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Abstract 

 Background – Full polysomnography, the gold standard of sleep measurement, is impractical for 

widespread use in the intensive care unit (ICU). Wrist-worn actigraphy and subjective sleep 

assessments do not measure sleep physiology adequately. Here, we explore the feasibility of 

estimating conventional sleep indices in the ICU with heart rate variability (HRV) and 

respiration signals using artificial intelligence methods. 

  Methods – We used deep learning models to stage sleep with HRV (through electrocardiogram) 

and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to 

surgical and medical ICUs, and in covariate-matched sleep laboratory patients. We analyzed the 

agreement of the determined sleep stages between the HRV- and breathing-based models, 

computed sleep indices, and quantified breathing variables during sleep. 

  Results – We studied 102 adult patients in the ICU across multiple days and nights, and 220 

patients in a clinical sleep laboratory. We found that sleep stages predicted by HRV- and 

breathing-based models showed agreement in 60% of the ICU data and in 81% of the sleep 

laboratory data. In the ICU, deep NREM (N2 + N3) proportion of total sleep duration was 

reduced (ICU 39%, sleep laboratory 57%, p<0.01), REM proportion showed heavy-tailed 

distribution, and the number of wake transitions per hour of sleep (median = 3.6) was 

comparable to sleep laboratory patients with sleep-disordered breathing (median = 3.9). Sleep in 

the ICU was also fragmented, with 38% of sleep occurring during daytime hours. Finally, 

patients in the ICU showed faster and less variable breathing patterns compared to sleep 

laboratory patients. 

  Conclusions – Cardiovascular and respiratory signals encode sleep state information, which can 

be utilized to measure sleep state in the ICU. Using these easily measurable variables can 

provide automated information about sleep in the ICU.  
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I. Introduction 

 

Healthy sleep is a biological imperative(1, 2). Abnormal sleep impairs critical brain and body 

functions, including memory(3), learning, attention, and affective state(4–8), and regulation of 

blood pressure(9), inflammatory processes(10, 11), metabolic control(12–14), and stress 

responses(15–17). The intensive care unit (ICU) is associated with disrupted sleep, due to 

internal (e.g., pain, immunocompromisation, dyspnea and apnea) and external (e.g., noise, 

circadian mismatch) factors. Sleep can be so distorted in the ICU that conventional sleep stages 

become hard to recognize(18). Sleep disruption in the ICU contributes to delirium(19), difficult 

weaning from mechanical ventilation(20), and increased risk of autonomic, inflammatory and 

metabolic dysfunction(21).   

 

Despite the urgency of improving sleep in the ICU, measuring sleep in this environment is 

challenging since conventional polysomnography is difficult to operationalize in the ICU 

setting(22). Subjective sleep estimates and movement analysis using actigraphy can provide 

crude assessments of sleep(22, 23), but are heavily confounded by common ICU experiences, 

including sedation, monitoring, illness, and immobility. No present method of measuring sleep in 

the ICU is satisfactory(24), thus alternative approaches are needed.  

To address this need, our first aim for this study was to evaluate the validity of monitoring sleep 

physiology in ICU patients using easily obtainable biosignals, such as electrocardiogram (ECG) 

and respiration, using artificial intelligence methods. Although sleep states are commonly 

discerned through electroencephalogram (EEG) signals, they can also be decoded through 

analysis of non-EEG signals(25–27) since sleep modifies a variety of biosignals(28, 29), 

including blood pressure, heart rate, and respiration. Additionally, respiration and ECG 

measurements are easier to acquire, offer a more practical and repeatable diagnostic tool 

compared to EEG, and better reflect sleep physiology compared to actigraphy and subjective 

assessments. For this study, we used deep neural network models to determine sleep stages from 

heart rate variability (HRV), derived from ECG, and breathing signals, obtained with a single 

respiratory effort belt. We analyzed how well the HRV and breathing models agreed in 

determining sleep stages both in ICU patients and in age and sex-matched patients referred to a 

clinical sleep laboratory. We hypothesized that agreement between the two models signifies 

confidence in the determined sleep stage. To test this hypothesis, we used the sleep laboratory 

dataset to compare sleep staging performance between our model agreement method and the 

gold standard, which involves manual scoring of polysomnography EEG signals by experts. We 

also hypothesized that the HRV and breathing models would agree substantially in the ICU 

dataset, although we expected more disagreement compared to the sleep laboratory dataset given 

the extent of respiratory and cardiac physiology in critical illness. To characterize variables that 

could reduce the reliability of the presented HRV- and breathing-based sleep analysis in the ICU, 

we evaluated whether specific HRV- and respiratory features, medical conditions, severity of 

illness, and pharmacological drugs are associated with disagreement of these two sleep staging 

models.  

The second aim of this study was to identify common patterns of sleep pathology in ICU patients 

compared to non-critically ill patients undergoing overnight diagnostic polysomnography 
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recordings for suspected sleep disorders in the sleep laboratory. We computed common sleep 

statistics and respiratory variables such as respiratory rate and sleep breathing variability, for 

both cohorts, and tested the robustness of our results through sensitivity analysis. 

Finally, sleep has been shown to be fragmented in the ICU(30), which prevents patients from 

getting adequate consolidated periods of rest. As such, the last aim of this study was to quantify 

sleep fragmentation in patients admitted to the ICU.  

 

II. Methods 

 

A. Study Oversight – Patients were enrolled after written consent in a randomized clinical trial, 

Investigation of Sleep in the Intensive Care Unit (NCT03355053, (31)), at the Massachusetts 

General Hospital (MGH) from June 2018 to November 2019. The clinical trial involved 

randomizing patients into three groups, where two of the groups received a low dose of 

dexmedetomidine (0.1 or 0.3 mcg/kg/h) overnight continuously for 11 hours, and the third group 

received placebo (normal saline). Exclusion criteria for the clinical trial include severe dementia, 

known pre-existing neurologic diseases or cognitive deficits, serious cardiac disease, severe liver 

dysfunction, severe renal dysfunction, and low likelihood of survival for 24 hours – all criteria 

can be found in the online supplement. The study was approved by the Mass General Brigham 

Institutional Review Board.  

B.  Dataset – ICU Cohort: The sample size for this study was determined by starting with 

enrolled patients and then excluding all patients under 45 years of age and patients who had less 

than 2 hours of ECG or respiratory data. Patients were non-mechanically ventilated at the time of 

enrollment, although some were subsequently mechanically ventilated during the course of 

hospitalization; see Table 1.  At the start of the trial, a respiratory belt (Airgo, a CE Class IIa 

certified wearable medical device (32), Figure S1) was placed around a patient’s chest, as close 

to the floating ribs as possible, until they were transferred outside of the ICU. The belt contains a 

conductive silver band that measures respiratory effort by sensing changes in electrical resistance 

that correspond to changes in belt length induced by thoracic movements. The amplitude values 

of the belt were not calibrated. The sampling frequency was 10 Hz. In addition to demographic 

data, we collected information regarding labs, medications, vital signs, and ICD-10 codes from 

the hospital’s electronic medical records. Vital signs at higher time resolution (0.5 Hz) and 

electrocardiogram (ECG) (256 Hz) data were collected from the bedside telemetry monitors over 

the hospital network using BedMaster software (Excel Medical, Jupiter, FL). Signals collected 

through bedside monitors and the wearable respiratory device both contained real-time 

timestamps; correct alignment was manually reviewed for all patients. Charlson Comorbidity 

Index(33) and Sequential Organ Failure Assessment (SOFA)(34) scores were computed. 

Sleep Laboratory Cohort: 404 patients who underwent overnight polysomnography (PSG) in the 

Massachusetts General Hospital sleep laboratory between January 2019 and January 2020 wore 

the same respiratory belt that was used in the ICU cohort. Participants were enrolled through 

verbal consent shortly before onset of the PSG. There were no exclusion criteria and enrollment 
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stopped after reaching a target sample size of 404 patients. This study was also approved by the 

Mass General Brigham Institutional Review Board. To use sleep laboratory patients as control 

subjects for comparison with ICU patients, we applied the same exclusion criteria, i.e., excluding 

all patients under 45 years of age. We also balanced the distribution of age and sex between the 

ICU and sleep lab cohorts by applying k-nearest-neighbor matching, as previously described(35). 

We further stratified sleep lab patients according to their Apnea-Hypopnea-Index (AHI) severity 

into no-disordered breathing (AHI < 5) and disordered breathing (AHI > 15) groups and applied 

the same matching method for each of these subgroups. Seven trained sleep technicians 

annotated PSG studies as part of routine clinical care according to American Academy of Sleep 

Medicine guidelines (36).  

C.  Biosignals Preprocessing – Non-physiological data and data with low signal quality were 

removed from both the ECG and respiratory effort belt signal. For the respiratory signal, this was 

done with an algorithm checking for high and constant amplitude (belt not worn) and for absence 

of reliable breath detection (low signal quality). For each patient, we normalized the respiratory 

signal by subtracting the mean and dividing by the standard deviation calculated from the 1-99% 

quantile clipped signal. We used the open-source PhysioNet Cardiovascular Signal Toolbox(37) 

to filter the ECG signal, extract R peaks based on the Pan Tompkins algorithm(38), and obtain a 

signal quality measure. We provide parameter settings for the preprocessing steps in the online 

supplement. 

D. Sleep Staging – We used deep neural network models that use heart rate variability (a binary 

sequence with 1 for a detected R-peak in the ECG, 0 else) and respiratory effort signals as inputs 

to assign a sleep stage (Wake, R, N1, N2 and N3) to every 30-second epoch. We previously 

validated this approach on datasets from the MGH sleep laboratory and the Sleep Heart Health 

Study(27). Here, we used a model trained with signals from the wearable respiratory belt as 

input. For visual representation of the resulting sleep stages for all patients, swimmer plots were 

created. 

E. Breathing Features – From the respiratory belt’s signal, we computed four features using a 

moving window approach: 

i. Respiratory rate (RR): number of breaths (inspiratory peaks) detected in 10 

seconds (moving window) x 6. 

ii. Inter-breath-interval (IBI): time (seconds) between two consecutive breaths. 

iii. Ventilation coefficient of variation (ventilation CVar): we first computed a proxy 

of minute ventilation as the sum of positive amplitude changes (inspiration) over 

10 seconds and scaled it to a reference of one minute (multiplied by 6), then 

computed the coefficient of variation over a 30-second window. 

iv. Variability index: we computed the coefficient of variation of the IBIs over a 30-

second window, and defined the variability index as: variability index = 

(ventilation CVar + IBI CVar)/2, i.e., the mean of the coefficient of variation 

computed from the breathing timing (IBI) and breathing amplitude (ventilation). 
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F. Statistical Analysis – Sleep Staging 

Definition - concordant and discordant sleep. For all analyses in this study, we only used data 

where both HRV and breathing data was simultaneously available. We applied both the HRV 

and breathing-based sleep staging models individually on all data. Each 30-second epoch in the 

data was assigned a sleep stage by the HRV- and breathing-based models, yielding two 

hypnograms. Because disagreement in sleep staging in human experts is common(39), and 

because stages between wake, N1, N2, and N3 form a continuum, we defined concordance 

regarding the stage assigned to a given 30-second epoch of sleep if the models agreed to within 

one stage, and discordance if they did not. Specifically, we defined an ordinal progression of 

sleep depth for NREM sleep: W < N1 < N2 < N3, such that e.g., if the HRV and breathing-based 

models assigned W and N1, respectively, this would be considered concordant; whereas 

assignments of W and N2 would be considered discordant. For REM sleep R, models were 

considered concordant only if both assigned a stage of R. For completeness, the full set of 

concordant and discordant stage assignments were:  

Concordance: (W, W), (N1, N1), (N2, N2), (N3, N3), (R, R), (W, N1), (N1, N2), (N2, N3). 

Discordance: (W, N2), (W, N3), (W, R), (N1, N3), (R, N1), (R, N2), (R, N3). 

For the sleep lab polysomnography data, sleep staging agreements between the models and the 

experts were measured with confusion matrices and Cohen’s kappa(40) for both concordant and 

discordant data.  

Sleep indices. We split each patient’s data into 24-hour segments (full day), starting and ending 

at 08:00, and further defined day as 08:00 – 20:00 and night as 20:00 – 08:00. For every 24-hour 

segment, we obtained the HRV-based and breathing-based hypnograms, and computed the 

following sleep indices: 

1. Total sleep duration (in hours). 

2. Concordant sleep duration (in hours). 

3. Discordant sleep duration (in hours). 

4. Proportion of discordant sleep from total sleep (in %). 

5. Sleep fraction (%): sleep duration divided by amount of data available. 

6. Stage R (%), Stage N1 (%), Stage N2 (%), Stage N3 (%), Stage N2+N3(%): Time spent 

in a specified sleep stage divided by sleep duration. 

7. Sleep fragmentation index (SFI): Number of sleep stage transitions from (N2, N3, R) to 

(N1, W) divided by sleep duration. 

