (Fitzpatrick Type 0 to 5).

3. Results

3.1. Visual data exploration

From a visual assessment of the categorical variables, the
total number of all scored grades 1, 2, and 3 was (n = 2263).
To train the machine learning models, the statistical values
(SEV ∗_mean, L∗_mean, +a∗_mean, and +b∗_mean) were
computed by analyzing six regions of interest per image us-
ing the ScarletredⓇ Vision online platform. Most of the im-
ages came from breast cancer patients, whereas a few were
from head and neck (HNC) or prostate cancer patients (Table
2). Here, SEV ∗_meandt-refdt shows a heavy tailed distri-
bution for the areas scored with a CTCAE grade of 0, and
similar results were observed for L∗_meandt-refdt (Supple-
mentary Figure 14).
3.2. Comparison

Figure 6 shows boxplots for the measurements of all ana-
lyzed images separated by score. A clear trend in theSEV ∗_
meandt-refdt and +a∗_ meandt-refdt can be observed when
the CTCAE grade from a visual assessment increases. By
contrast, we can only observe small variations in+b∗_meandt-
refdt between the CTCAE grades. To see if the differences
are significant, a Kruskal-Wallis test was conducted on a ran-
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Figure 6: Boxplots for images with CTCAE-grades (score) of 0, 1 and 2 shown for every parameter (SEV ∗_meandt-refdt at the top left in dark red,
L∗_meandt-refdt at the top right in gray, +a∗_meandt-refdt at the mid-point in light red, and +b∗_meandt-refdt at the bottom in yellow).

dom subset of the data (n = 35 per group). The null hypoth-
esis for this test states that there will be no significant differ-
ence for any of the groups. At a significance level of 5%, we
can reject this hypothesis if the p-value is below 0.05. This
is not the case for+b∗_ meandt-refdt (p-value of 0.0318) but
is the case for all others (p value equal to or below 0.0001)
indicating a highly significant difference between the groups
in the latter parameters, which also supports the outcome of
our previous study "128 Shades of Red" [16].
3.3. Machine learning and CNN

Because of the promising results indicating a significant
difference in the measurements between different CTCAE
grades, differentMLmodels have been tested regarding their

capability to reproduce the CTCAE grading by using the
measurement data. A support vector machine (SVM), deci-
sion tree, random forest and multinomial logistic regression
(MLR) were tested. In parallel, a novel CNNmodel was de-
veloped to deduce the score directly from the pseudo grey
images, representing the L∗, +a∗, +b∗, and SEV ∗ signals.
3.3.1. 2-class classification

First, the distinction between healthy (grade 0) and ery-
thema (grade ≥ 1) was determined. After finding the best
kernel for an SVM and feature list for all algorithms, the
best model of each algorithm was used to compare their re-
spective performances (Figure 7). All algorithms, including
CNNs, achieved an accuracy of above 70%. The sensitivity
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Figure 7: Different algorithms (from left to right: SVM, logistic regres-
sion, random forest, decision tree, CNN and ensembled CNN) have been
tested for their performance in reproducing the visual assessment of a pa-
tient having erythema or not having erythema by using the measurements
of the ScarletredⓇVision system or the images themselves. Accuracy is rep-
resented in blue, sensitivity in green and specificity in red (left to right). On
the y-axis the percentages of the results are given.

of recognizing erythema was between 67% and 90% for all
models. The specificity is the ability to classify only those
patients with erythema, who also received such diagnosis
through a visual assessment. Here, the specificity ranged
from 72% to 83%. We can see that there are only slight
differences in the performance metrics between the models
with exception for the ensembled CNN, which clearly out-
performed the all other algorithms as discussed later.

