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ABSTRACT 

 

Objective: This study investigates the performance of a CNN algorithm on epilepsy 

diagnosis. Without pathology, diagnosis involves long and costly 

electroencephalographic (EEG) monitoring. Novel approaches may overcome this by 

comparing brain connectivity using graph metrics. This study, however, uses deep 

learning to learn connectivity patterns directly from easily acquired EEG data. 

Methods: A convolutional neural network (CNN) algorithm was applied on directed 

Granger causality (GC) connectivity measures, derived from 50 seconds of resting-

state surface EEG recordings from 30 subjects with epilepsy and a 30 subject control 

group. Results: The learned CNN filters reflected reduced delta band connectivity in 

frontal regions and increased left lateralized frontal-posterior gamma band 

connectivity. A diagnosis accuracy of 85% (F1-score 85%) was achieved by an 

ensemble of CNN models, each trained on differently prepared data from different 

electrode combinations. Conclusions: Appropriate preparation of connectivity data 

enables generic CNN algorithms to be used for detection of multiple discriminative 

epileptic features. Differential patterns revealed in this study may help to shed light on 

underlying altered cognitive abilities in epilepsy patients. Significance: The accuracy 

achieved in this study shows that, in combination with other methods, this approach 

could prove a valuable clinical decision support system for epilepsy diagnosis.  

Keywords: Epilepsy diagnosis, deep learning, Granger causality connectivity 
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1. INTRODUCTION 

 

Non-seizure EEG recordings of epilepsy patients typically exhibit interictal 

epileptiform discharges (IED). Visual detection of IEDs is performed by a neurologist 

and forms an important aspect of the standard diagnostic procedures for epilepsy. 

However, for epilepsy patients without this pathology, diagnosis typically involves a 

diagnostic trajectory that could take years and includes costly EEG monitoring in a 

hospital. Moreover, the detection of IEDs by a trained epileptologist does not achieve 

perfect diagnostic performance, and IEDs are often judged differently by different 

epileptologists (Smith, 2005).  

There are many causes of epilepsy, resulting in many epilepsy subtypes. Also, equally 

many mechanisms exist that could underlie seizures; however on some level, seizures 

result from disruptions in the dynamics that control inhibition and excitation of 

neurons. Interestingly, these disruptions in epileptic brains can be associated with 

altered (functional) connectivity patterns between various parts of the brain, as 

compared to healthy brains. Connectivity measures may therefore be used to find 

robust neuromarkers for epilepsy, which may be used for diagnosis. Novel diagnosis 

approaches have exploited this phenomenon, achieving diagnosis accuracies above 

90%. Often, such studies calculate graph-theoretical characteristics of brain 

connectivity networks to discriminate epileptic brains from healthy brains. However, 

such studies usually test a group of subjects with only one or two epilepsy types, and 

they require usage of costly fMRI or MRI neuroimaging. Furthermore, although their 

performance achieves relatively high accuracy, this is still not high enough for 

reliable diagnosis in a clinical setting. One reason is that, even among subjects with 

nearly identical anatomic locations of seizure onset, the distribution of functional 

connectivity in the epilepsy network is unique for each subject (Dumlu et al., 2020; 

Marino et al., 2019). Therefore, it is a challenge for epilepsy diagnosis to find reliable 

and generalizable connectivity patterns that can be used as a neuromarker for the 

diagnosis of epilepsy. Although graph theoretical metrics facilitate characterization of 

brain connectivity networks and may be useful for differential diagnosis between 

different kinds of epilepsy, an algorithm for the purpose of early stage diagnosis may 

require more than using graph theoretic network metrics as a robust neuromarker. 

The current study also exploits brain functional connectivity measures to diagnose 

epilepsy. However, to achieve high diagnostic accuracy it employs a deep learning 

algorithm, a convolutional neural network (CNN), directly on directed functional (i.e. 

effective) connectivity data. Usage of deep learning has become possible since 

recently some large databases with brain activity recordings have become publically 

available. Deep learning algorithms can circumvent the complexities of identifying 

general patterns of brain connectivity and automate the identification of brain 

connectivity patterns. This approach was not yet before studied, while it may achieve 

a diagnostic accuracy that is similar to that of a trained epileptologist and to methods 

that require MRI based techniques; and can provide supportive evidence for a 

diagnosis. Moreover, our method processes only 50 seconds of EEG recordings of a 

patient during rest, requiring no cognitive tasks or tests to be performed. Perhaps, 

these simplifications allow this method to be performed in more accessible facilities 

such as a local practitioner’s office.  
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For this purpose, convolutional neural network (CNN) algorithms are trained directly 

on effective connectivity matrices, which are calculated with Granger causality and 

will be called GC matrices henceforth. The GC matrices are derived from non-seizure 

(resting state) EEG brain recordings of 30 epilepsy patients and 30 control group 

subjects. Furthermore, the diagnostic accuracy of the CNN algorithm is analyzed for 

different combinations of EEG electrodes.  