8. Wake transitions / hour: Number of sleep stage transitions from (N1, N2, N3, R) to (W) 

divided by sleep duration. 

We further computed mean sleep indices across the models: 

 xmean = (xHRV + xBreathing) / 2 

where x is any of the 8 sleep indices listed above. 
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To ensure robust conclusions regarding sleep indices, we performed sensitivity analysis, by 

computing sleep indices using three complementary approaches. The approaches vary by what 

segments are included for sleep index computation, and by which part of sleep (total sleep or 

concordant sleep) is used to compute the sleep indices: 

A1.  Inclusion criteria: Any amount of sleep. Sleep indices computed on total sleep. 

A2.  Inclusion criteria: At least two hours of concordant sleep. Sleep indices computed on 

total sleep. 

A3.  Inclusion criteria: At least two hours of concordant sleep. Sleep indices computed on 

concordant sleep. 

For each approach, we carried out the following test procedure: For every subject we computed 

the mean sleep indices (mean xmean across all 24-hour segments). We then applied a Mann-

Whitney U (MWU) test (H0: ‘equal distribution for both groups’) and Mood’s median test (H0: 

‘equal medians for both groups’) to assess statistical difference between the ICU and sleep lab 

(overall and AHI subgroups) subjects. We considered sleep indices to be significantly different 

for two groups (Mann-Whitney U) with a significantly different effect direction (Mood’s median 

test) if both tests resulted in a p-value of less than 0.05. We chose to apply non-parametric tests 

instead of t-tests because we found that none of the data were normally distributed in either the 

ICU or sleep lab group, where we define non-normally distributed to mean that either the 

Shapiro-Wilk or D’Agostino’s K-squared test rejects null hypothesis of normality for 

alpha=0.05. We report test results for all applied statistical tests. 

Sleep fragmentation in the ICU. We characterized sleep fragmentation in the ICU(30) by the 

following metrics using HRV model-based sleep stages: 

1. Proportion of day (08:00 – 20:00) spent asleep. 

2. Proportion of night (20:00 – 08:00) spent asleep. 

3. Proportion of sleep occurring in the day versus in the night. 

4. Proportion of REM sleep occurring in the day versus in the night. 

5. Number of sleep periods, with a duration of at least one minute, per 24 hours. 

6. Number of sleep periods, with a duration of at least five minutes, per 24 hours. 

Subgroup Analysis. The ICU patients were manually grouped according to their primary and 

main conditions, and the median sleep indices (HRV-based model, analysis approach A2) were 

computed for each group. The Kruskal-Wallis H test was applied to assess differences of 

individual sleep indices between groups. 

Latent feature representation of sleep. To assess similarities and differences in the latent feature 

representation between sleep epochs in the ICU and the sleep lab, we computed unsupervised 

UMAPs  (Uniform Manifold Approximation and Projection)(41) based on the sleep staging 

neural networks’ last hidden layer activations. UMAPs were created separately for the HRV-

based model and breathing-based model across pooled sleep lab and ICU data, see supplement 

for details. 
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Disagreement between HRV and breathing models - error analysis. We hypothesized that the 

following variables affect discordance in the HRV- and breathing-based models: 1) specific 

features from cardiac and respiratory signals; 2) daily dosing of opioids, benzodiazepines, and 

antipsychotics; 3) SOFA score, a measure of a patient’s illness severity. HRV and breathing 

features of interest were: RR interval, RR root mean square of successive differences (RMSSD), 

HRV very low frequency power (VLF), HRV low frequency power (LF), HRV high frequency 

power (HF), inter-breath-intervals, respiratory rate, respiratory variability index, ventilation 

CVar, cardiopulmonary coupling(42) (CPC) low frequency coupling (LFC), CPC high frequency 

coupling (HFC). We computed these features for concordant and discordant sleep parts for each 

24-hour segment and performed a Mann–Whitney U test with a significance level of 0.01 for 

each feature pair. Next, we computed features for each 24-hour segment and performed 

multilinear regression analysis with a LASSO penalty, with the features as independent variables 

and the discordant proportion (log-transformed) as the dependent variable. To test if daily 

administered doses of opioids (in Fentanyl milligram(43)),  benzodiazepines (in Midazolam 

milligram(44, 45)), antipsychotics (DDD method(46)) and the SOFA score were associated with 

discordance, we computed Pearson and Spearman correlations between each of these variables 

and the proportion of discordant sleep for each 24-hour segment. 

G. Statistical Analysis – Breathing. For every 24-hour segment with at least two hours of 

concordant sleep, we computed the breathing features as described above from concordant sleep 

and for each sleep stage. For each patient we averaged the features across all nights. For ICU and 

sleep lab cohorts, we computed the mean and standard deviation of each feature and assessed 

statistically significant differences between cohorts with t-tests for Gaussian features or Mann-

Whitney U tests and Mood’s median test (analogous to sleep stage analysis) for non-Gaussian 

features. 

Results are reported in accordance with the Strengthening the Reporting of Observational Studies 

in Epidemiology (STROBE) guidelines(47). We provide the de-identified data, the analysis code 

and computational models used in this study on our GitHub page(48). 
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Table 1. Baseline Characteristics   

 ICU  

n (%) 

Sleep 

laboratory 

n (%) 

p-

value 

Number of Patients 

Age (years) 

     Mean (Std) 

     Range 

102 

 

68 (9) 

50 - 88 

220 

 

68 (9) 

51 - 101 

 

0.80 

 

Sex 

     Male  

     Female 

 

61 (60) 

41 (40) 

 

122 (55) 

98 (45) 

0.93 

 

Race 

     White or Caucasian 

     Black or African American 

     Asian 

     American Indian or Alaska Native  

     Unknown 

 

92 (90)  

5 (5) 

2 (2) 

1 (1) 

2 (2) 

 

152 (69) 

9 (4) 

7 (3) 

1 (0.5) 

51 (23) 

0.99 

Ethnicity 

     Non-Hispanic 

     Hispanic 

     Unknown 

 

95 (93) 

2 (2) 

5 (5) 

 

168 (76) 

6 (3) 

46 (21) 

0.92 

BMI (kg/m2) a 27 (6) 31 (6) 1e-6 

Wearable Belt Length (cm)a 89 (12)  n/a  

Charlson Comorbidity Index 2.2 (2.1) 1.9 (1.7) 0.11 

Apnea-Hypopnea-Index n/a 9 (9)  

Previous OSA Diagnosis 28 (27) n/a  

History of CHF 29 (28) n/a  

History of COPD 31 (30) n/a  

ICU Type    

     Medical 33 (34) n/a  

     Surgical 68 (66) n/a  

SOFA Score at first study day  

     Mean (Std) 

     Range 

Primary and/or secondary diagnosis 

 

3.1 (2.6) 

0 – 11 

 

 

n/a 

n/a 

 

     Acute Kidney Injury 

     Shock 

     Respiratory Failure 

     Anemia 

     Sepsis  

     Pneumonia 

     Encephalopathy, Altered 

     Mental Status 

     Pneumothorax, Hemothorax,  

     Pulmonary Edema, Pleural 

     Effusion 

      GI perforation, incarcerated 

     hernia, SBO, ischemic colitis 

     Heart Failure 

     Hemorrhage 

     COPD, Interstitial lung disease 

33 (32) 

30 (29) 

21 (21) 

20 (20) 

19 (19) 

15 (15) 

 

14 (14) 

 

 

13 (13) 

 

11 (11) 

10 (10) 

10 (10) 

7 (7) 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

 

n/a 

 

 

n/a 

 

n/a 

n/a 

n/a 

n/a 
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aMean (Standard Deviation), bMedian (Interquartile Range) 

  

  

     Fall, Trauma, Burns 

     Cirrhosis s/p liver transplant 

     Other medical 

     Other surgical 

7 (7) 

6 (6) 

34 (33) 

47 (46) 

n/a 

n/a 

n/a 

n/a 

In-hospital Mortality 0 (0) n/a  

Three Month Mortality 

Readmission 

   Hospital within 30 days 

   ICU within 30 days 

   Emergency department within 30 days 

Mechanical Ventilation 

     During hospitalization 

     Before enrollment 

     During study period 

     After 14-day study period  

     Duration (days)b 

Medications usage within study period 

     Opioids used 

     Fentanyl equivalent (mg)a 

     Benzodiazepines used 

     Midazolam equivalent (mg)a  

     Antipsychotics used 

     DDD-method equivalenta 

19 (18) 

 

10 (10) 

7 (7) 

4 (4) 

 

26 (25) 

21 (20) 

7 (7) 

6 (6) 

0.5 (2.2) 

 

68 (68) 

38 (45) 

23 (23) 

4 (6) 

24 (24) 

0.3 (0.4) 

n/a 

 

n/a 

n/a 

n/a 

 

n/a 

n/a 

n/a 

n/a 

n/a 

 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 
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III. Results 

 

B.  Dataset – For the ICU cohort, 129 patients were enrolled in the clinical trial; we excluded 

two patients under 45 years old, and 25 patients for having less than 2 hours of ECG or 

respiratory data available from our analysis, resulting in a cohort size of 102 patients (41 

females, 61 males).  In the sleep lab cohort, out of 404 enrolled patients, 97 were excluded due to 

age under 45 years, resulting in a sample size of 307 before matching. Matching resulted in 220 

(98 females, 122 males) sleep lab patients, 77 (40 females, 37 males) with an AHI < 5 and 52 (18 

females, 34 males) with an AHI > 15. Age distributions were similar for ICU and matched 

groups, both for male and female subjects; see Table S1 for details. Table 1 summarizes the 

baseline characteristics of the ICU and the matched sleep lab cohort. 

C.  Biosignals Preprocessing – After signal preprocessing, we obtained 6,728 hours (280 days) 

of ECG data, 3,886 hours (162 days) of breathing data, and 3,502 hours (146 days) of 

simultaneous ECG and breathing data for the ICU cohort. For the sleep lab cohort, the numbers 

were 1,634, 1,609, and 1,562 hours, respectively. Mean (SD) hours of data available per patient 

in the ICU (N=103) were ECG 66.0 (27.8), Breathing 38.1 (28.1), for simultaneous ECG and 

breathing signals 34.3 (24.6), and for the sleep lab (N=220) 7.4 (0.8), 7.3 (1.0), 7.1 (0.9) hours 

respectively. 

F. Statistical Analysis, Sleep Staging – In the sleep laboratory data, 131,157 out of 173,977 30-

second epochs (75.4%) were assigned concordant sleep stages by the HRV- and breathing-based 

models. The models showed higher staging agreements with experts for concordant data than for 

discordant data, both when agreement was evaluated with Cohen’s kappa with AASM standard 

stages (W, R, N1, N2, N3), as well as with combined NREM stages (W, R, NREM), see Figure 

1. 
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Figure 1: Model performance evaluation on 220 covariate-matched sleep laboratory patients. Data where 

the HRV- and breathing-based sleep stages were in concordance (see main text for definition) also 

showed higher agreement with human expert labels. In total, 75.4% of all 30-second epochs were 

assigned concordant sleep stages by the models. For the discordant sleep epochs, the breathing-based 

sleep stages had markedly higher agreement with the expert labels than the HRV-based sleep stages. 

The three analysis approaches resulted in the following total sleep times (TST), concordant sleep 

times (CST), and proportions sleep (S(%)) per 24-hour segment (numbers given as mean (SD)): 

A1. Inclusion: any sleep; sleep indices computed on total sleep:  

   ICU: 102 subjects (274 24-hour segments), TST 6.2 (3.1) hours, S(%) 50.4 (19.7) 

   Sleep lab: 220 subjects (220 segments),  TST 4.9 (1.6) hours, S(%) 73.9 (19.3)  

A2. Inclusion: ≥2 hours of concordant sleep; sleep indices computed on total sleep:  

   ICU: 80 subjects (163 segments),   TST 8.6 (3.0) hours, S(%) 56.4 (18.7) 

   Sleep lab: 190 subjects (190 segments),  TST 5.3 (1.3) hours, S(%) 76.7 (16.4) 

A3. Inclusion: ≥2 hours of concordant sleep; sleep indices computed on concordant sleep: 

   ICU: 80 subjects (163 segments),   CST 4.2 (1.7) hours, S(%) 58.3 (26.9) 

   Sleep lab: 190 subjects (190 segments),  CST 4.1 (1.4) hours, S(%) 76.8 (18.2) 

Sleep staging results for each patient over time are shown in Figure 2 and Figure S2, sample 

hypnograms for both ICU and sleep lab patients are shown in Figure 3. 
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Figure 2. Swimmer plot visualizing sleep stages over time for 102 ICU patients. One line represents one 

patient, and patients are sorted by the proportion of sleep stage discordance (see main text for definition). 