The good sensitivity and specificity of the SVM with the
rbf kernel and SEV ∗_meandt-refdt as a single feature are
also apparent in the corresponding confusion matrix of the
model (Figure 8, upper left). A total of 78% of the healthy
images were correctly classified, and 69% of the patients
with erythema were also put into the actual category, when
applying the SVM. The confusionmatrix for the CNNmodel
looks extremely similar with an 83% specificity and 67%
sensitivity (Figure 8, lower left). The receiver operating
characteristic (ROC) curves of both the machine learning
and CNN models also showed a good performance (Figure
8, upper right). The curves for the classification between
healthy and erythema are extremely steep with areas under
the curves of 0.79 for machine learning, and 0.80 for the
CNN, which are close to the maximal value of 1. There-
fore, a high true-positive rate (sensitivity) is possible at a
relatively low false-positive rate (high specificity).
3.3.2. 3-class classification

In the next step, we evaluate the performance of the dif-
ferent algorithms when distinguishing between all CTCAE

grades (0, 1, 2). Again, the rbf kernel performs best with
the SVM. The best results were achieved for all machine
learning algorithms when using SEV ∗_refdt as a feature.
Figure 9 shows the overall accuracy for the best model of
every algorithm, as well as the sensitivity for every CTCAE
grade. The overall accuracy was above 60% in all cases.
The decision tree performs the worst in recognizing grade
1, and the best in recognizing grade 0. A logistic regres-
sion showed the highest specificity for every score. This
model has two additional advantages over an SVM. On the
one hand, it requires less computational power to build a
logistic regression model. On the other, logistic regression
provides formulas that make the results easy to follow and
accept, whereas the SVM is more difficult to grasp. There-
fore, we focused on the MLR to distinguish between differ-
ent CTCAE grades.

The summary of the MLR model (Supplementary Figure
15) provides some background information and general esti-
mators for this algorithm. We can see that it is built through
a maximum likelihood estimation, converging against a log-
likelihood of 594.58, which is significantly higher than, and
therefore preferable to, the simpler null model (805.25). The
pseudo R-squared, which represents the correlation between
the scores from a visual assessment and the results from the
model, is only 0.2616, which could be higher, because the
maximal value is 1. The model assumes a CTCAE grade of
zero. For each other CTCAE grade, a sub-model was built,
resulting in a formula. The formula describes the logarithm
of the odds (probability divided by the counter probability)
as a result of the sum of the estimated intercept and each
feature multiplied by an estimated coefficient. A hypothe-
sis test was applied for each estimator. The null hypothesis
states that the coefficient is not significantly different from
zero. The null hypothesis can be rejected for the intercept
and the coefficient of SEV ∗_meandt-refdt because the p-
value is below 0.05. This makes those estimators relevant
for our model.

For every increase in SEV ∗_meandt-refdt by one unit,
the odds for a score of 1 is multiplied by 6.7 x 1027 (e to the
power of the coefficient) and the odds for grade 2 is multi-
plied by 7.9 x 1070. From the odds the probability for grade 1
and grade 2 can be calculated. The counter probability of the
sum of the probabilities for grade 1 and grade 2 is the prob-
ability for grade 0. The grade with the highest probability is
chosen for every image. The confusion matrix (Figure 10,
upper left) shows that the highest proportion of every grade
from a visual assessment is classified as the same grade by
multinomial logistic regression. This can be seen from the
dark blue diagonal from the top left to the bottom right. A
misclassification mostly occurred in grade 1. This is also the
reason for the lower sensitivity in recognizing grade 1 be-
cause it can be misclassified in both directions, and all mis-
classifications from grades 0 and 2 were classified as grade
1. This explains the flatter ROC curve and area under the
curve (Figure 10, upper right).
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Figure 8: Confusion matrix and receiver operating characteristic (ROC) for the 2-class analysis using an SVM (upper row) and a CNN (lower row). The
confusion matrix represents the score through a visual assessment and the SVM. The numbers in the squares represent the true negative rate or specificity
(upper left), false positive rate (upper right), false negative rate (lower left), and true positive rate or sensitivity (lower right). The darker the square is,
the higher the given rate. The receiver operating characteristic plots the false positive rate on the x-axis against the true positive rate on the y-axis for the
classification as healthy skin (labeled 0 in blue) and the detection of erythema (labeled 1 in orange). The area under the curve is given in the legend (area).
It should be close to 1, indicating a steep curve, which allows for a high true positive rate (sensitivity) at a low false positive rate (high specificity). The
dotted line represents an area under the curve of 0.5 and represents the border, below which the classification can be seen as worse than a random guess.