By training the CNN algorithm on GC matrices, it is possible to derive connectivity 

patterns that are associated with epilepsy, and these patterns can thus be viewed as 

neuromarkers for the disease. Furthermore, this approach allows for a comparison of 

epileptic brain connectivity patterns with connectivity patterns observed in patients 

with other co-occurring cognitive deficits, such as decreased memory function. 

Comparisons such as these may provide researchers with novel insights into the way 

complex phenomena such as neuroplasticity play a role in epilepsy, as will be 

discussed later. 

 

2. MATERIAL AND METHODS 

 

2.1. EEG data  

We used the TUH EEG Epilepsy Database from Temple University Hospital, 

Philadelphia (Shah et al., 2018), which is a subset of the TUH database (Obeid and 

Picone, 2016). This database consists of EEG recordings of more than 200 patients 

and is divided into two subsets; one consists of patients with epilepsy and the other 

patients without epilepsy. The recordings were produced with electrodes placed in the 

10-20 EEG system and each recording has a technician’s report describing the 

medical background of the patient, the process and the results. A certified neurologist, 

who reviewed medical histories, the EEG technician’s reports and the EEGs, has 

determined whether patients had epilepsy or not. From this database, 60 subjects were 

selected, of whom 30 did have epilepsy and 30 did not. 

2.2. Selection of the subjects. 

Because the patients were from a hospital database, they had a large number of 

medical issues. Therefore, these 60 subjects were selected according to a criteria that 

aim to minimize inter-group differences. Patients with recent seizures, cerebral 

dysfunction, coma, encephalopathy, unresponsiveness, mental retardation, high heart 

rate, brain tumor, resected brain area or drug overdose were excluded in the selection 

process. Further exclusion was applied to patients when technical difficulties with 

electrode connections, muscle artifact, deep sleep stage (stage II) were mentioned in 

the technical report. The remaining subjects were still affected by various diseases, as 

presented in Table 2. We attempted to minimize the number of diseases and the 

difference in average age and male-female ratios amongst the remaining subject 

groups. Their file numbers, and detailed medical information can be found in the 

appendix of (Rijnders, 2021). 

2.3. Selection of EEG samples and channels. 

For the 60 selected subjects, EEG time series data recorded by 21 scalp electrodes, 

were included in the analysis. Only recordings with the Average Reference (AR) 

configuration were used. Recordings were 20 minutes on average. Some of the 

subjects were drowsy (sleep stage I) at some point during the recordings, or they were 
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undergoing photic stimulation tests. However, in most cases, such events occurred 

only during the latter half of the recording, therefore we attempted to avoid these 

effects by using only the first 5 minutes of the recordings for further analysis. 

2.4. Preprocessing the EEG 

From these first 5 minutes of EEG data, 50 continuous seconds were selected that 

appeared the calmest upon visual inspection. This was done for the purpose of 

acquiring resting-state EEG data. An index of which 50 seconds were used for which 

subject can be found in the appendix of (Rijnders, 2021). 

The preprocessing was kept at a minimum because Granger causality is sensitive to 

filtering. The selected preprocessing method involved the following steps: 

The first steps of pre-processing of the remaining 50 sec EEG data segment involved 

notch filtering (60, 120 and 180 Hz), trend line removal, and removal of eyeblink 

artifacts. This last step was performed by calculating ICA components and sorting 

them by to their correlation with the FP1 electrode.  

Bivariate Granger causality connectivity values were calculated with model order 

value MO=15. Both EEG preprocessing and Granger causality calculation were 

performed in Brainstorm version 3.200124 (Tadel et al., 2011). 

2.5. Design of experiment 

We classified the resting state EEG data with a convolutional neural network (CNN) 

algorithm that was trained on Granger causality (GC) connectivity matrices. In this 

way, the EEG data for each subject could be predicted to be of class epileptic or not 

epileptic. There were four phases: pre-processing, further processing, deep learning 

and classification. A flowchart is presented in Figure 1. 

 

Figure 1. Flowchart of CNN experiment. Algorithm flowchart of the data processing 

chain for an individual subject. 

 

2.6. Extraction of connectivity matrices. 

The preprocessed EEG data was used to estimate connectivity between different brain 

regions. Granger causality (GC) connectivity between multpile electrodes was 

calculated in Brainstorm. For a predefined selection of different electrodes (i.e. 

electrode combination), the calculated GC connectivity values between each electrode 

pair were presented in a GC connectivity adjacency matrix (i.e. GC matrix). This 

resulted in one GC matrix per subject, derived from 50 sec of EEG recording. 

However, for each subject, this was also done for several different electrode 

combinations, as displayed in Figure 2. 
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Figure 2. Nine different EEG electrode combinations used in this study. Per 

combination the used electrodes are colored in red. GC matrices were derived as 

shown. Top row: Frontal & Parietal (F&P), Temporal & Frontal (T&F), Temporal & 

Parietal(T&P). Middle row: Parietal (P), Frontal (F) and Temporal (T) electrodes. 