For sleep epochs where HRV and breathing-based models were in concordance (60% of the data), the 

data is colored according to the sleep stages NREM (pooled N1, N2, N3), REM and Wake as assigned by 

the breathing-based (top half of each line) and HRV-based (bottom half of each line) sleep staging 

models. Epochs where HRV and breathing-based models were discordant (40% of the data) are marked as 

orange. Both sleep stage distribution and the amount of discordance considerably varied among patients. 
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Figure 3. In this study, we used deep neural networks to stage sleep from both HRV- and breathing data, 

and defined concordance between the two resulting hypnograms (see main text). Hypnogram data for 

three sample patients from the sleep laboratory and three sample patients from the ICU are shown here 

and sorted by HRV- and breathing model concordance. The sleep laboratory data (clinical 

polysomnographies) included expert-scored sleep stages and respiratory events. Abbreviations: AHI D./T. 

Apnea-Hypopnea Index diagnostic/titration part of split night. 

 

Sleep indices. For approach A2, the results of the sleep indices computation on a 24-hour level 

for the HRV and breathing models, together with the expert labels for the sleep lab data, are 

shown in Figure 4. Mean total sleep time per 24 hours in the ICU was determined to be 6.5 

hours with the HRV-based model and 11.8 hours with the breathing-based model (+ 81.5%). In 

the sleep lab, total sleep time was determined to be 4.9 hours with HRV-based model and 5.7 

hours with breathing model (+16.3%) and 5.6 hours by the human sleep expert.  
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Figure 4. Sleep staging results for a surgical and medical ICU (N=80 subjects, 163 24-hour segments) 

and for an age- and sex-matched sleep laboratory cohort (N=190 subjects, 190 nights), where for each 24-

hour segment or night sleep was detected at least once. Inclusion of all available ICU patients (N=102), 

i.e. without minimum sleep requirement, resulted in a mean total sleep time of 6.2 (3.1) hours per 24 

hours in the ICU.  Sleep stages were determined by breathing (respiratory effort) and heart rate variability 

(HRV)-based deep neural network models. For the sleep lab, additional human expert labels were 

available. A. Mean (one standard deviation) sleep indices. TS: total sleep time (hours), CS: concordant 

sleep time (hours), DS: discordant sleep time (hours), S: sleep percentage of total recording (%), SFI: 

sleep fragmentation index, WT: wake transitions per hour of sleep. B. Median (inter-quartile range) sleep 

indices for ICU and sleep lab cohort for both breathing- and HRV- based sleep staging models. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.23.21264039doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21264039


Figure 5 depicts sleep indices (mean of breathing and HRV-based indices) distributions for all 

patients. In the ICU, there was a greater proportion of N1 compared to the AHI<5 sleep lab 

cohort (p MWU=0.05) and significantly less N2 compared to all sleep lab cohorts (p<0.001). The 

proportion of N2+N3 was reduced compared to total sleep lab (p<0.01) and sleep lab AHI<5 

(p<0.001) cohorts but not compared to the sleep lab subgroup with AHI>15. While stage R 

distributions showed heavier tails in the ICU cohort (p MWU=0.05). Median wake transitions 

per hour of sleep were similar in the ICU and sleep lab AHI>15 groups (3.6 and 3.9), but lower 

in the sleep lab AHI<5 group (2.7, p<0.05). The ICU cohort showed a larger proportion of 

discordance between the breathing and HRV-based sleep staging models compared to the sleep 

lab cohort (41% and 19% respectively). In the ICU, a median of 25% of the day (08:00 – 20:00) 

and 41% of the night (20:00 – 08:00) were spent asleep. 38% of total sleep and 51% of R sleep 

occurred during daytime hours. 

The following sleep indices results for the ICU were confirmed (same effect direction, all 

significant) by all analysis approaches A1-A3: Elevated discordant sleep time and proportion, 

reduced N2 proportion, and reduced N2+N3 proportion. The number of wake transitions per 

hour of sleep in the ICU was increased compared to the total sleep lab cohort (significant in 2 out 

of 3 analysis approaches), significantly increased compared to the sleep lab AHI<5 cohort 

(significant in all analysis approaches), and similar compared to the sleep lab AHI>15 cohort 

(not significantly different in any analysis approach). Results for the three analysis approaches 

are presented in Tables S2-S6; a summary is presented in Table S7.  

Subgroup Analysis. The median and interquartile ranges of sleep indices for patients grouped by 

diagnosis are shown in Figure 6 (and Table S8 for numerical values including test results). 

Kruskal Wallis tests were not significant for any of the sleep indices (minimum p-value of 0.08 

observed for N3 proportion). Patients with lowest N2+N3(%) observed had diagnoses of 

hemorrhage, shock, and encephalopathy, and patients with highest N1(%) had diagnoses of 

hemorrhage, sepsis and encephalopathy. Discordant sleep proportion was highest for patients 

with cirrhosis and liver transplant, pneumothorax, respiratory failure, and pneumonia, and lowest 

for patients with shock, hemorrhage, and acute kidney failure. 

Latent feature representation of sleep. We generated 2-dimensional maps by using the deep 

neural network last hidden layer’s activation for each epoch as inputs for the UMAP (Figure 7). 

Coloring the data points with the predicted sleep stage shows clusters that correspond to those 

sleep stages (Figure 7A). For some sleep stages more than one cluster is apparent (HRV: R, N1, 

N3; Breathing: R, N3). For each sleep stage, estimated gaussian kernel densities of the UMAP-

derived features show that the ICU features largely overlap with the sleep lab features, but are 

more widely dispersed (i.e., more variable) than in the sleep lab cohort (Figure 7B). 
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Figure 5. Sleep indices distribution visualized with violin plots and embedded boxplots (inter-quartile 

ranges: black rectangles) and medians (white dots); numerical values at bottom of distribution plots show 

median (interquartile range). A. Sleep Indices (mean of breathing and HRV-based indices) in the ICU 

(N=80 patients) and age and sex-matched sleep lab cohorts (N all = 190 subjects, N AHI<5 = 69 subjects, 

N AHI>15 = 49 subjects), both with requirement of minimum of 2 hours of detected sleep. Mann-

Whitney U (MWU) tests and Mood’s median (MM) tests were applied to compare the ICU and sleep lab 

cohorts, and significance was indicated if both tests reached a given significance level. Stage R 

distributions showed heavier tails in the ICU cohort; statistical comparisons of differences did not reach 

significance. In the ICU, there was a larger proportion of light sleep (N1) compared to the AHI<5 sleep 

lab cohort (p MWU=0.05), and significantly less N2 compared to all sleep lab cohorts. The proportion of 

N2+N3 was also reduced compared to total sleep lab and AHI<5 cohorts but not compared to subjects 

with AHI>15. Median wake transitions per hour of sleep were similar in the ICU and AHI>15 group (3.6 

and 3.9), and significantly lower in the AHI<5 group (2.7). The ICU cohort showed a significantly greater 

proportion of discordance between the breathing and HRV-based sleep staging models. B. Sleep 

fragmentation indices obtained in the ICU. Median 25% of the day (08:00 – 20:00) and 41% of the night 

(20:00 – 08:00) were spent asleep. 38% of total sleep and 51% of R sleep occurred during the day. 
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Figure 6. Median and interquartile ranges for sleep indices for ICU patients with at least two hours of 

detected sleep (N=80), grouped by their primary or main condition, with number of patients per condition 

shown in parentheses. Kruskal Wallis tests were not significant (p>0.05) for any of the sleep indices.  
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Figure 7. Latent Feature Analysis: Two-dimensional UMAP (Uniform Manifold Approximation and 

Projection) representations were computed with all epochs’ last hidden layer activations of the HRV-

based and breathing-based deep neural networks. A. Data points are colored by predicted sleep stage, 

revealing clusters that correspond to sleep stages in both sleep lab and ICU data. B. For each sleep stage, 

probability density functions were estimated for the sleep lab and ICU data. While there is overlap 

between distributions (showing features computed from the ICU data are similar to features computed 

from the sleep lab data), the distributions of the ICU data are more dispersed (showing features in the ICU 

that are not present in the sleep lab data). 
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Disagreement HRV and breathing model - error analysis. Out of 44 computed biosignal-based 

features, 27 showed a significantly different distribution (Mann–Whitney U test, significance 

level 0.01) between concordant and discordant sleep, see Tables S9-S10 for details on the 

difference between HRV and breathing models. For N1, significantly reduced mean values in 

discordant sleep were observed for HRV-VLF, HRV-LF, HRV-HF, HRV-RMSSD, inter-breath-

intervals, respiratory variability, ventilation CVar, CPC-LFC, CPC-HFC, and significantly 

increased for respiratory rate. For N2, NN-interval duration, inter-breath-intervals, respiratory 

variability, ventilation CVar were reduced, while HRV-VLF, HRV-LF, and respiratory rate were 

increased. For N3, NN-interval duration was decreased, while HRV-VLF, HRV-LF, HRV-HF, 

HRV-RMSSD, respiratory variability, ventilation CVar and CPC-LFC were increased. Lastly, 

for REM sleep, we observed increased HRV-RMSSD and CPC-HFC for discordant sleep 

compared to concordant equivalents. 

In the multivariate linear regression analysis, the automated feature selection (see supplement for 

details) led to a model with 53 input variables (F-test statistic of 1.51, a F-test p-value of 0.036) 

and an r-squared value of 0.424. Hence, on a 24-hour segment level, the computed HRV and 

breathing features could explain up to 42% of the variance of discordant sleep proportion.  

None of SOFA scores, amounts of opioids, benzodiazepines or antipsychotics administered 

correlated with the discordant sleep proportion (all p-values for Pearson and Spearman 

correlations >0.05, see Table S11). 

G. Statistical Analysis – Breathing. Figure 8 shows the mean and standard deviation of breathing 

features during sleep for each patient. The mean and standard deviation of respiratory rate during 

sleep was significantly larger for the ICU (mean respiratory rates = 17.4 cycles per minute, 

respiratory rate standard deviation = 4 cycles per minute, p<0.01), compared to the sleep lab 

patients. The median inter-breath-interval during sleep was significantly lower in the ICU (3.8 

seconds) compared to the sleep lab (4.7 seconds). Effect directions were the same (with 

significance p<0.001) for the sleep lab AHI<5 and sleep lab AHI>15 groups. The mean and 

standard deviations of the ventilation’s coefficient of variation (as a proxy for minute ventilation) 

was significantly smaller in the ICU (p<0.05). The mean respiratory variability index in the ICU 

was smaller compared to the AHI>15 group (p<0.001) and larger to the AHI<5 group (not 

significant). See Table S12 for a summary and Table S13 for details. 
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Figure 8. Breathing features during sleep for ICU (N=80) and sleep lab (N=190) patients. From the 

respiratory effort breathing signal obtained with a wearable band, we computed four features for all 

patients: respiratory rate, inter-breath-intervals, variability index, and as a proxy for minute ventilation, 

ventilation coefficient of variation (CVar). We compared the Intensive Care Unit (ICU) cohort with the 

full sleep lab cohort and the Apnea-Hypopnea-Index (AHI)-stratified cohorts. Significance levels are 

denoted as * for p<0.05 and *** for p<0.001. We show the scatter plots stratified by each sleep stage and 

tables containing the numerical values in the Online Supplement. 

 

IV. Discussion 

 

Our main contributions are the following key findings: 1) In the ICU, heart rate variability (through 

ECG) and respiratory information provide meaningful information about sleep stage, quality, and 

fragmentation – this is significant because HRV and respiratory signals are much more easily 

obtained in the ICU than conventional polysomnography; 2) Clear differences are evident between 

sleep indices of ICU patients and those of an age and sex-matched clinical sleep laboratory cohort, 

such as decreased N2 and N2+N3 proportions in the ICU; 3) Sleep indices of ICU patients,  

particularly awakening frequency, resemble those of sleep-disordered breathing (SDB) sleep 

laboratory patients more closely than those of non-SDB patients; 4) Sleep stage concordance 

between HRV- and breathing-based models was associated with higher agreement with experts 

compared to sleep stage discordance; 5) The proportion of sleep stage concordance was lower in 

the ICU (60%) compared to the sleep laboratory cohort (81%); 6) Sleep in the ICU is fragmented; 

7) ICU patients showed higher respiratory rate compared to sleep laboratory patients, higher 
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breathing variability compared to non-SDB sleep laboratory patients, and lower breathing 

variability compared to SDB sleep laboratory patients. 

Sleep in the ICU – In this study we compared sleep of ICU patients with covariate-matched sleep 

laboratory patients. Sleep indices of ICU patients obtained from the HRV- and breathing-based 

deep neural network sleep staging models were robust across sensitivity analyses. Compared to 

the sleep laboratory cohort, we observed a shift of NREM sleep stage proportion from N2 and 

N3 towards more light and non-restorative N1. This is significant, as there has been growing 

evidence that deep NREM sleep has a crucial role in neurophysiological phenomena such as 

immunity, glucose metabolism, hormone release and memory(49). The median amount of REM 

sleep in ICU patients was lower compared to non-sleep disordered breathing and similar to sleep 

disordered breathing patients from the sleep laboratory. Further, sleep of ICU patients was highly 

fragmented: patients spent a median of 25% of the day and 41% of the night asleep. Moreover, 

38% of total sleep and 51% of REM sleep occurred during the day.  