The confusion matrix (Figure 10, lower left) shows the
performance of the multiclass CNN classification algorithm
for estimating the severity grade of erythema (0, 1, and 2).
Ideally, in the case of multi-class classification, the perfect
classifier would have the values only across the diagonal ele-
ments, which classifies all test samples correctly in the three
classes. The values across the diagonal element are true pos-
itive (TP) values for a logistic regression, i.e., 75%, 53%,
and 72% of the samples, were correctly classified, whereas
for the CNN, 56%, 58%, and 67% were correctly classified
as grade 0, grade 1, and grade 2, respectively, and a misclas-

sification of grade 0 and grade 2 image samples as grade 1
also led to an increase in the false positive values.

The ROC curves for grades 0 and 2 for the CNN were as
good as those in the previous classification problem. The
less steep ROC curve and lower area under the curve for the
classification in grade 1 by the CNN distinguishing the three
grades of erythema (Figure 10, lower right) can also be ex-
plained. Therefore, it makes sense that in an unbiased model
with equal sensitivity for all grades, and no misclassification
over two grades, the middle grade will always receive less
steep ROC curves with a lower area under the curve. The
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Figure 9: Different algorithms (from left to right: SVM, MLR, random
forest, decision tree, and CNN) have been tested for their performance in
reproducing the CTCAE-grades of the visual assessment.

prediction accuracies were 73%, 66%, and 82%, sensitivi-
ties were 56%, 58%, and 66%, and specificities were 77%,
71%, and 93% for grade 0, 1 and 2, respectively.
3.3.3. Ensembled CNN (eCNN)

In this study, a series of different machine learningmodels
and an ensemble method were used to improve the overall
prediction capability of the models. We evaluated the en-
sembled CNN (eCNN) on the same test dataset used for the
CNN algorithm. The ensemble CNN consisted of bagging
andmajority voting techniques to form a final prediction; for
a 2-class problem, the prediction accuracy of the ensemble
model was 87% with a sensitivity and specificity score of
90% and 82%, respectively (Figure 7) , while for each grade
(0, 1, and 2) accuracies were 76%, 69%, and 87%, sensitiv-
ities were 70%, 57%, and 71%, and specificities were 78%,
75%, and 95%, respectively (Figure 11). Figures 12 and 13
show the confusion matrix for the ensemble model. Using
an ensembled CNN for 2-class classification, 82% of the im-
ages from the healthy class were correctly classified, and
the remaining 18% were incorrectly classified as erythema.
Similarly, 90% of the samples from the erythema class were
correctly classified, and the remaining 10% of the images
were incorrectly classified as healthy. For a 3-class prob-
lem, the ensemble CNN was able to correctly classify 70%
of grade 0 images, 57% of grade 1 images, and 71% of grade
2 images, as shown in Figure 13.

4. Discussion

The high demand for objective scoring in dermatology,
supported by a trend toward digitization, confronts medical

experts and clinical research organizations with a large va-
riety of newly developed methods. However, in addition to
the requirement that a newmethod needs to build upon inter-
nationally established standards, ideally it should be easy to
use and require only little or no specialized equipment in or-
der to increase acceptance and enable fast technology adop-
tion in clinical routine or trial procedures. The digital solu-
tion presented in this paper automates the assessment of skin
erythema and RISRs. It only requires a smartphone with an
installed ScarletredⓇ Vision mobile app, the corresponding
calibration sticker provided by SCARLETRED, and a com-
puter to obtain access to our secure web platform. In ad-
dition to the benefit of requiring only little equipment, data
management and analysis is fully automated by the CNN,
which enables the medical expert to save valuable time in a
clinical routine and increases the learning curve in clinical
research.