Bottom row: FP1&2+F3&4+P3&4, FP1+F3+P3 and FP2+F4+P4 electrodes. Brain 

images were obtained from Brainstorm (Tadel et al., 2011). 

 

For each of the 60 subjects, and for each electrode combination, four GC matrices 

were calculated, one for each frequency band (delta = 1-4 Hz, theta = 5-7 Hz, alpha = 

8-13 Hz, beta = 14-29 Hz, gamma = 30-55 Hz). A detailed description of how these 

operations were performed and configured in Brainstorm is presented in (Rijnders, 

2021). 

Next, for each subject, these four frequency band GC matrices, were combined into 

one larger image, as displayed in Figure 3. The resulting 60 larger images (one for 

each subject) were then used as input to train the CNN deep learning algorithm. 

 

 

Figure 3. Combining GC matrices of four frequency bands into one larger image. 

High frequency bands have lower absolute connectivity values, as indicated by a 

darker shading.  

GC values of these GC matrices were significantly lower for the high frequency bands 

than for the low frequency bands, as described in Figure 3 . For this reason, also 
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another set of same sized images was created, which were created by using a different 

data preparation method. This involved a procedure in which each frequency band GC 

matrix was first separately normalized (i.e. scaled) such that, for each frequency band, 

its average GC matrix value is 0.5. This procedure is depicted in Figure 4. Also in this 

case, the resulting 60 images (one for each subject) were used as input to train 

(another) CNN deep learning algorithm.   

 

Figure 4. Combining GC matrices of four frequency bands into one larger image, 

after first scaling each frequency band GC matrix. 

2.7. CNN training and classification. 

The purpose of the CNN algorithm was to recognize features of epilepsy in the GC 

matrices and to classify the combined GC matrix of each subject as either being 

epileptic or not epileptic.  

The CNN algorithm used for this experiment had a minimal architecture, consisting of 

only one convolution layer and three linear layers, as depicted in Figure 5. 

 

Figure 5. Architecture of the used CNN algorithm. For each subject (60 in total) one 

image (i.e. a combination of 4 GC matrices) was used as input to the algorithm, as 

depicted in the image on the left. This example displays the case of a 6x6 input image, 

which consists of four 3x3 GC matrices.  

The filters of the CNN algorithm were chosen to be the same size as the (small) GC 

matrices, and employed a stride value of also that same size, so that each filter 

convolves over the larger image in only four steps; one step for each frequency band. 

As a result, the convolution layer outputs only one 2x2 image per filter. After being 

flattened, these 2x2 images were then used as input for the first of two dense layers. 

Since the filters have the same size as the original GC matrices, relevant connectivity 

patterns can be directly observed by looking at the learned filters, and these filters can 
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be utilized effectively as the neuromarkers for epilepsy. In the original study 

(Rijnders, 2021) the CNN architecture consisted of not one but two convolution 

layers, which employed smaller kernel sizes and stride. This was however 

computationally more complex, while resulting in similar performance as the simple 

architecture of the current study, therefore the architecture was simplified. 

For each run of the algorithm, most of the 60 subjects are used for training and a 

smaller amount of subjects are used for the validation set, and a still smaller amount is 

used for testing the trained network. The validation set is used during training to 

check how well the model generalizes. An early stopping strategy is used so that each 

model update was only saved in case the calculated loss on the validation set reached 

a new minimum. And the training session is ended in case no such new minimum is 

achieved within a predefined amount of training epochs (i.e. the patience value). This 

prevents the model from excessive overfitting on the training data.  

For each electrode combination, a different CNN layer size, dropout values, validation 

set size and other hyperparameters were chosen to accommodate maximum diagnostic 

performance. 

For reproducibility, 10-fold cross validation is used. With a test set size of 6 subjects, 

this had the consequence that after 10 runs, each subject was used once as a test 

subject and twice as a subject for a validation set. For reproducibility, the dropout of 

the linear layers is applied with a fixed random seed. The used loss function is cross 

entropy and SGD optimizer is used for updating the weights of the network.  

The CNN algorithm is implemented using Pytorch 1.1.0. The Python code will be 

released on https://github.com/berjor/epilepsy-cnn. The code was executed on Google 

COLAB. 

2.8. Combined classification. 

The resulting predictions/classifications from different methods were combined into 

one hybrid (ensemble) method. In this combined classification, each subject received 

three different CNN predictions/diagnoses by using only the three electrode 

combinations that achieved highest performance. Subsequently, the diagnosis label 

(epilepsy or no epilepsy) that received the majority of votes (at least 2 out of 3) was 

selected as the final diagnosis. A flowchart for this hybrid system is presented in 

Figure 6. 