 

The significant differences between the ICU and the sleep laboratory patients provide strong 

evidence that sleep is frequently deranged during critical care. Our results reinforce prior 

published findings (typically PSG studies with smaller sample size(22)), including abnormal 

hypnograms, high arousal index, abnormal sleep stage shifts, a reduction of deep NREM and 

varying amount of REM sleep (22, 30, 50–53). Furthermore, there is growing evidence that sleep 

in the ICU, especially for ventilated patients, is often abnormal and cannot be scored with 

traditional EEG-based scoring criteria (18, 54). Potentially, periods of discordance observed in 

our study coincide with EEG patterns that have been classified as ‘atypical sleep’ and 

‘pathological wakefulness’ in previous studies examining sleep in the ICU(18, 54). 

 

The presented results are important as there is evidence that sleep impairment in the ICU is 

associated with delirium(19). Delirium, a state of brain dysfunction with fluctuating awareness, 

disorganized thinking, and an altered level of consciousness(19), is associated with long-lasting 

cognitive impairment after hospital discharge and accelerated onset of dementia(55). While the 

mechanism of delirium is not entirely established, the absence or reduction of deep, restorative 

NREM sleep and REM sleep, and disturbances of circadian rhythms may be risk factors of 

developing delirium (19). Cardiovascular and pulmonary signals, as we have shown here, can 

help monitoring sleep more routinely in the ICU, which can guide measures to preserve sleep 

continuity, such as managing noise and light levels better or concentrating times of procedures 

and exams to allow more consolidated periods of rest.  

 

Feasibility of staging sleep with heart rate variability and respiratory signals – The deep neural 

network activation patterns, visualized in 2D-space with embedding maps, of ICU patients were 

mostly similar to those of sleep lab patients, with additional activation patterns only present in 

the ICU. This means that most of the ICU input data were processed by the artificial networks in 

such a way that the learned data representations (i.e., high-dimensional features about sleep 

before making the final sleep stage decision) resembled representations resulting from input data 

that are like the training data (the networks were trained using sleep lab data). This result helps 

mitigate concerns about covariance shift. Because sleep appears to be fundamentally changed in 

the ICU, ICU activation patterns that are not present in sleep lab patterns are potentially of 

interest, and more research is needed to understand the significance and implications of these 

clusters, as they may affect reliability of models or indicate certain pathological states present in 
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the ICU population and not in sleep laboratory populations. 27 out of 44 HRV, CPC, and 

breathing features significantly differed between concordant and discordant sleep epochs, 

indicating that these well-established and interpretable features might be used a-priori to assess 

the reliability in sleep stage assessment by HRV- and breathing-based sleep staging models. This 

result was confirmed with a multivariate linear regression model, using HRV and breathing 

features from 24-hour segments as independent variables, where 42% of the variance of 

discordance proportion was explained by these features. Surprisingly, we found no association 

between the discordance of the models and use of opioids, benzodiazepines and antipsychotics, 

or health status of the patient (SOFA score). Similarly, patients grouped by primary and 

secondary diagnosis, did not show statistically significant differences in model discordance. This 

is remarkable, as we hypothesized more severe medical conditions would lead to a higher 

discordance, but non-significance may be a result of low sample size per subgroup. 

 

These results demonstrate that the presented method of measuring sleep in ICU patients, insofar 

as our cohort is representative, is feasible in most cases, although it does lead to more 

inconclusive sleep stage assessments (measured by discordance of the HRV- and breathing-

based sleep staging models) than in the sleep laboratory.  

 

Respiratory analysis – Mean respiratory rate during sleep was significantly higher in the ICU 

compared to all sleep lab cohorts. Variance of respiratory rate was significantly increased 

compared to total sleep lab cohort and AHI<5 subgroup but not compared to AHI>15 subgroup. 

Conversely, mean inter-breath-intervals were significantly lower in the ICU compared to all 

sleep lab cohorts. Interestingly, the variance of the inter-breath-intervals was also low in the ICU 

(comparable to sleep lab AHI<5, significantly lower than AHI>15 group). Breathing variability, 

which considers variability in timing and amplitude of breaths, was higher in the ICU group than 

in the AHI<5 sleep lab patients and lower than in AHI>15 sleep lab patients. This suggests that 

there is greater baseline instability of respiratory patterns in the ICU, likely reflecting acute 

illness, even when respiration is mildly abnormal. On the other hand, this level of instability is 

seen in healthier (non-ICU) patients with severe sleep apnea. Similarities of breathing statistics 

in ICU patients and in SDB sleep laboratory patients, and overall higher breathing variability in 

the ICU patients, underscore the high prevalence of sleep-disordered breathing in the ICU 

patients.  

Limitations – In our observational study, we did not have EEG recordings available in the ICU. 

Therefore, we could not analyze relationships of sleep EEG and the HRV- and breathing-based 

sleep stage assessments. Joint analysis of cerebral cortex, cardiac, and respiratory activity would 

allow a more holistic analysis and understanding of sleep physiology in the ICU but are a 

practical challenge in this population. While the sample size of our study is relatively high 

compared with other sleep studies done in the ICU setting, 102 patients is still likely a relatively 

low number relative to the full spectrum of ICU patients and sleep physiology. As the target 

enrollment of the clinical trial is 750 patients, we hope to be able to follow up with more 

granular analysis of sleep in the ICU in the future. Patients in this cohort were admitted to 

surgical and medical ICUs, thus results in other types of ICU’s (e.g., neurological, 

cardiothoracic) might be different. Further, because we studied sleep in patients mostly not 

mechanically ventilated, the accuracy of the proposed sleep measurement method and reported 

sleep results during mechanical ventilation might differ. Finally, all patients were randomized 

into three groups as part of our clinical trial, where they were infused overnight for 11 hours with 
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0.1 or 0.3 mcg/kg/h dexmedetomidine (low dose) or placebo (normal saline). When this ongoing 

quadruple blinded trial is concluded, it will be possible to analyze the effects of low dose 

dexmedetomidine, if any, on our measures of interest.  

Summary – Studying sleep in the ICU is possible and repeatable with readily accessible biological 

signals: ECG and respiration, with an accuracy tradeoff compared to full polysomnography. 

However, the patterns noted may themselves encode information about disease pathologies in the 

ICU setting.   HRV/respiration analysis may provide important physiological information not 

captured by EEG analysis. We found partial explanations for discordance in sleep stages 

determined by the HRV- and breathing-based models. Sleep architecture and breathing during 

sleep in the ICU differed from an age and sex-matched sleep lab cohort, including subgroups with 

and without disordered breathing. As expected, signatures of deep NREM sleep were reduced in 

the ICU, and dispersion of sleep into the day was noted.   The ability to monitor sleep or sleep-like 

states in the ICU without complex monitoring can enable better tracking of sleep-wake state 

boundaries and fragmentation, the impact of such fragmentation on delirium and other ICU 

outcomes, and even estimate the effects of sleep targeted therapies. 
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SUPPLEMENT 

 

List of abbreviations:  

ECG – electrocardiogram;  

HRV – heart rate variability;  

ICU – intensive care unit;  

SOFA – sequential organ failure assessment;  

CCI – Charlson Comorbidity Index;  

TS – total sleep;  

CS – concordant sleep;  

DS – discordant sleep;  

S – sleep percentage;  

R – stage R;  

N1 – stage N1;  

N2 – stage N2;  

N3 – stage N3;  

SFI – sleep fragmentation index;  

WT – wake transitions per hour of sleep; 

AHI – apnea hypopnea index; 

UMAP – Uniform Manifold Approximation and Projection;   

SDB – sleep disordered breathing;  

Std – standard deviation; 

IQR – inter quartile range; 

CVar – Coefficient of Variation; 

p_dag – p-value D'Agostino's K-squared test;  

p_sha – p-value Shapiro Wilk test;  

p_tt – p-value Student’s t-test;  

s_tt – t-statistic Student’s t-test;  

p_mwu – p-value Mann Whitney U test;  

s_mwu – Mann Whitney U statistic;  

p_medians – p-value Mood’s median test;  

s_medians – Mood’s Median test statistic. 
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A. Dataset – Patients’ eligibility for the clinical trial was determined according to the following 

inclusion/exclusion criteria taken from the Investigation of Sleep in the Intensive Care Unit(1) 

ClinicalTrials.gov page:  

Inclusion Criteria:  

In order to be eligible to participate in this study, an individual must meet all of the 

following criteria: 

1.  Admitted to MGH Blake 7 or 12, or Ellison 4 ICU at Massachusetts General 

Hospital 

2. Male or female, aged > 50 years.  

3. Provision of signed and dated informed consent form (by patient or LAR).  

4. Stated willingness to comply with all study procedures and availability for the 

duration of the study.  

5. Not on mechanical ventilation at the time of enrollment.  

6. Able to be enrolled before 7PM.  

7. For females of reproductive potential: pregnancy test is negative.  

Exclusion Criteria:  

Any individual who meets any of the following criteria will be excluded from participation in 

this study: 

1. Unable to be assessed for delirium (e.g. blindness or deafness).  

2. Pregnancy or lactation. 

3. Known allergic reactions to components of dexmedetomidine. 

4. Follow-up would be difficult (e.g. active substance abuse, homelessness).  

5. Severe dementia, as measured by a score of ≥3.3 on the Short Informant 

Questionnaire on Cognitive Decline in the Elderly (IQCODE).  

6. Known pre-existing neurologic disease or injury with focal neurologic or 

cognitive deficits. 

7. Serious cardiac disease (e.g. sick sinus syndrome, sinus bradycardia). 

8. Severe liver dysfunction (Child-Pugh Class C).  

9. Severe renal dysfunction (receiving dialysis). 

10. Low likelihood of survival >24 hours.  

11. Low likelihood of staying in the ICU overnight  

12. Patient is receiving either of the anticholinergic drugs scopolamine or 

penehyclidine. 

13. Concomitant enrollment in another study protocol that may interfere with data 

acquisition or reliability of measurements.  

14. Deemed unsuitable for selection by the research team or ICU providers due to any 

medical, legal, social, or interpersonal issues that would either compromise the study 

or the routine care of patients. 
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Table S1. ICU and matched sleep laboratory cohort. 

 

Cohort ICU Sleeplab 

All 

Sleeplab 

AHI < 5 

Sleeplab 

AHI > 15 

N Females 41 98 40 18 

N Males 62 122 37 34 

Ratio 

Males/Females 

1.51 1.24 0.93 1.89 

Median Age 

[IQR] 

68 

[62.5, 

75.0] 

67.3  

[60.6, 

73.4] 

66.0  

[59.9, 69.5] 

70.5 

[60.5, 

74.8] 

t-test Welch 

p-value 

- 0.78 0.14 0.51 

Mann-

Whitney U test 

p-value 

- 0.78 0.15 0.49 

Median Age 

Female [IQR] 

67 

[57, 76] 

66.2 

[59.9, 

71.9] 

65.5 

[58.8, 69.8] 

71.8 

[67.3, 

76.1] 

t-test Welch p-

value 

- 0.88 0.36 0.19 

Mann-

Whitney U test 

p-value 

- 0.87 0.36 0.15 

Median Age 

Male [IQR] 

68 

[64, 75] 

68.3 

[61.8, 

74.2] 

66.9 

[62.1, 69.5] 

69.7 

[60.1, 

74.0] 

t-test Welch p-

value 

- 0.92 0.41 0.56 

Mann-

Whitney U test 

p-value 

- 0.92 0.40 0.56 
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Figure S1. The wearable respiration device (‘Airgo’, MyAir LLC, Boston) used in this study. 
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A. Biosignals Preprocessing  

For ECG analysis, we mainly used the open source ‘PhysioNet Cardiovascular Signal Toolbox’ 

(2). The settings below correspond to the toolbox parameters we used for this study. 

Window Size: 300 seconds windows; increment 30 seconds; minimum of 20% of data needs to 

be good quality for a window to be considered for analysis; maximum 15% of data is allowed to 

be missing in a window in order to be considered for analysis. 

Signal Quality: low quality threshold = 0.9, comparison window length = 10 seconds; increment 

= 1 second; time threshold = 0.1 seconds; Margin time not to include in comparison = 2 seconds. 

Preprocessing: Maximum believable gap in RR intervals = 2 seconds, Percent limit of change 

from one interval to the next = 100%; outlier method = ‘remove outlier points’, signal quality 

threshold for good data = 0.9; minimum length of good data = 30 seconds. 

Frequency Domain Analysis Settings: ULF = [0 .0033]; VLF = [0.0033 .04]; LF = [.04 .15]; HF 

= [0.15 0.4]; Power Spectral Estimation Technique: Lomb Scargle.    