In a different study by another group, an automated tech-
nique [34] was proposed to classify nine types of skin can-
cer. In addition, Rezaoana et al. proposed an image pro-
cessing and convolution neural network approach with im-
age augmentation techniques. They used a transfer learning
approach to implement the CNN, whereas in our case, we
specifically focused on solving the problem of classifying
RISRs and estimating the severity of skin erythema on the
basis of calibrated skin images. Given an enriched num-
ber of inputs in the dataset, their study reported an accu-
racy of 79.45%. Melanoma skin cancer is one of the most
lethal diseases, and in 2016, automated melanoma recog-
nition by leveraging an extremely deep convolutional neu-
ral network (deep-CNN) with more than 50 layers [35] was
proposed for specific lesion categorization. Hao et al. pro-
posed the separation of lesion areas from the input images,
and a deep residual network (DRN) was used to identify
melanoma and non-melanoma lesions with a test accuracy
of 69.3%. This framework was evaluated on the ISBI 2016
Skin Lesion Analysis Towards Melanoma Detection Chal-
lenge dataset.

In 2015, however, for medical image segmentation and
pathology in computer modalities, the U-Net was proposed,
which was effectively used in the medical domain, particu-
larly for image segmentation, and obtains a reliable perfor-
mance [36]. Later, a recurrent residual convolutional neural
network U-Net (R2U-Net) was introduced, which produced
a significant improvement using the ISIC 2017 dataset for
skin cancer image classification tasks [37]. This same year,
a U-Net-based segmentation approach using the concept of
the triple attention mechanism was also proposed [38], and
in this study, Tong et al. first selected regions using an at-
tention coefficient computed using the attention gate and
contextual information. Second, spatial attention and chan-
nel attention were used as a dual attention decoding mod-
ule to capture the spatial correlation features and improve
the skin lesion segmentation performance by applying the
ISIC-2016, ISIC-2017, and PH2 datasets. This triple atten-
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Figure 10: 3-class confusion matrix and receiver operating characteristic (ROC) curves of the multinomial logistic regression (upper row) and CNN
(lower row). The receiver operating characteristic plots the false positive rate on the x-axis against the true positive rate on the y-axis for the classification
in different erythema grades (0 represented in blue, 1 represented in orange, and 2 represented in green).

tion mechanism helped the network focus on a more relevant
field of view of the target.

Dermatologists are dealing with a multitude of different
cutaneous disorders in their daily work, and artificial in-
telligence can thus be harnessed to reduce the risk of po-
tential errors by providing a fast decision support on the
severity classification of a specific disease and in the di-
agnosis of the disease itself. As an example, to address
the challenges associated with detecting erythema migrans
(EM), i.e., a rash of acute lyme disease, versusmultiple other
skin conditions, including cellulitis, tinea corporis, herpes
zoster, erythema multiforme, lesions from tick bites and in-
sect bites, and non-pathogenic normal skin, Burlina et al.
[39] proposed a deep neural network that utilizes different

pre-trained models such as ResNet50, InceptionV3, Mobile
NetV2, DenseNet121, InceptionResNetV2, andResNet152.
The test accuracy ranged from 71.58% for an 8-class prob-
lem of EM versus seven other classes to 94.23% for a binary
problem of EM versus non-pathological/healthy skin.

Raina et al. [40] proposed a similar scoring method in
2015, using a camera and a color card to obtain standard-
ized color images. They used a wide variety of parameters
to reproduce the scores from the visual assessment using a
linear discriminant analysis. The general accuracy of the
prediction was 48.75%when distinguishing between the five
grades. However, it should be noted that linear discriminant
analysis places some demands on the data distribution of the
data it is used upon. When these demands are not fulfilled,
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Figure 11: Class-wise performance of ensembled CNN: Prediction accu-
racy, sensitivity, and specificity for CTCAE 0-2

the classificationmayworsen drastically [41]. This is not the
case with our developed methods. Therefore, the proposed
method is more robust. In addition, our method uses fewer
parameters, which makes it simpler, more understandable,
and easier to integrate in routine research. However, our
study focuses exclusively on erythema in radiation dermati-
tis, a single skin parameter that is of central importance in
the scoring of the majority of skin diseases, such as psori-
asis or atopic dermatitis, and our erythema scoring method
needs to be supplemented by additional parameters such as
induration, desquamation, the affected body part, and the
area in percentage.