 

Figure 6. Flowchart for the hybrid (ensemble) method. The data processing chain is 

shown for an individual subject. Data preparation method 1,2,3 refers to the methods 

in Figure 3 and Figure 4. 
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3. RESULTS 

 

3.1. Results for separate electrode combinations 

Highest accuracies for the different electrode combinations are presented in Table 1. 

 

Table 1 

Average diagnosis accuracies achieved in the experiment. The types of GC matrices 

that were used as input for the CNN are indicated in the top row. 

 

The largest accuracy with the CNN algorithm was achieved with the FP1&F3&P3 

electrodes by first normalizing (scaling) each frequency band GC matrix. The 

maximum accuracy achieved by this method was 78%. From the confusion matrix 

(see Table 3) an F1-score was calculated as 79%. For the details of the specific CNN 

configurations, see the appendix. Brain images were obtained from Brainstorm (Tadel 

et al., 2011). 
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Figure 7. Used electrodes and training characteristics of the algorithm trained on 

FP1+F3+P3 electrodes. Left image: The three red colored sensors indicate the EEG 

electrodes used for obtaining the 3x3 GC matrices. Middle image: The training loss 

curves (average of 10 runs). Right image: The learned (average) filter, containing the 

most characteristic connectivity patterns of the epilepsy patients. Left image was 

obtained from Brainstorm (Tadel et al., 2011). 

By observing the maximum weights in the trained network, we were able to trace 

back which CNN filter was maximally associated with the epilepsy label. Cross 

validation was performed over ten runs, so we obtained in total ten such trained 

(epilepsy) filter images. We averaged those ten images into one image to obtain a 

more reliable epilepsy filter image. This averaged trained filter image can thus be seen 

as a likely neuromarker for epilepsy. The filter image, as displayed in Figure 7 (right 

image), is such a neuromarker. In this image it is observed by the red color of the top 

right pixel that there is increased connectivity, directed from the FP1 to the P3 

electrode. The blue pixel on the top middle of the image indicates reduction of 

connectivity from the FP1 electrode to the F3 electrode. The image also documented 

on which frequency band the filter was most effective. In this example this was the 

case for the gamma band.  

 

An equally high accuracy was achieved with the CNN algorithm that used only the six 

frontal electrodes without normalizing the four 6x6 GC matrices before combining 

them into one 12x12 image. The maximum accuracy achieved by this method was 

also 78%. And from the confusion matrix (see Table 4) an F1-score of 79% was 

calculated. See the appendix for the used CNN configuration and performance 

calculation details. 

 

Figure 8. Used electrodes and training characteristics of the algorithm trained on 

frontal electrodes. Left image: The six red colored sensors indicate the EEG 

electrodes used for obtaining the 6x6 GC matrices. Middle image: The training loss 

curves (average of 10 runs). Right image: The learned (average) filter, containing the 

most characteristic connectivity patterns of the epilepsy patients. Left image was 

obtained from Brainstorm (Tadel et al., 2011). 
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The third highest accuracy was achieved with the CNN algorithm that used the twelve 

electrodes from the frontal and the parietal regions (F&P), by first normalizing 

(scaling) each frequency band GC matrix separately and subsequently combining 

these four scaled 12x12 GC matrices into one 24x24 image. The maximum accuracy 

that this CNN method achieved was 73%. And from the confusion matrix (see Table 

5) an F1-score of 69% was calculated. See the appendix for the used configurations 

and performance calculation details. 

 

Figure 9. Used electrodes and training characteristics of the algorithm trained on both 

frontal and parietal electrodes. Left image: The twelve red colored sensors indicate the 

EEG electrodes used for obtaining the 12x12 GC matrices. Middle image: The 

training loss curves (average of 10 runs). Right image: The learned (average) filter, 

containing the most characteristic connectivity patterns of the epilepsy patients. Left 

image was obtained from Brainstorm (Tadel et al., 2011). 

 

3.2. Results of the hybrid method  

The purpose of this experiment was to examine the capacity of a deep learning 

method, that exploits GC connectivity, to diagnose epilepsy. This was done with a 

hybrid (ensemble) CNN method, that combines the outcomes of the three best 

performing CNN algorithms, each trained on another data preparation method and 

using different CNN layer sizes. For this hybrid method, the most accurate 

predictions, which were made by the three previously described best performing CNN 

methods, were combined and for each subject, the label that was predicted in the 

majority of these three methods was decisive for the final classification. The accuracy 

of this hybrid method was 85%. From the confusion matrix (see Table 6) an F1-score 

of 85% was calculated. See the appendix for details of performance calculations.  

 

Figure 10. Results for the hybrid CNN methods. Left: The three highest performing 

electrode combinations that were used for the hybrid method. Right: The resulting 

prediction for each of the 60 subjects; names starting with E are epilepsy patients; 

names colored in red are incorrectly diagnosed subjects. Brain images were obtained 

from Brainstorm (Tadel et al., 2011). 
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The resulting 85% accuracy shows that our CNN algorithm performs much better than 

a random binary classifier. Thus, it can be claimed that CNN can be used to diagnose 

epilepsy with a statistically significant accuracy. 