Peak Detection Settings: Refectory period = 0.2 seconds; energy threshold = 0.15, window size 

for QRS detection = 15 seconds. 
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B. Sleep Staging 

 

Figure S2. Swimmer plot visualizing sleep stages over time for 102 ICU patients. One line 

represents one patient and patients are sorted by the proportion of sleep stage discordance. The 

data is colored according to the sleep stages N1, N2, N3, REM and Wake as assigned by the 
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breathing-based (top half of each line) and HRV-based (bottom half of each line) sleep staging 

models. Both sleep stage distribution and the amount of discordance considerably varied among 

patients. 

 

Figure S3. Analysis Approach A1. Sleep staging results for a surgical and medical ICU (N=102 

subjects, 274 24-hour segments) and for an age and sex matched sleeplab cohort (N=220 

subjects, 220 nights). Segments inclusion criteria: any sleep, sleep indices computed on total 

sleep.  Sleep stages were determined by breathing (respiratory effort) and heart rate variability 

(HRV)-based deep neural network models, for the sleeplab additional human expert labels were 
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available. A. Mean (one standard deviation) sleep indices for breathing, HRV and expert-based 

sleep stages (rows), and ICU, sleeplab and Apnea-Hypopnea Index (AHI) subgroups (columns). 

TS: total sleep time (hours), CS: concordant sleep time (hours), DS: discordant sleep time 

(hours), S: Sleep percentage of total recording (%), SFI: sleep fragmentation index, WT: wake 

transitions per hour of sleep. B. Median (inter-quartile range) sleep indices for ICU and sleeplab 

cohort for both breathing and HRV based sleep staging models.  

 

Figure S4. Analysis Approach A3. Sleep staging results for a surgical and medical ICU (N=80 

subjects, 163 24-hour segments) and for an age and sex matched sleeplab cohort (N=190 
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subjects, 190 nights). Segments inclusion criteria: at least two hours of concordant sleep, sleep 

indices computed on concordant sleep.  Sleep stages were determined by breathing (respiratory 

effort) and heart rate variability (HRV)-based deep neural network models, for the sleeplab 

additional human expert labels were available. A. Mean (one standard deviation) sleep indices 

for breathing, HRV and expert-based sleep stages (rows), and ICU, sleeplab and Apnea-

Hypopnea Index (AHI) subgroups (columns). TS: total sleep time (hours), CS: concordant sleep 

time (hours), DS: discordant sleep time (hours), S: Sleep Percentage of total recording (%), SFI: 

sleep fragmentation index, WT: wake transitions per hour of sleep. B. Median (inter-quartile 

range) sleep indices for ICU and sleeplab cohort for both breathing and HRV based sleep staging 

models.  
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Table S2. Analysis approach A1. Summary of sleep stage analysis with average HRV and 

breathing-based sleep stage assessments. Inclusion all segments with any sleep, sleep statistics 

computed on total sleep. 

N TS CS DS DS (%) S R N1 N2 N3 N2+N3 SFI WT
ICU, Mean 102 6.2 2.5 3.6 49.5 50.4 23.4 32.5 18 20 38 3.2 7
ICU, Median 102 6 2.3 3.4 48.2 51 17.4 29.2 17.5 15.2 35.2 2.8 5.3
Lab All, Mean 220 ** 4.9 ** 3.7 ** 1.2 ** 23.6 ** 73.9 ** 14.4 30.7 ** 38.6 ** 15.5 ** 54.1 3.5 ** 4.7
Lab All, Median 220 5.2 ** 3.9 ** 1.0 ** 20.6 ** 79.9 13.8 24.1 ** 40.4 12.8 ** 55.8 3.3 ** 3.1
Lab AHI 0-5, Mean 77 ** 5.0 ** 3.8 ** 1.2 ** 23.7 ** 77.1 * 16.7 ** 24.2 ** 42.1 15.6 ** 57.8 3.4 ** 3.2
Lab AHI 0-5, Median 77 5.4 ** 4.1 ** 1.0 ** 20.6 ** 82.3 16.7 ** 20.1 ** 44.5 13.8 ** 60.7 3.1 ** 2.6
Lab AHI 15-100, Mean 52 ** 4.9 ** 3.7 ** 1.3 ** 25.3 ** 71.0 ** 12.3 * 41.8 ** 33.6 ** 12.3 * 45.9 * 3.9 7.3
Lab AHI 15-100, Median 52 5.2 ** 3.9 ** 1.2 ** 23.2 ** 76.0 10.6 40.1 ** 32.7 10 * 46.1 * 3.7 4
ICU, Std 3.1 1.7 2.4 20.4 19.7 20.6 22.1 12.7 17 20.3 2.1 6.7
ICU, Iqr 5.2 2.3 3.4 30 31.8 32.3 31.1 14.8 25.4 30.8 2.1 5.4
ICU, p_dag 0.0322 0.0185 0.0363 0.4277 0.2723 0.0043 0.0216 0 0.0051 0.0521 0 0
ICU, p_sha 0.0525 0.0017 0.0005 0.5801 0.1666 0 0.0008 0 0 0.013 0 0
ICU, gaussian True False False True True False False False False True False False
Lab All, p_tt 0 0 0 0 0 0 0.483 0 0.0094 0 0.0738 0.0027
Lab All, s_tt 4.9 -5.8 14 12.9 -10.1 5.2 0.7 -12.4 2.6 -7 -1.8 3
Lab All, p_medians 0.281 0 0 0 0 0.5492 0.0724 0 0.5492 0 0.1194 0.0007
Lab All, s_medians 1.2 29.1 57 76.5 72.3 0.4 3.2 98.9 0.4 34.5 2.4 11.5
Lab All, p_mwu 0.0005 0 0 0 0 0.0015 0.2619 0 0.0335 0 0.0012 0
Lab All, s_mwu 8647 6883.5 3670 3302 4391 8913 10724 3132 9796 6195 8857 7831.5
Lab All, Std 1.6 1.7 0.8 14.9 19.3 10.3 19.9 14.4 13.2 18.7 1.4 6.5
Lab All, Iqr 2.3 2.6 0.9 17.1 27.9 15.6 22.8 20.7 16.4 25.2 1.7 3.1
Lab All, p_dag 0.0006 0 0 0 0 0.0169 0 0.0916 0 0.0066 0 0
Lab All, p_sha 0 0.0008 0 0 0 0 0 0.0246 0 0.0002 0.0001 0
Lab All, gaussian False False False False False False False True False False False False
Lab AHI 0-5, p_tt 0.0031 0 0 0 0 0.0101 0.0064 0 0.051 0 0.42 0
Lab AHI 0-5, s_tt 3 -5 8.8 9.5 -9.4 2.6 2.8 -12.5 2 -6.8 -0.8 4.7
Lab AHI 0-5, p_medians 0.5899 0 0 0 0 0.9482 0.0011 0 0.5899 0 0.4244 0
Lab AHI 0-5, s_medians 0.3 21.1 51.6 51.6 41 0 10.6 77.8 0.3 41 0.6 17.3
Lab AHI 0-5, p_mwu 0.011 0 0 0 0 0.0961 0.0048 0 0.1485 0 0.0225 0
Lab AHI 0-5, s_mwu 3140 2220.5 1323 1141 1236 3479 3037 773 3568.5 1837 3238.5 2140
Lab AHI 0-5, Std 1.6 1.6 0.7 14.3 17.5 10.5 16.3 12.9 11.6 18 1.2 2.4
Lab AHI 0-5, Iqr 2 2.2 0.9 15.1 23.1 15 12.5 16.5 12.9 17.6 1.5 2
Lab AHI 0-5, p_dag 0.0533 0.3946 0.0091 0.0002 0.0002 0.2759 0 0.0234 0 0.0053 0.4098 0
Lab AHI 0-5, p_sha 0.0086 0.2383 0.0001 0.0001 0 0.1244 0 0.0142 0 0.0013 0.1084 0
Lab AHI 0-5, gaussian True True False False False True False False False False True False
Lab AHI 15-100, p_tt 0.0073 0.0001 0 0 0 0.0003 0.0122 0 0.0032 0.0191 0.0243 0.85
Lab AHI 15-100, s_tt 2.7 -3.9 7 7.6 -6.3 3.7 -2.5 -6.9 3 -2.4 -2.3 -0.2
Lab AHI 15-100, p_medians 0.3942 0.0012 0 0 0 0.1251 0.0609 0 0.0609 0.0106 0.0466 0.0609
Lab AHI 15-100, s_medians 0.7 10.5 35.6 35.6 18.1 2.4 3.5 27.9 3.5 6.5 4 3.5
Lab AHI 15-100, p_mwu 0.0198 0.0001 0 0 0 0.0014 0.0033 0 0.0062 0.005 0.0005 0.0872
Lab AHI 15-100, s_mwu 2113 1635 982 887 1136 1869 1940 1018 1997 1977 1795 2296
Lab AHI 15-100, Std 1.4 1.5 0.8 14.8 18.5 9.8 20.6 14.5 11 17.7 1.6 11.8
Lab AHI 15-100, Iqr 1.6 2.1 0.8 15.5 25.1 17.1 37.6 19.5 11.9 24.3 1.8 2.9
Lab AHI 15-100, p_dag 0.1139 0.2976 0.0001 0.0114 0.0358 0.0299 0.075 0.8121 0.0004 0.2887 0.0122 0
Lab AHI 15-100, p_sha 0.034 0.2246 0.0011 0.0072 0.0033 0.0034 0.029 0.8231 0.0001 0.1343 0.015 0
Lab AHI 15-100, gaussian True True False False False False True True False True False False  
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Table S3. Analysis approach A2. Summary of sleep stage analysis with average HRV and 

breathing-based sleep stage assessments. Inclusion > 2 hours of concordant sleep, sleep statistics 

computed on total sleep. 

N TS CS DS DS (%) S R N1 N2 N3 N2+N3 SFI WT

ICU, Mean 80 8.6 4.2 4.4 42.7 56.4 21.9 33.5 22.2 21 43.2 2.9 5.6

ICU, Median 80 8.2 4 3.9 41.2 58.2 15.1 23.7 19.5 17.2 39.3 2.9 3.6

Lab All, Mean 190 ** 5.3 4.1 ** 1.1 ** 21.6 ** 76.7 ** 14.7 29.5 ** 39.7 ** 15.8 ** 55.5 ** 3.6 * 4.2

Lab All, Median 190 ** 5.5 4.2 ** 1.0 ** 19.4 ** 81.1 14.2 23.5 ** 40.9 13.5 ** 57.1 * 3.4 3

Lab AHI 0-5, Mean 69 ** 5.4 4.2 ** 1.2 ** 22.4 ** 79.4 17.2 * 24.3 ** 42.4 16.1 ** 58.5 3.4 ** 3.2

Lab AHI 0-5, Median 69 ** 5.7 4.3 ** 1.0 ** 19.3 ** 84.2 17.1 19.9 ** 45.8 13.9 ** 60.8 3.1 * 2.7

Lab AHI 15-100, Mean 49 ** 5.1 3.8 ** 1.3 ** 24.6 ** 72.8 ** 12.4 40.8 ** 34.3 ** 12.5 46.7 ** 3.9 6.1

Lab AHI 15-100, Median 49 ** 5.3 4 ** 1.2 ** 22.8 ** 78.4 10.6 38.6 ** 34.9 10.4 47 3.6 3.9

ICU, Std 3 1.7 2.5 16.9 18.7 21.3 25.5 14 17.9 24.1 1.4 5.4

ICU, Iqr 4.3 2.6 3.7 27.8 24.6 26.2 40.9 16.8 27.6 43.5 2 4.7

ICU, p_dag 0.0051 0.0603 0.1126 0.1981 0.5185 0 0.0162 0 0.0098 0 0.0002 0

ICU, p_sha 0.0261 0.0037 0.0184 0.2501 0.1902 0 0.0001 0.0001 0 0.006 0.0012 0

ICU, gaussian False True True True True False False False False False False False

Lab All, p_tt 0 0.5921 0 0 0 0.0002 0.1611 0 0.007 0 0.0008 0.0388

Lab All, s_tt 12.7 0.5 16.2 11.1 -8.9 3.8 1.4 -9.6 2.7 -4.6 -3.4 2.1

Lab All, p_medians 0 0.5052 0 0 0 1 1 0 0.3508 0.0051 0.0456 0.07

Lab All, s_medians 42.6 0.4 75 61.8 49.9 0 0 57.7 0.9 7.8 4 3.3

Lab All, p_mwu 0 0.4646 0 0 0 0.0535 0.3888 0 0.0716 0 0.0002 0.0064

Lab All, s_mwu 2558.5 7547.5 1440 2389 3071 6655 7434 2658 6742 5276 5547.5 6141.5