Misclassification of the machine learning models may be
explained by the fact that the measurements in the differ-
ent grades of erythema lie close together. Figure 6 shows
that the median 50% of the values for SEV ∗-meandt-refdt
do not overlap. However, the outer 50% of the datapoints
(whiskers), and those datapoints classified by the plot as out-
liers, do show amajor overlap. If the samemeasurement can
be found in two or even all three classes, it is understandable
that the algorithmswill face certain challenges. This also ex-
plains why grade 1, which is themiddle grade, is particularly
difficult to recognize for all algorithms. The measurements
of this score can always be found in the higher or lower grade
as well, although it may have a lower probability. The reason
for the overlap might be that the visual assessment may also
be based on factors other than the measured redness (e.g.,
dryness or scaling). In the first three grades, the main factor
was redness. The other explanation for the overlap would
be the subjectivity of a visual assessment, classifying the
same intensity of redness as grade 0 or grade 1 in different
patients or under different settings. This question needs to
be further investigated. The machine learning models may
improve when taking the visual assessment from multiple

physicians into account because the opinion of a group of
physicians (multimodal score) is assumed to be less subjec-
tive than the opinion of a single physician.

The classification of skin images through a CNN has at-
tracted the attention of researchers, dermatologists, and com-
puter scientists because of its potential to increase the intel-
ligibility of skin cancer screening and streamline the work-
flow of dermatologists and radiation oncologists. Deep learn-
ing algorithms have recently shown promising results in vi-
sual tasks, such as ophthalmology, pathology, and radiology
[42]. According to the paper published by Brinkler et al.,
the CNN can exhibit a superior sensitivity and specificity in
melanoma classification as compared to board-certified der-
matologists [43]. CNNs have already found their way into
many aspects of our lives, including image analysis. When
applied to a medical image analysis, there is still some hes-
itation in most people to consider the results. Although the
concepts of a logistic regression and random forest models
can be explained, a CNN is still perceived as a black box
where data go in and a result comes out, without knowing
exactly what happens inside. In response, no one wants to
take responsibility for errors that might be caused by this
mysterious method [44].

Therefore, we strive to improve the acceptance of a CNN
in medical applications by showing that it is equally as trust-
worthy asmany of themore comprehensiblemethods. While
evaluating and understanding the results of the CNN clas-
sifier, it is important to note that accuracy, sensitivity, or
specificity might not provide the exact performance of the
classifier model, which is why the ROC is also reported with
other performance metrics in our study. A classifier should
not be judged merely on the basis of specificity, sensitivity,
and accuracy [45]. According to Han’s response, the true
ability of the classifier is indicated by the ROC curve to per-
form under a wide range of thresholds during classification
using the input images. In this study, we used a radiation
oncologist labeled image dataset to train a set of different
machine learning and deep-CNN based algorithms that use
image labels and raw pixel values for automatic classifica-
tion of RISRs and the severity grading of erythema.