 

4. DISCUSSION  

 

It was found that the CNN algorithm achieved high prediction accuracy when applied 

on the FP1 + F3 + P3 electrode combination. Gamma band connectivity seemed to be 

most relevant for achieving the highest accuracy for this electrode combination. The 

same high accuracy was achieved by applying the CNN algorithm on GC matrices 

derived from frontal electrodes only. The frontal-parietal electrodes combination  

resulted in the third highest accuracy. By combining three CNN predictions each 

using a different data preparation or normalization method, we achieved a combined 

epilepsy diagnosis accuracy of 85%, which is significantly higher than a random 

classifier. Therefore, CNN algorithms trained on connectivity matrices can be used to 

support diagnose of epilepsy.  

The epileptic subjects in this study showed various differences in connectivity 

compared to the non-epileptic subjects. This is not surprising, since connectivity 

alterations have often been reported by epilepsy researchers (Sargolzaei et al., 2015; 

Stam, 2014; Van Diessen et al., 2013). A direct observation of average GC values for 

each of the two subject groups showed various connectivity differences, as reported in 

the appendix of (Rijnders, 2021). These comparisons indicated that for epilepsy 

patients, between frontal electrodes, and also between parietal electrodes, connectivity 

was reduced for all frequency bands. And in agreement with other studies (Jiang et 

al., 2018) there was particularly a decrease of connectivity between the frontal 

electrodes. This was most clearly observable for the delta frequency band. The 

learned filters of the CNN in this study also reflected this feature, as was shown in 

Figure 8. The figure indicates that the learned filter (that correlated most with the 

epilepsy label) was most effective for the delta band. These observations also explain 

why the frontal electrodes achieved their highest accuracy of 78% by using non-

scaled GC matrices. Because, not scaling the GC matrices has the effect of leaving the 

delta band as the most prominent source of GC connectivity; so that the 

discriminative power of these large GC reductions in the delta band will become 

easier to learn by the algorithm.   

Interestingly, this comparison of average GC values has also shown a more complex 

pattern in the GC connectivity in the case of the FP1+F3+P3 electrodes. For this 

combination, connectivity between parietal and frontal electrodes, particularly in the 

gamma frequency band, was not reduced but increased. These epileptic GC 

alterations are depicted in Figure 11. 
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Figure 11. Average GC value alterations of epileptic subjects relative to non-epileptic 

subjects, displayed for the delta band (top) and the gamma band (bottom). Green 

arrows indicate increased GC connectivity and red arrows indicate reduced GC 

connectivity. Left: for the FP1+F3+P3 electrodes (left hemisphere). Right: same for 

the FP2+F4+P4 electrodes (right hemisphere). Derived from the calculated average 

GC values of all subjects. Source: (Rijnders, 2021). 

The left image in Figure 11 shows a clear left-hemispheric pattern of increased 

gamma band connectivity from the FP1 to the P3 electrode, and a decreased gamma 

band connectivity from the FP1 to the F3 electrode, which coincides exactly with the 

pattern found in our learned CNN filters, which was shown in Figure 7. It should be 

noted that the average gamma band connectivity of non-epileptic subjects was close to 

zero. Therefore, these values will have a large relative increase with just a small 

absolute increase of gamma band connectivity. This unstable effect may have been 

exacerbated by the low sample rate of 250 Hz causing a lower signal-to-noise ratio at 

the gamma frequencies; however, we mitigated this problem by only processing the 

low gamma band frequencies of up to 55 Hz. 

Overall, these two observations coincide with various other studies, which found 

similar frequency band dependent connectivity differences, where a decrease of 

connectivity occurred in low frequency bands and an increase of connectivity was 

seen in high frequency bands (Clemens et al., 2011; Wang and Meng, 2016). 

For the FP1+F3+P3 electrode combination, it was important to allow our CNN 

algorithm to find patterns of increased gamma band connectivity, because we first 

needed to compensate for the fact that the absolute gamma band GC values were very 

low compared to delta band GC values and also for the fact that there is large inter-

subject variance in those gamma band GC values. Without normalization (scaling) 

these gamma band values for epileptic subjects would have stayed unnoticed by the 

CNN. The GC matrix values were scaled according to the method in Figure 4, and as 

a result, epileptic patterns in gamma band became detectable for the CNN. Since we 

were using Granger causality, which is a directed (effective) connectivity measure, 

this scaling was thus also able to emphasize the directional characteristic of the 

connectivity. This turned out to be the most discriminative connectivity feature for 

this electrode combination, as we will discuss. 