Lab All, Std 1.3 1.4 0.7 13 16.4 10.1 19 13.6 12.5 18 1.3 5.3

Lab All, Iqr 1.9 2.3 0.8 14.7 22.3 15.7 22 20.3 15.5 23.5 1.6 2.5

Lab All, p_dag 0.0258 0.0004 0 0 0 0.0358 0 0.0826 0 0.0036 0 0

Lab All, p_sha 0.0033 0.0149 0 0 0 0.0001 0 0.0212 0 0.0006 0.0002 0

Lab All, gaussian False False False False False False False True False False False False

Lab AHI 0-5, p_tt 0 0.805 0 0 0 0.0948 0.0122 0 0.0539 0 0.0555 0.0006

Lab AHI 0-5, s_tt 8.3 0.2 10.1 8.1 -8.3 1.7 2.5 -9.2 1.9 -4.4 -1.9 3.5

Lab AHI 0-5, p_medians 0 0.4634 0 0 0 0.6857 0.1171 0 0.363 0.0008 0.3758 0.0107

Lab AHI 0-5, s_medians 51.2 0.5 56 38 39.9 0.2 2.5 53.4 0.8 11.3 0.8 6.5

Lab AHI 0-5, p_mwu 0 0.3609 0 0 0 0.4297 0.0494 0 0.186 0.0001 0.0162 0.0006

Lab AHI 0-5, s_mwu 961 2666 557 925 914 2713 2326 786 2525 1744 2197.5 1904.5

Lab AHI 0-5, Std 1.2 1.3 0.7 13.4 14.7 10.4 16.9 12.7 11.5 17.6 1.2 2.4

Lab AHI 0-5, Iqr 1.8 1.9 0.7 14.7 16.8 13.9 11.6 16.5 13.2 15.8 1.5 2

Lab AHI 0-5, p_dag 0.435 0.8154 0.0085 0.0001 0.0079 0.3745 0 0.0052 0 0.0026 0.4507 0

Lab AHI 0-5, p_sha 0.2551 0.8811 0.0004 0.0002 0 0.2211 0 0.0015 0 0.0017 0.1325 0

Lab AHI 0-5, gaussian True True False False False True False False False False True False

Lab AHI 15-100, p_tt 0 0.1552 0 0 0 0.0041 0.0901 0 0.0031 0.3668 0.0005 0.7434

Lab AHI 15-100, s_tt 7.8 1.4 8.3 6.2 -5 2.9 -1.7 -4.7 3 -0.9 -3.6 -0.3

Lab AHI 15-100, p_medians 0 0.9451 0 0 0.0002 0.3079 0.0597 0 0.1669 0.2471 0.0597 0.8362

Lab AHI 15-100, s_medians 46.6 0 57 28.9 13.7 1 3.5 16.5 1.9 1.3 3.5 0

Lab AHI 15-100, p_mwu 0 0.1524 0 0 0 0.0165 0.0108 0 0.0155 0.1391 0.0003 0.4316

Lab AHI 15-100, s_mwu 624 1748 435 786 951 1520 1486 985 1515 1736 1248 1924

Lab AHI 15-100, Std 1.3 1.5 0.8 14.7 17.2 10 20.6 14.5 10.8 17.3 1.6 9.2

Lab AHI 15-100, Iqr 1.3 1.8 0.8 15.5 19.3 17.8 28.2 19.4 11.8 24.9 1.8 2.8

Lab AHI 15-100, p_dag 0.0595 0.4443 0 0.0048 0.0129 0.0308 0.136 0.8992 0.0002 0.3675 0.013 0

Lab AHI 15-100, p_sha 0.034 0.2717 0.0005 0.0042 0.004 0.0046 0.0306 0.8752 0.0001 0.1464 0.0139 0

Lab AHI 15-100, gaussian True True False False False False True True False True False False
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Table S4. Analysis approach A3. Summary of sleep stage analysis with average HRV and 

breathing-based sleep stage assessments. Inclusion > 2 hours of concordant sleep, sleep statistics 

computed on concordant sleep. 

N TS CS DS DS (%) S R N1 N2 N3 N2+N3 SFI WT
ICU, Mean 80 8.6 4.2 4.4 42.7 58.3 12.1 46.2 21.5 18.8 40.2 1.7 6.4
ICU, Median 80 8.2 4 3.9 41.2 54.8 0 37.6 19.3 11.1 33.6 1.3 4.1
Lab All, Mean 190 ** 5.3 4.1 ** 1.1 ** 21.6 ** 76.8 9.9 ** 34.2 ** 40.6 15 ** 55.6 ** 3.0 ** 4.1
Lab All, Median 190 ** 5.5 4.2 ** 1.0 ** 19.4 ** 81.6 ** 7.8 ** 25.7 ** 43.6 12.5 ** 58.7 ** 2.9 * 2.6
Lab AHI 0-5, Mean 69 ** 5.4 4.2 ** 1.2 ** 22.4 ** 79.5 11.6 ** 27.5 ** 44.1 16.8 ** 60.9 ** 2.8 ** 3.1
Lab AHI 0-5, Median 69 ** 5.7 4.3 ** 1.0 ** 19.3 ** 84.1 ** 9.3 ** 20.9 ** 47.9 14.9 ** 64.5 ** 2.8 ** 2.1
Lab AHI 15-100, Mean 49 ** 5.1 3.8 ** 1.3 ** 24.6 ** 72.6 6.7 50.1 ** 33.2 ** 9.9 43.1 ** 3.3 6.5
Lab AHI 15-100, Median 49 ** 5.3 4 ** 1.2 ** 22.8 ** 75.5 1.6 47.5 ** 35.1 7.6 46.1 ** 3.0 4
ICU, Std 3 1.7 2.5 16.9 26.9 24.3 33.8 17 20.6 32.3 1.5 8.1
ICU, Iqr 4.3 2.6 3.7 27.8 42.4 11.9 58.1 25.7 31.3 63.5 2 6.6
ICU, p_dag 0.0051 0.0603 0.1126 0.1981 0.0001 0 0 0.0717 0.0071 0 0 0
ICU, p_sha 0.0261 0.0037 0.0184 0.2501 0.0026 0 0 0.0008 0 0 0 0
ICU, gaussian False True True True False False False True False False False False
Lab All, p_tt 0 0.5921 0 0 0 0.2904 0.0013 0 0.0731 0 0 0.0092
Lab All, s_tt 12.7 0.5 16.2 11.1 -6.6 1.1 3.2 -8.7 1.8 -4.4 -7 2.6
Lab All, p_medians 0 0.5052 0 0 0 0.0001 0.0051 0 0.6893 0.0022 0 0.0377
Lab All, s_medians 42.6 0.4 75 61.8 21.8 14.9 7.8 46.2 0.2 9.4 29.9 4.3
Lab All, p_mwu 0 0.4646 0 0 0 0.0041 0.0086 0 0.3981 0.0002 0 0.005
Lab All, s_mwu 2558.5 7547.5 1440 2389 4641 6091 6204 3083 7448.5 5504 3553.5 6088.5
Lab All, Std 1.3 1.4 0.7 13 18.2 9.8 24.8 16.4 13 22.7 1.4 6
Lab All, Iqr 1.9 2.3 0.8 14.7 24 18.1 28 18.6 15.8 27 1.7 3.1
Lab All, p_dag 0.0258 0.0004 0 0 0 0.0003 0 0.0011 0 0.0003 0.0001 0
Lab All, p_sha 0.0033 0.0149 0 0 0 0 0 0 0 0 0.0006 0
Lab All, gaussian False False False False False False False False False False False False
Lab AHI 0-5, p_tt 0 0.805 0 0 0 0.8792 0.0001 0 0.4957 0 0 0.0013
Lab AHI 0-5, s_tt 8.3 0.2 10.1 8.1 -5.7 0.2 3.9 -8.5 0.7 -4.5 -5.4 3.3
Lab AHI 0-5, p_medians 0 0.4634 0 0 0 0 0.0001 0 0.4634 0.0001 0 0.004
Lab AHI 0-5, s_medians 51.2 0.5 56 38 25.1 18.9 15 39.9 0.5 16.2 23.3 8.3
Lab AHI 0-5, p_mwu 0 0.3609 0 0 0 0.0024 0.0006 0 0.2011 0.0001 0 0.0009
Lab AHI 0-5, s_mwu 961 2666 557 925 1545 2043 1903 850 2540 1765 1297 1941.5
Lab AHI 0-5, Std 1.2 1.3 0.7 13.4 16.5 10.8 21.9 15.1 13 21.4 1.1 3.1
Lab AHI 0-5, Iqr 1.8 1.9 0.7 14.7 19.3 19.7 13.9 16.2 13.5 21.2 1.6 2.6
Lab AHI 0-5, p_dag 0.435 0.8154 0.0085 0.0001 0.001 0.0301 0 0.0013 0.0002 0.0009 0.7701 0
Lab AHI 0-5, p_sha 0.2551 0.8811 0.0004 0.0002 0 0.0001 0 0.0001 0.0001 0.0001 0.6995 0
Lab AHI 0-5, gaussian True True False False False False False False False False True False
Lab AHI 15-100, p_tt 0 0.1552 0 0 0.0014 0.1399 0.4933 0.0003 0.0049 0.5851 0 0.9709
Lab AHI 15-100, s_tt 7.8 1.4 8.3 6.2 -3.3 1.5 -0.7 -3.7 2.9 -0.5 -5.2 0
Lab AHI 15-100, p_medians 0 0.9451 0 0 0.003 0.6659 0.4269 0.0009 0.3079 0.2471 0 0.9451
Lab AHI 15-100, s_medians 46.6 0 57 28.9 8.8 0.2 0.6 11.1 1 1.3 22.9 0
Lab AHI 15-100, p_mwu 0 0.1524 0 0 0.0015 0.4112 0.1524 0.0002 0.0956 0.2423 0 0.4536
Lab AHI 15-100, s_mwu 624 1748 435 786 1348 1916 1748 1231.5 1692 1815.5 963 1935.5
Lab AHI 15-100, Std 1.3 1.5 0.8 14.7 18.6 8.9 27.4 18.1 8.9 22.7 2 10.1
Lab AHI 15-100, Iqr 1.3 1.8 0.8 15.5 24.6 12.1 39.9 22.3 12.3 24 2 3.9
Lab AHI 15-100, p_dag 0.0595 0.4443 0 0.0048 0.0229 0.0028 0.0999 0.9111 0.0589 0.2116 0.0153 0
Lab AHI 15-100, p_sha 0.034 0.2717 0.0005 0.0042 0.0049 0 0.0255 0.2145 0.0009 0.0118 0.017 0
Lab AHI 15-100, gaussian True True False False False False True True True True False False  
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Table S5. Analysis approach A2. Main summary of sleep stage analysis with average HRV and 

breathing-based sleep stage assessments. 

ICU Sleeplab All S.Lab AHI<5 S.Lab AHI>15

n subjects 80 190 69 49

Total Sleep (h) 8.2 (4.3) ** 5.5 (1.9) ** 5.7 (1.8) ** 5.3 (1.3)

Concordant Sleep (h) 4.0 (2.6) 4.2 (2.3) 4.3 (1.9) 4.0 (1.8)

Discordant Sleep (h) 3.9 (3.7) ** 1.0 (0.8) ** 1.0 (0.7) ** 1.2 (0.8)

Discordant Sleep (%) 41.2 (27.8) ** 19.4 (14.7) ** 19.3 (14.7) ** 22.8 (15.5)

Sleep Fraction 58.2 (24.6) ** 81.1 (22.3) ** 84.2 (16.8) ** 78.4 (19.3)

Stage R (%) 15.1 (26.2) 14.2 (15.7) 17.1 (13.9) 10.6 (17.8)

Stage N1 (%) 23.7 (40.9) 23.5 (22) * 19.9 (11.6) 38.6 (28.2)

Stage N2 (%) 19.5 (16.8) ** 40.9 (20.3) ** 45.8 (16.5) ** 34.9 (19.4)

Stage N3 (%) 17.2 (27.6) 13.5 (15.5) 13.9 (13.2) 10.4 (11.8)

Stage N2+N3 (%) 39.3 (43.5) * 57.1 (23.5) ** 60.8 (15.8) 47 (24.9)

SFI 2.9 (2.0) *3.4 (1.6) 3.1 (1.5) 3.6 (1.8)

Wake Transitions/h 3.6 (4.7) 3 (2.5) * 2.7 (2.0) 3.9 (2.8)  

 

Table S6. Analysis approach A3. Main summary of sleep stage analysis with average HRV and 

breathing-based sleep stage assessments. 