The machine learning and deep-CNN based algorithms
were validated by comparing the severity grades of erythema
given by the algorithms against those given by radiation on-
cologists. We found that the CNN algorithm helps in by-
passing all segmentation and handcrafted feature extraction
approaches. However, normalization can be introduced to
improve the prediction ability of the CNN algorithm. The
reasons behind certain misclassifications could be due to the
fact that, for each image, the entire part of the body from
head-neck to pelvis was considered for training the classifi-
cation algorithm instead of only the erythema region. Such
misclassifications might also be due to the presence of ink
marks, which certainly act as additional noise to the CNN,
which in some cases may be overcome by introducing ad-
versarial networks; in addition, the region of skin under the
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Figure 12: Randomly selected examples of correct and incorrect predic-
tions for healthy (grade 0) versus erythema (grade ≥ 1) classification, dis-
played as a 2×2 confusion matrix. The upper-left quadrant shows an exam-
ple of true negatives (n00 = 99 images), whereas the lower-right quadrant
shows an example of true positives (n11 = 157 images). A false-positive (n01
= 22 images) is given in the upper-right quadrant, and a false negative (n10
= 17 images) in the lower-left quadrant

ink marks may also be reconstructed to improve the perfor-
mance of the CNN algorithms. Moreover, different image
augmentation techniques such as histogram equalization or
noise filtering can be introduced to reduce the changes in
misclassification or bias from the algorithm because the in-
tensity or pixel distribution is uneven in the input images,
which may act as noise (or provide bias) to the CNN algo-
rithm. Thus, our future work may include using a larger set
of datasets to reduce the changes of an overfitting, improved
regularization, fine-tuning of the hyper-parameters, and im-
plementing transfer learning approaches. In recent years,
there has been a large increase in the use of transfer learn-
ing algorithms such as AlexNet, InceptionV3, and VGGNet,
in different ways, such as: (1) training the pre-trained algo-
rithm from scratch, (2) transfer learning from a pre-trained
model (ImageNet), and (3) transfer learning and fine-tuning
the CNN algorithm. Wemay further include approaches that
combine a deep CNN with Fisher vector encoding and an
SVM classifier [46]. Instead of using the entire image as in-
put to the CNN, samples or sub-samples may be given to the
CNN as input to reduce the chances of an over-fitting.
Further studies may also appear if the error rate of any of
these algorithms may be comparable to the error rate occur-
ring when comparing scores of the same subject from differ-

Figure 13: Randomly selected examples of correct and incorrect predic-
tions for classification in CTCAE grade 0 versus grade 1 versus grade 2,
displayed as a 3 × 3 confusion matrix. The diagonal elements are the true
positive values. The perfect classifier would have elements across the di-
agonal, which means classifying all test samples correctly in three classes.

ent physicians owing to the subjectivity of the visual assess-
ment. In this case, the results from theML algorithmswould
have the advantage of being reproducible, even though they
may differ from a subjective visual assessment. By compar-
ing the performance and other advantages and disadvantages
of our CNN model with more comprehensible models such
as a logistic regression, where the results can be brought
back to mathematical formulas, our goal is to increase the
acceptance of both methods as a decision support system.
Such a system is due to its inherent lack of guaranteed cor-
rectness, and was not made to replace, but merely support,
the visual assessment of a physician. However, the direct
interaction between man and machine should be enabled in
the future to avoid major misclassifications either through
a visual assessment or through a computer-aided decision
support system.

As one of the main limitations of this study, mainly Cau-
casians, and thus patients with lighter skin tones (Fitzpatrick
scale 1–3) were included. Its applicability to populations
outside this skin type is uncertain. Currently, this study
is focused exclusively on erythema in radiation dermatitis,
and the first benchmark results were produced using the ML
and deep CNN models. Further refinements in future stud-
ies with greater skin diversity are warranted. Later, this
study can be extended to analyze multiple skin parameters
and/or disorders within a single image. With a higher diver-
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sity and greater quantity of data, including signal intensity
mapped images along with depth and texture images, the
results of this study may lead to additional improvements,
thereby opening up a broad range of novel AI-supported ap-
plications in the field of digital dermatology and telederma-
tology.