The electrode combinations that resulted in the highest prediction performance (i.e. 

frontal electrodes and parietal electrodes), cover the areas of the default mode 

network (DMN). The DMN can be characterized as the brain regions that are active 

during resting-state and become deactivated during externally directed tasks, and is 

often associated with cognitive processes that are directed toward the self, such as 

autobiographic memory, mind wandering, future thinking and introspection (Buckner 

& Carroll, 2007). Surface electrodes were used without performing EEG source 
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estimation (ESI), therefore we cannot guarantee that the GC connectivities in the 

current study were derived from sources in the DMN. However, based on the fact that 

we used resting-state recordings, we assume that areas of the DMN were responsible 

for our connectivity measurements. This allowed us to speculate which mechanisms 

could be involved in our findings.  

Between certain electrode pairs, the described connectivity patterns were not equal for 

opposite directions. As was shown in Figure 11, for epilepsy patients, connectivity 

from the anterior DMN region (i.e. the FP1 and F3 electrode) to the posterior DMN 

region (P3) was significantly more altered than connectivity in the opposite direction 

(from P3 to FP1 and F3). In fact, because brain connectivity dynamics are strongly 

dependent on directionality aspects, the success of a connectivity based classification 

also depends on which combinations of directed connectivity patterns are considered 

(Verhoeven et al., 2018). In the current study, it was found that this was particularly 

the case for the FP1 + F3 + P3 electrodes. 

Though this effect is difficult to interpret, it seems plausible that the matrix scaling 

procedure causes only patterns of GC differences between the electrodes within one  

subject to remain visible, whereas the absolute GC value difference between subjects 

becomes unusable as a feature. It is thus plausible that for the FP1+F3+P3 electrodes, 

in the gamma band, its largest discriminative power lies not only in the increase of 

absolute gamma band GC values, but in the altered directionality of this connectivity. 

It seems plausible that most discriminative information was captured by the 

directionality of the gamma band increase, and not by only its increased magnitude. 

The information captured by the absolute magnitude of the GC connectivity value is 

lost by performing scaling. As can be seen in the results in Table 1, the discriminative 

power of inter-subject absolute GC values is maximally leveraged without scaling of 

the GC matrices. This non-scaling method reached a prediction accuracy of 78%, but 

only when applied on the frontal electrodes, which has been explained by the finding 

that highest reduction of GC values for epilepsy patients occurred among these frontal 

electrodes.  

Interestingly, the results showed that the GC matrix scaling method infers a different 

set of diagnoses as compared to unscaled GC matrices, for a relatively large number 

of subjects, see Figure 12. It is thus clear that the combination of different data 

preparation methods, as exploited by the hybrid CNN method, had the effect of 

increasing diagnostic performance of the ensemble CNN algorithm. It leveraged its 

discriminative power by exploiting multiple epileptic features. It therefore seems 

plausible that each data preparation method enables the extraction of a different 

physiological aspect that is characteristic of epilepsy.  

Whether each of these different physiological characteristics can be associated with 

one particular subtype of epilepsy remains an open question, since we do not know 

the subtypes of epilepsy in this dataset. Although a neurologist determined whether 

each subject had epilepsy or not in the TUH EEG Epilepsy database, the epilepsy type 

or syndrome was not determined and therefore unknown to us. Given the fact that 

there are various common types of epilepsy and that there were a variety of symptoms 

noted for the 30 selected epilepsy patients, it seems plausible that there were different 

epilepsy types in the database, including patients with generalized seizures and 

patients with focal seizures.  
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One interesting observation made in the current study was that the gamma band GC 

increase pattern was significantly more prominent in the connectivity between the 

FP1+F3+P3 electrodes (left hemisphere) than between the FP2+F4+P4 electrodes 

(right hemisphere), as can be compared in Figure 11 (the left image versus the right 

image). Indeed, a similar hemispheric asymmetric pattern was also found for most 

frequencies in another study which found that, similar to the current study, decreased 

connectivity was more dominant in the right hemisphere, while increased connectivity 

occurred mostly in the left hemisphere (Clemens et al., 2011). Such asymmetrical 

patterns were observed in various studies on temporal lobe epilepsy (TLE) and 

mTLE. Because temporal lobe epilepsy (TLE) is the most common type of adult focal 

epilepsy, it is likely that a large number of subjects in the current study have indeed 

TLE, which is supported by the fact that for many subjects the technical report 

described symptoms associated with TLE, including visual or auditory phenomena, as 

summarized in the appendix of the original study (Rijnders, 2021). Interestingly, 

various studies reported that the asymmetrical patterns of connectivity are different 

for left TLE than for right TLE, indicating that different pathological mechanisms 

may underlie these two types of epilepsies.  

A study from 2014 suggests that although right TLE patients have more reduced 

connectivity between DMN regions, they also showed some increases, which was a 

pattern thought to result from a compensatory mechanism (Haneef et al., 2014). 