ICU Sleeplab All S.Lab AHI<5 S.Lab AHI>15

n subjects 80 190 69 49

Total Sleep (h) 8.2 (4.3) ** 5.5 (1.9) ** 5.7 (1.8) ** 5.3 (1.3)

Concordant Sleep (h) 4.0 (2.6) 4.2 (2.3) 4.3 (1.9) 4.0 (1.8)

Discordant Sleep (h) 3.9 (3.7) ** 1.0 (0.8) ** 1.0 (0.7) ** 1.2 (0.8)

Discordant Sleep (%) 41.2 (27.8) ** 19.4 (14.7) ** 19.3 (14.7) ** 22.8 (15.5)

Sleep Fraction 54.8 (42.4) ** 81.6 (24.0) ** 84.1 (19.3) ** 75.5 (24.6)

Stage R (%) 0.0 (11.9) ** 7.8 (18.1) ** 9.3 (19.7) 1.6 (12.1)

Stage N1 (%) 37.6 (58.1) * 25.7 (28) ** 20.9 (13.9) 47.5 (39.9)

Stage N2 (%) 19.3 (25.7) ** 43.6 (18.6) ** 47.9 (16.2) ** 35.1 (22.3)

Stage N3 (%) 11.1 (31.3) 12.5 (15.8) 14.9 (13.5) 7.6 (12.3)

Stage N2+N3 (%) 33.6 (63.5) * 58.7 (27) ** 64.5 (21.2) 46.1 (24.0)

SFI 1.3 (2.0) ** 2.9 (1.7) ** 2.8 (1.6) ** 3.0 (2.0)

Wake Transitions/h 4.1 (6.6) * 2.6 (3.1) ** 2.1 (2.6) 4.0 (3.9)  
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Table S7. Summary and remarks interpretation for sleep stage analysis for ICU and sleeplab 

comparison. 

Result 

 

Analysis 

Approach 

A2. 

Inclusion 

>2h conc., 

statistics 

on total 

sleep 

Analysis 

Approach 

A3. 

Inclusion 

>2h conc., 

statistics 

on 

concordant 

sleep 

Analysis 

Approach 

A1. 

Inclusion 

any sleep, 

Statistics 

on total 

sleep 

Remark 

Data for 

analysis 

ICU: 80 

subjects, 

163 

segments. 

Sleeplab: 

190 

subjects, 

190 

segments 

ICU: 80 

subjects, 

163 

segments. 

Sleeplab: 

190 

subjects, 

190 

segments 

ICU: 102 

subjects, 

274 

segments. 

Sleeplab: 

220 

subjects, 

220 

segments 

 

Elevated 

median total 

sleep time 

(concordant + 

discordant 

sleep) for ICU 

compared 

sleeplab All 

group 

Yes 

[8.2 vs 

5.5] 

(p<0.0001) 

Not 

applicable 

(same total 

sleep time 

as column 

1) 

Yes 

[6.0 vs 

5.2] 

 

Reduced 

concordant 

sleep time 

Not 

significant 

[4.0 vs. 

4.2] 

Same as 

column 1. 

 

Yes 

[2.3 vs. 

3.9] 

(p<0.0001) 

1. A1 contains all ICU 

data with any sleep. 

Therefore, median 

concordant sleep is lower 

for A1. If only ICU 

patients with >2 hours of 

concordant sleep are 

included, amount of 

concordant sleep is 

similar to sleeplab.  
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Elevated 

discordant sleep 

time (hours) 

Yes [3.9 

vs. 1.0] 

(p<0.0001) 

Same as 

column 1. 

Yes [3.4 

vs. 1.0] 

(p<0.0001) 

For all data selection 

options, we observe 

significantly elevated 

discordant sleep time. 

Elevated 

fraction 

discordant sleep 

of total sleep 

(%) 

Yes [41.2 

vs. 19.4, 

p<0.0001] 

Same as 

column 1. 

Yes [48.2 

vs. 20.6, 

p<0.0001] 

For all data selection 

options, we observe 

significantly elevated 

discordant sleep fraction. 

Decreased 

“sleep 

efficiency” (%) 

(= time spent 

asleep / data 

available) 

Yes 

[58.2 vs. 

81.1] 

(p<0.0001) 

Yes [54.8 

vs. 82] 

(p<0.0001) 

Yes 

[51 vs. 80]  

(p<0.0001) 

Not comparable, as 

patients in sleeplab are 

only there during night 

for sleep and patients 

spend full day in ICU. 

Amount of data available 

per patient in the ICU 

varies. 

% REM sleep Similar 

Median 

[15.1 vs. 

14.2, n.s.] 

and higher 

mean 

[21.9 vs. 

14.7, 

p<0.01]  

Lower 

Median [0 

vs. 7.8, 

p<0.001], 

Higher 

mean 

(12.1 vs. 

9.9, n.s.) 

Higher 

Median 

[17.4 vs. 

13.8, n.s.] 

and higher 

mean 

[23.4 vs. 

14.4, 

p<0.0001] 

Mixed results for 

different variants. 

Generally, the REM% 

distribution has a long 

right tail, resulting in 

larger mean than median.  

% N1 sleep Similar 

Median 

[23.7 vs. 

23.5, n.s.], 

Larger 

mean 

[33.5 vs. 

29.5, n.s.] 

Larger 

Median 

[37.6 vs. 

25.7, 

p=0.05], 

Larger 

mean  

[46.2 vs. 

34.2, 

p<0.01] 

Larger 

Median 

[29.2 vs. 

24.1, n.s.], 

Larger 

mean 

[32.5 vs. 

30.7, n.s.] 

Indication of increased 

N1% in ICU compared 

to all sleeplab patients. 

ICU N1% is elevated 

compared to AHI<5 

group in all 3 versions, 

and is reduced compared 

to AHI>15 in all 3 

versions.  

% N2 sleep Reduced 

Median 

[19.5 vs. 

Reduced 

Median 

[19.3 vs. 

Reduced 

Median 

[17.5 vs. 

In all 3 versions, N2 

sleep is not only reduced 

compared to all sleeplab 
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40.9, 

p<0.0001], 

Reduced 

mean 

[22.2, 

39.7, 

p<0.0001] 

43.6, 

p<0.0001], 

Reduced 

mean 

[21.5 vs. 

40.6, 

p<0.0001] 

40.4, 

p<0.0001], 

Reduced 

mean [18 

vs. 38.6, 

p<0.0001] 

groups but also 

compared to AHI<5 and 

AHI>15 group.  

 

% N3 sleep Increased 

Median 

[17.2 vs. 

13.5, n.s.], 

Increased 

mean [21 

vs. 15.8, 

p<0.05]  

Reduced 

Median 

[11.1 vs. 

12.5, n.s.], 

Increased 

mean 

[18.8 vs. 

15, n.s.] 

Increased 

Median 

[15.3 vs. 

12.8, n.s.], 

Increased 

mean [20 

vs. 15.5, 

p<0.01] 

None of the results 

reaches significance 

level of 0.05. Using 

concordant sleep for 

analysis only (A3) 

decreases amount of 

N3% in ICU (15.3 to 

10.3). Hypothesis: non-

concordant N3 sleep 

contains pathological 

states that ‘look like N3’ 

in either N3 or breathing 

domain, but not both. 

 

% (N2 + N3) 

sleep 

Reduced 

Median 

[39.3 vs. 

57.1, 

p=0.05], 

Reduced 

mean 

[43.2 vs. 

55.5, 

p<0.0001] 

Reduced 

Median 

[33.6 vs. 

58.7, 

p<0.01], 

Reduced 

mean 

[40.2 vs. 

55.6, 

p<0.001] 

Reduced 

Median 

[35.3 vs. 

55.8, 

p<0.01], 

Reduced 

mean [38 

vs. 54.1, 

p<0.0001] 

In all 3 versions, N2+N3 

sleep is reduced to total 

sleep lab group and 

AHI>15 group. 

 

Increased Wake 

Transition/hour 

of sleep 

Similar 

median 

[3.6 vs. 3] 

Increased 

median 

[4.1 vs. 

2.6, 

p<0.01]  

Increased 

median 

[5.3 vs. 

3.1, 

p<0.01] 

Indication of increased 

number of wake 

transition per hour of 

sleep in the ICU. 

Significantly increased 

compare to AHI<5 

groups in all three 

analysis approaches. 
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Latent feature representation of sleep 

The last hidden layers’ dimensions (D_LHL) for the Long Short-Term Memory (LSTM) networks 

were (40, 1) for the HRV-based model and (200, 1) for the breathing-based model. We performed 

two UMAPs (Uniform Manifold Approximation and Projection) separately for the data resulting 

from the HRV-based and breathing-based models. The python package UMAP(3) was used to 

perform the UMAPs, and python packages  matplotlib and seaborn were used for visualization.  

Pseudo code: 

1. Select either HRV-based or breathing-based model, and concatenate all last hidden layer 

activations for both ICU and sleeplab data, resulting in an array (‘LHL array’) with shape: 

(N_ALL, D_LHL) with N_ALL = 693,401, number of epochs from sleeplab data (324,928) 

plus number of epochs from ICU data (368,473), and D_LHL=40 for HRV- and 

D_LHL=200 for breathing-based model.  

2. Perform unsupervised UMAP with input LHL array and select the first two dimensions of 

the resulting UMAP embedding, resulting in an array (N_ALL, 2). Parameters: number of 

neighbors=15, minimum distance=0.1, metric = “euclidean”. 

3. For Figure 3A, plot UMAP embeddings for sleeplab data only, ICU data only, and sleeplab 

and ICU data combined (three figure panel columns). For each plot, color the data 

according to the assigned sleep stage.  

4. For Figure 3B, for each panel column, select a sleep stage (W, R, N1, N2, N3) and estimate 

kernel densities for the UMAP embeddings of both the sleeplab and ICU data. Plot the 10% 

iso-proportion levels.   
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Disagreement HRV and breathing model - error analysis.  

In order to identify features in the cardiovascular and pulmonary system that are associated with 

discordant sleep, we compute breathing and heart rate variability related features and compare the 

values of those features for agreeing and discordant sleep. We use the four breathing features as 

described above: respiratory rate, inter-breath-intervals, variability index, and ventilation CVar. 

For HRV, we compute a root mean squared successive difference of NN intervals (RMSSD), very 

low frequency (VLF, 0.0033-0.04 Hz), low frequency (0.04-0.15 Hz), and high frequency (HF, 

0.15-0.4 Hz) with a 5-minute sliding window, using Lomb-Scargle periodogram for spectral 

analysis. We further compute Cardiopulmonary Coupling (CPC)(4), a frequency domain analysis 

method that combines cross spectral power and coherence of the respiratory and HRV signals. 

Unlike in the original publication where respiratory signal is estimated from the ECG signal(4), 

we use the wearable respiratory signal. From the CPC spectrogram, we compute the amounts of 

low frequency coupling (LFC, 0.01-0.1 Hz) and high frequency coupling (HFC, 0.1-0.4 Hz) with 

an 8.5-minute sliding window. 

Summary features computed: 

a) Heart Rate Variability: NN interval, mean very low frequency power (VLF, 0.0033-

0.04 Hz), low frequency power (0.04-0.15 Hz), high frequency power (HF, 0.15-0.4 

Hz), RMSSD of NN intervals. 

b) Breathing: inter-breath-interval, respiratory rate, variability index, ventilation 

coefficient of variation. 

c) Cardiopulmonary Coupling: low frequency coupling (LFC, 0.01-0.1 Hz), high 

frequency coupling (HFC, 0.1-0.4 Hz).  

 

We computed the mean feature values (e.g. mean NN interval) for concordant and discordant 

parts for every 24-hour segment (inclusion criteria: at least 2 hours of concordant sleep) and 

performed a Wilcoxon signed-rank test with an alpha value of 0.01 for each feature pair. 

Features were computed for each sleep stage. Note: Discordant sleep is partially asymmetric, an 

epoch that is classified as N2 by model A and as Wake by model B is included for model A 

analysis here but not for model B analysis. Further, if model A classifies an epoch as N1, and 

model B as N3, the epoch is treated as ‘N1-discordant’ for model A and ‘N3-discordant’ for 

model B. 
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Table S8. Median and interquartile ranges for sleep indices for ICU patients grouped by their primary or 

main condition. Data is graphically displayed in Figure 6. 

N

Total 

Sleep 

(h)

Concor

dant (h)

Discord

ant (h)

Discord

ant (%)

Sleep 

(%) R (%) N1 (%) N2 (%) N3 (%)

N2+N3 

(%)

Wake 

Trans.