5. Conclusions

A set of different AI-based algorithms was explored in
this study for the automatic classification of RISR images.
Based on our results, we demonstrated that our currently
used ML and deep learning algorithms can serve as a use-
ful decision support in scoring the erythema severity and
automatic pre-screening of skin toxicity in individual pa-
tients. Furthermore, this method may identify patients who
need intensive local skin care during or after cancer irradia-
tion treatment.With the assistance of our AI based methods,
physicians can save time and efficiently reduce the workload
in their daily routine by easily integrating the novel state-of-
the-art AI-based erythema scoring method in the form of a
decision support system during their clinical trials.

6. Ethical conduct of the study

This clinical study was carried out under the title "Val-
idating the method for objective remote assessment of ra-
diation dermatitis by augmented digital skin imaging using
ScarletredⓇ Vision", and approved under the Ethics Com-
mittee (EC) number 30-023 ex 17/18 on the date of 06. April
2018, by the EC board of the Medical University of Graz,
Augenbruggerplatz 2, A-8036, Austria. The study has been
carried out in accord with the Declaration of Helsinki and all
applicable laws and regulations of Austria, where the study
was conducted, and in compliance with the current Good
Clinical Practice guidelines (CPMP/ICH/135/95).
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Supplementary materials

Figure 14: Output of the biostatistics tool for the parameter SEV*_meandt-refdt for areas scored with a CTCAE of zero. The table of estimators includes
information on the mean, standard deviation, median, lower- and upper quartile, minimum, and maximum. This histogram plots the values of SEV*_meandt-
refdt on the x-axis against the number of images within a certain value range on the y-axis. The boxplot shows the values of the parameter on the y-axis.
The box ranges from the lower to the upper quartiles. The vertical line in the middle of the box indicates the median. The whiskers reach the minimum
and maximum, respectively, excluding outliers. Outliers are datapoints that are more than 1.5-times the inter-quartile range away from the upper or lower
quartile and are represented as small circles. The QQ-plot plots the ordered values of the parameters on the y-axis against the quantiles of a normal
distribution on the x-axis.

Figure 15: General parameters of the multinomial logistic regression model (MNLogit) explaining the dependent variable (Dep. Variable). The model
was built using a maximum likelihood estimation (MLE), converging against the maximal log-likelihood. In any case, this value should be higher than the
maximal likelihood of the null model, excluding only the intercept (LL-Null). In general, an LLR p-value of below 0.05 means that we can reject the null
hypothesis that a more restricted model would yield significantly better results. The degrees of freedom for the residuals (DF Residuals) are calculated from
the number of observations (No. Observations) minus the number of estimated coefficients. The degrees of freedom for the model (Df Model) are calculated
from the number of estimated coefficients minus the number of submodels. Pseudo R squared (Pseudo R-squ.) should be as close to 1 as possible, indicating
a high correlation between the real dependent variable and that estimated by the model. The model generally assumes a score of zero. The second part of
the summary describes a submodel for each score, which differs from zero. For each submodel, the estimated coefficients (coef) for each feature and the
intercept are given, including the standard error (std err) and z-score (z) as well as the 0.025 and 0.975 quartiles of the estimation. If the p-value (P>|z|) is
below 0.05 the null hypothesis that the coefficient is not significantly different from zero can be rejected at a significance level of 0.05, and thus the feature
is relevant for the submodel. Otherwise, the feature can be eliminated from the list of variables used to predict the score in the settings. The multinomial
logistic regression algorithm assumes a CTCAE grade (score) of zero. It generates formulas that describe the logarithm of the odds (probability against
counter-probability) for the classification under another specific CTCAE grade, using the provided features.
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(a) Conv-layer: 1

(b) Pool-layer: 1

(c) Batch-normalization: 1
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(d) Conv: 2 with dropout

(e) Pool-layer: 2

(f) Batch-normalization: 2
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(g) Conv: 3 with dropout

(h) Pool-layer: 3

(i) Batch-normalization: 3
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(j) Conv: 4 with dropout

(k) Pool-layer: 4

(l) Batch-normalization: 4
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(m) Conv: 5 with dropout

(n) Pool-layer: 5

(o) Batch-normalization: 5
Figure 16: Visualization of convolutional feature maps
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