Various other studies also suggested that such altered connectivity patterns can be 

associated with compensatory neuroplasticity effects that support default mode 

network (DMN) function (Dupont et al., 2002; Vlooswijk et al., 2010). Furthermore, 

such compensatory connectivity variations were found to be related to the duration of 

the disorder (Zhang et al., 2010).  

Of particular notice is that several epilepsy researchers observed altered DMN 

connectivity with the hippocampus. Interestingly, in one study from 2011, patients 

with left TLE often were found to have decreased connectivity between the posterior 

DMN and the hippocampus. Because the hippocampus and anterior DMN are 

connected via the posterior DMN, this increased anterior connectivity in left TLE was 

explained as a redistribution of connectivity (Liao et al., 2011). It seems possible that 

the increased connectivity pattern found in the current study may also be interpreted 

as the result of such a redistribution of connectivity; perhaps in response to pre-

existing memory impairments, given the important role of the hippocampus in terms 

of memory function. Weaker connectivity between posterior DMN regions with the 

hippocampus is also found in subjects with Alzheimer’s disease (Wu et al., 2011), and 

a large degree of co-occurrence between epilepsy and Alzheimer’s disease has been 

reported. In the current study, connectivity increase was found only during resting 

state and only in comparison to the control subjects. However, other studies have 

shown that increase of connectivity during resting state can be associated with 

improved memory function during tasks. In this view, the directed connectivity 

differences within the DMN observed in this study may in fact result from effects that 

compensate for cognitive aspects such as memory dysfunction. 

It is not well understood which role gamma band connectivity plays in terms of 

oscillatory dynamics. However, several studies have demonstrated that frequency 

band dependent rhythmic fluctuations link the oscillatory patterns of neuronal activity 

to periodic fluctuations in several cognitive processing tasks, including those related 
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to memory (Helfrich and Knight, 2016; Uhlhaas and Singer, 2012). In this regard, 

viewing the posterior DMN as a dysfunctional hub for communication with the 

hippocampus could perhaps explain the increased gamma band connectivity towards 

the posterior DMN as being the result of the anterior DMN attempting and failing to 

complete an early phase of some cognitive processing task that requires the anterior 

DMN to communicate with the hippocampus.  

Explaining the findings in the current study by any of these speculations remains 

challenging. In particular, we used no source estimation, so it is not possible to 

determine what occurred in deeper brain regions. Nevertheless, the findings do seem 

to sustain literature pointing towards compensatory effects, perhaps in support of 

memory function. In particular, several other studies also reported similar findings 

further supporting such a conclusion  (Bettus et al., 2009; Doucet et al., 2013; Lv et 

al., 2014). However, as mentioned in section 0, it is likely that among the focal 

epilepsy patients in our study, their epileptic zones exhibit a large variation. The 

epilepsy types and etiologies can therefore be assumed to be heterogeneous in the 

studied cohort, which makes it difficult to verify any physiological explanation for 

our study. 

For the same reason, it is also not possible to determine whether the used model and 

methods have greater or lesser predictive value for specific subtypes of epilepsy. 

However, regardless of what has caused the connectivity patterns identified in this 

study, it was shown that this simple CNN method, in combination with different GC 

matrix normalizations, enables the identification of various complex epileptic brain 

connectivity patterns. Considering the fact that epilepsy is a heterogeneous disease 

(Dumlu et al., 2020) it remains to be seen whether this method can result in higher 

accuracies by training the model on subjects with only one subtype of epilepsy. 

However, it does seem plausible that using a larger dataset can improve the ability of 

the deep learning algorithm to find more neuromarkers that may be representative of a 

particular subtype of epilepsy. As such, the practice of diagnosing epilepsy may likely 

benefit from incorporating deep learning techniques such as the one in this study, 

since it may provide a valuable clinical decision support system for epilepsy 

diagnosis. 

 

5. CONCLUSIONS  

 

The CNN algorithm achieved its highest diagnosis prediction accuracy on delta and 

gamma band directed connectivity patterns. Therefore, a generic CNN algorithm 

trained on images that consist of different GC matrices is able to detect complex 

features, provided the input data is prepared adequately. In order to maximally 

leverage a CNN’s ability to exploit multiple epileptic features in GC connectivity 

matrices, predictions made by different CNN methods, each with a separate data 

preparation and electrode combination, should be fused into a combined classification 

system. The high accuracy achieved in this study, for the automated diagnosis of 

epilepsy based on GC connectivity derived from EEG periods without pathological 

activity, shows that this approach could prove a valuable aid for clinicians or for 

supportive diagnostic evidence in conjunction with other automated methods. Because 

different electrode combinations and matrix normalization methods can elicit different 

physiological characteristics, it is possible that this approach could achieve a 
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diagnostic performance beyond that of a trained neurologist. The performance was 

comparable to those reported by other studies, which  required more expensive 

imaging modalities such as MRI, fMRI or ESI with high density EEG. The current 

study shows that these more expensive modalities may not be required for achieving 

high epilepsy diagnosis accuracy. The current method requires only a short and 

simple, noninvasive, low density, scalp EEG recording. This is particularly beneficial 

for patients with low seizure and IED frequency. Since it is computationally feasible 

on a standard laptop and requires minimal training to implement, it could also be 

easily used in a practitioner’s office. This, in turn, could be a significant cost 

reduction for society as a whole, since automated diagnosis of epilepsy overcomes the 

necessity for long term monitoring. 
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TABLES 

 

Table 2 

The most frequently reported non-epileptic health problems amongst the 60 used 

subjects, as reported by the EEG technicians. 

 Male / 

Female 

Ave-

rage 

age 

(yrs) 

Stroke 

or 

Infarct   

Syncope 

or loss of 

conscious

ness  

Diabetes Aortic 

issues or 

presurgery 

evaluation 

Dementia 

or 

Alzheimer 

or 

Parkinson 

Hepatitus 

B or C 

Epileptic patients  

Total = 30 

11 / 19 52.5 3 3 2 0 1 1 

Non-epileptic patients 

Total = 30 

13 / 17 53.7 8 

 

5 3 4 2 2 

 

Table 3 

Confusion matrix of the most accurate method. Using only  FP1+F3+P3 electrodes. 

 Predicted 

label 

epilepsy 

Predicted 

label  

non-pilepsy 

Real 

epilepsy 

 

24 

 

6 

Real  
non-

epilepsy 

 
7 

 
23 

Accuracy: 78 % F1-score: 79 % 

Sensitivity: 80 % 

Specificity: 77 % 

 

Table 4 

Confusion matrix of the second most accurate method. Using only the frontal 

electrodes. 

 Predicted 

label 

epilepsy 

Predicted 

label  

non-epilepsy 

Real 

epilepsy 

 

24 

 

6 

Real  

non-

epilepsy 

 

7 

 

23 

Accuracy: 78 % F1-score: 79 % 

Sensitivity: 80 % 

Specificity: 77 % 
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Table 5 

Confusion matrix of the third most accurate method. Using  all parietal & frontal 

electrodes. 

 Predicted 

label 
epilepsy 

Predicted 

label  
non-pilepsy 

Real 

epilepsy 

 

26 

 

4 

Real  

non-

epilepsy 

 

12 

 

18 

Accuracy: 73 % F1-score: 69 % 

Sensitivity: 60 % 

Specificity: 87 % 

 

Table 6 

Confusion matrix of the hybrid method (3x CNN) 

 Predicted 

label 

epilepsy 

Predicted 

label  

non-pilepsy 

Real 

epilepsy 

 

26 

 

4 

Real  

non-

epilepsy 

 

5 

 

25 

Accuracy: 85 % F1-score: 85% 

Sensitivity: 83% 

Specificity: 87% 
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FIGURES 

 

 

Figure 12. Best diagnosis results per subject for the three different electrode 

combinations: FP1+F3+P3 (left), Frontal (middle), Frontal & Parietal (right). Each 

red colored square indicates that the particular subject has been misdiagnosed by the 

algorithm. 

 

 
 

Figure 13. Best diagnosis results per subject for the hybrid ensemble method. The red 

colored squares indicate that the subject has been misdiagnosed.   
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Appendix A: Training Configurations  

 

Common configurations for all electrode combinations 

Used freq bands: Delta, Theta, Beta, Gamma. 

CNN architecture:  

One convolutional layer, 1 input channel, ReLu, no dropout, no pooling. 

Three fully connected (linear) layers: ReLu, dropout, final layer has 2 nodes. 

FC layer dropouts were applied with a manual seed=23. 

Test set consisted of 3 epileptic and 3 non-epileptic subjects for each run. 

Validation set consisted of 6 epileptic and 6 non-epileptic subjects for each run. 

Loss function: cross entropy loss. 

Optimizer: stochastic gradient descent. Batch size = 6. 

Learning rates were reduced by a factor 33.3%, in 2 equal steps:  

First reduction at epoch == patience, and second at epoch == 2*patience. 

 

Table 7 

Used training configurations of the algorithm for each electrode combination. 

 FP1+F3+P3 Frontal  Frontal & Parietal 
Input scaled? Yes, avg = 0.5 No Yes, avg = 0.5 
CNN output channels  28 56 28 
CNN kernel size / 

stride / padding 
3 / 3 / 0 6 / 6 / 0 12 / 12 / 0 

1st / 2nd fc layer nodes 64 / 16 16 / 16 32 / 16 
FC layers dropout 0.25 0.25 0.20 
Learning rate 0.001 0.0003 0.0015 
Momentum 0.96 0.97 0.91 
Weight decay 0.01 0.00001 0.001 
Epochs / patience for 

early stopping 
700 / 60 500 / 30 800 / 50 
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