6.2 3.5 2.8 0.38 0.42 0.04 0.33 0.01 0.41 0.46 7.9

[4.4, 

7.5]

[2.1, 

4.1]

[1.0, 

3.8]

[0.17, 

0.5]

[0.22, 

0.53]

[0.0, 

0.13]

[0.16, 

0.82]

[0.0, 

0.06]

[0.06, 

0.6]

[0.15, 

0.72]

[4.1, 

11.9]

6 3.7 1.7 0.31 0.37 0.04 0.28 0.05 0.3 0.3 7

[3.2, 

7.5]

[1.8, 

4.7]

[0.6, 

3.8]

[0.14, 

0.45]

[0.25, 

0.49]

[0.0, 

0.2]

[0.07, 

0.77]

[0.0, 

0.13]

[0.05, 

0.51]

[0.07, 

0.75]

[2.6, 

10.9]

6.7 3.2 2 0.43 0.41 0.04 0.26 0.01 0.59 0.63 6.4

[1.3, 

8.3]

[1.1, 

5.0]

[0.3, 

3.8]

[0.08, 

0.61]

[0.07, 

0.52]

[0.01, 

0.08]

[0.04, 

0.36]

[0.0, 

0.04]

[0.32, 

0.89]

[0.36, 

0.91]

[2.1, 

26.2]

7.4 3.7 2.3 0.54 0.45 0.01 0.33 0.04 0.17 0.18 4.8

[5.0, 

7.6]

[2.7, 

4.1]

[0.6, 

4.7]

[0.17, 

0.62]

[0.25, 

0.53]

[0.0, 

0.13]

[0.17, 

0.82]

[0.02, 

0.07]

[0.05, 

0.48]

[0.08, 

0.7]

[3.5, 

19.0]

5.9 3.3 2.3 0.36 0.32 0 0.31 0.03 0.37 0.54 5.8

[4.4, 

7.3]

[2.7, 

4.5]

[1.3, 

3.1]

[0.2, 

0.46]

[0.27, 

0.51]

[0.0, 

0.06]

[0.12, 

0.78]

[0.01, 

0.13]

[0.06, 

0.72]

[0.15, 

0.84]

[3.0, 

12.9]

7.3 4.2 3.2 0.32 0.42 0.34 0.36 0.03 0.06 0.1 6.4

[4.7, 

9.5]

[3.2, 

6.4]

[0.5, 

4.1]

[0.12, 

0.42]

[0.39, 

0.69]

[0.04, 

0.7]

[0.18, 

0.6]

[0.0, 

0.1]

[0.01, 

0.18]

[0.05, 

0.39]

[3.9, 

9.3]

6.1 2.7 3.1 0.49 0.37 0.07 0.31 0.06 0.17 0.3 5.8

[4.9, 

7.5]

[1.5, 

3.8]

[2.3, 

4.5]

[0.28, 

0.59]

[0.25, 

0.53]

[0.0, 

0.26]

[0.24, 

0.81]

[0.01, 

0.09]

[0.06, 

0.41]

[0.15, 

0.52]

[4.8, 

10.7]

5.5 2.6 2.3 0.51 0.37 0.1 0.18 0.02 0.23 0.31 4.1

[3.6, 

9.0]

[1.5, 

4.3]

[0.8, 

5.3]

[0.25, 

0.59]

[0.25, 

0.54]

[0.0, 

0.43]

[0.04, 

0.31]

[0.0, 

0.08]

[0.07, 

0.58]

[0.18, 

0.6]

[2.0, 

7.3]

6.6 3.7 2.8 0.35 0.43 0.06 0.22 0.02 0.44 0.5 4.4

[4.6, 

8.7]

[2.1, 

5.2]

[0.6, 

3.8]

[0.12, 

0.54]

[0.32, 

0.64]

[0.0, 

0.22]

[0.08, 

0.46]

[0.0, 

0.08]

[0.1, 

0.59]

[0.11, 

0.73]

[3.2, 

9.0]

6.9 3.5 3.6 0.53 0.42 0.19 0.15 0.03 0.57 0.62 4.4

[6.0, 

7.9]

[2.7, 

4.4]

[1.5, 

5.3]

[0.41, 

0.63]

[0.38, 

0.53]

[0.08, 

0.25]

[0.08, 

0.28]

[0.01, 

0.12]

[0.42, 

0.62]

[0.49, 

0.7]

[3.6, 

5.6]

7.8 4.9 2.6 0.36 0.49 0.05 0.09 0.03 0.86 0.87 3.2

[5.5, 

10.0]

[3.0, 

6.4]

[1.3, 

3.5]

[0.35, 

0.45]

[0.32, 

0.57]

[0.02, 

0.09]

[0.04, 

0.15]

[0.01, 

0.14]

[0.64, 

0.91]

[0.77, 

0.94]

[1.4, 

5.2]

6.4 3.4 4.8 0.75 0.62 0.04 0.09 0.01 0.91 0.91 3

[6.4, 

10.7]

[2.5, 

3.9]

[3.4, 

8.3]

[0.53, 

0.75]

[0.54, 

0.71]

[0.02, 

0.31]

[0.06, 

0.19]

[0.01, 

0.02]

[0.51, 

0.91]

[0.52, 

0.92]

[2.3, 

4.9]

7 3.2 3.7 0.5 0.39 0.11 0.17 0.05 0.6 0.7 4.1

[5.0, 

7.5]

[2.8, 

3.7]

[2.6, 

4.2]

[0.45, 

0.55]

[0.34, 

0.46]

[0.03, 

0.23]

[0.13, 

0.25]

[0.02, 

0.06]

[0.42, 

0.68]

[0.54, 

0.74]

[3.6, 

5.9]

4.8 2.7 1.7 0.54 0.32 0.34 0.16 0.14 0.09 0.43 4.7

[3.9, 

6.2]

[2.6, 

3.3]

[1.2, 

3.5]

[0.31, 

0.54]

[0.26, 

0.32]

[0.3, 

0.63]

[0.15, 

0.19]

[0.01, 

0.33]

[0.08, 

0.12]

[0.22, 

0.5]

[4.6, 

8.2]

6.8 4.1 2.3 0.34 0.5 0.12 0.17 0.11 0.24 0.45 4.3

[4.9, 

9.2]

[2.8, 

5.7]

[1.1, 

3.7]

[0.18, 

0.48]

[0.3, 

0.66]

[0.02, 

0.34]

[0.06, 

0.41]

[0.01, 

0.21]

[0.05, 

0.55]

[0.18, 

0.77]

[2.1, 

7.2]

Kruskal 

statistic, 

p-value

7.7, 

0.904

12.5, 

0.565

8.0, 

0.888

16.6, 

0.278

10.8, 

0.705

18.4, 

0.191

16.6, 

0.279

15.7, 

0.33

21.9, 

0.081

18.4, 

0.189

11.6, 

0.64

3

7

5

43

13

14

24

10

6

Hemorrh

age

13

23

8

9

15

8

Sepsis

Shock

Heart 

Failure

Encephal

opathy

Anemia

GI Hernia

Liver

Other 

Surgical

Pneumon

ia

Resp.Fail

ure

AKI

Pneumot

horax

COPD

Other 

Medical
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Table S9. Error Analysis – Details. HRV and respiratory features (rows in table) were computed 

for concordant sleep and discordant sleep, for both the HRV-based and breathing-based sleep 

staging models, and for each sleep stage. Columns contain number of 24-hour segments 

available after inclusion criteria (minimum 2 hours of concordant sleep), feature values, and the 

Mann–Whitney U test (both test statistic and p-value). The ‘significance’ column shows ‘True’ if 

the p-value is less than 0.01 for any of the HRV- or breathing-based sleep staging models. 

N Conc.  Disc. test  N Conc.  Disc. test Signif.

N1, hrv_nn 100 0.756 0.76 2091, 0.13564 71 0.791 0.792 1229, 0.77889 False

N1, hrv_vlf 80 1914.6 1474.2 840, 0.00018 59 2297.9 2172.6 773, 0.3979 True

N1, hrv_lf 80 1129.3 914.3 916, 0.00073 59 1376.2 1388.9 848, 0.78003 True

N1, hrv_hf 80 2055 1793.7 994, 0.00268 59 2858.1 3010.8 847, 0.77425 True

N1, hrv_rmssd 80 65.5 60 926, 0.00087 59 76.3 73.1 655, 0.08256 True

N1, ibi 104 3.98 4.01 2595, 0.66155 71 3.95 3.55 518, 1e-05 True

N1, rr_10s_smooth 104 17.7 17.4 2246, 0.11653 71 17.8 19.5 537, 2e-05 True

N1, instability_30sec 104 0.243 0.238 2286, 0.14992 71 0.225 0.194 653, 0.00034 True

N1, ventilation_cvar_30sec 104 0.235 0.233 2446, 0.35707 71 0.218 0.181 554, 3e-05 True

N1, cpc_lfc 80 4.29 3.38 978, 0.00208 59 4.92 2.67 588, 0.02498 True

N1, cpc_hfc 80 0.408 0.348 927, 0.00089 59 0.415 0.338 715, 0.19944 True

N2, hrv_nn 109 0.786 0.769 2019, 0.00309 35 0.867 0.853 229, 0.15895 True

N2, hrv_vlf 89 1258.7 1784.9 1008, 5e-05 35 1055.9 1122.8 294, 0.73087 True

N2, hrv_lf 89 910.9 1200.5 1170, 0.00066 35 726.7 726.9 309, 0.92171 True

N2, hrv_hf 89 2527 2355.4 1332, 0.00608 35 2272 2377.2 300, 0.80592 True

N2, hrv_rmssd 89 67 70.2 1378, 0.01062 35 55.3 54.6 311, 0.94776 False

N2, ibi 112 3.75 3.59 1677, 2e-05 35 4.02 3.82 162, 0.01221 True

N2, rr_10s_smooth 112 18.1 18.8 1485, 0.0 35 16.8 17.9 121, 0.00149 True

N2, instability_30sec 112 0.185 0.167 2121, 0.00246 35 0.182 0.183 284, 0.61163 True

N2, ventilation_cvar_30sec 112 0.184 0.162 2016, 0.00086 35 0.179 0.167 311, 0.94776 True

N2, cpc_lfc 89 2.11 1.88 1496, 0.03824 35 2.78 1.39 302, 0.83138 False

N2, cpc_hfc 89 1.07 1.38 1939, 0.79502 35 1.025 0.887 312, 0.96081 False

N3, hrv_nn 30 0.823 0.787 119, 0.01957 74 0.8 0.771 695, 0.00019 True

N3, hrv_vlf 25 618 1793.2 21, 3e-05 66 587.8 765.5 899, 0.18712 True

N3, hrv_lf 25 733.4 1366.3 50, 0.00163 66 618.7 652.8 1021, 0.58934 True

N3, hrv_hf 25 2252.3 2989.3 62, 0.00558 66 1586.7 1574.8 961, 0.35597 True

N3, hrv_rmssd 25 69.2 78.8 64, 0.00673 66 56.6 56.9 990, 0.46062 True

N3, ibi 31 3.26 3.16 193, 0.28112 74 3.66 3.68 1343, 0.81054 False

N3, rr_10s_smooth 31 20.2 20.7 182, 0.19588 74 18.2 18.5 1105, 0.12804 False

N3, instability_30sec 31 0.134 0.124 235, 0.79891 74 0.146 0.179 485, 0.0 True

N3, ventilation_cvar_30sec 31 0.131 0.117 182, 0.19588 74 0.143 0.166 634, 5e-05 True

N3, cpc_lfc 25 0.193 1.122 17, 1e-05 66 0.82 1.341 528, 0.00023 True

N3, cpc_hfc 25 0.344 0.474 94, 0.0667 66 0.842 0.52 1022, 0.59375 False

R, hrv_nn 50 0.771 0.762 493, 0.16305 41 0.767 0.766 386, 0.56418 False

R, hrv_vlf 44 1899 1922.2 475, 0.81545 40 1948.2 2194.9 384, 0.72673 False

R, hrv_lf 44 1090.4 1137.7 390, 0.22044 40 970.3 1138 332, 0.29444 False

R, hrv_hf 44 1803 2048.1 291, 0.01728 40 1207 1408.9 289, 0.10387 False

R, hrv_rmssd 44 58.2 64.2 248, 0.00394 40 44.3 47.4 303, 0.15037 True

R, ibi 53 3.54 3.57 711, 0.96822 41 3.57 3.72 278, 0.04814 False

R, rr_10s_smooth 53 19.1 19 688, 0.80766 41 18.9 18.2 253, 0.02144 False

R, instability_30sec 53 0.198 0.188 487, 0.04309 41 0.2 0.196 371, 0.44069 False

R, ventilation_cvar_30sec 53 0.179 0.167 459, 0.02316 41 0.178 0.183 375, 0.47202 False

R, cpc_lfc 44 4.1 3.1 443, 0.54395 40 3.48 3.88 354, 0.45162 False

R, cpc_hfc 44 0.445 0.617 253, 0.00474 40 0.34 0.614 297, 0.1288 True

Breathing HRV
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Table S10. Shows the significant effect directions of Table S9 for easier readability. I.e. ‘+’/’-‘ 

indicate a significant (0.01 level) increase/decrease of a feature in discordant sleep compared to 

concordant sleep. 

Breathing, Effect 

Discordant Sleep

HRV, Effect

Discordant Sleep

N1, hrv_vlf -

N1, hrv_lf -

N1, hrv_hf -

N1, hrv_rmssd -

N1, ibi -

N1, rr_10s_smooth +

N1, instability_30sec -

N1, ventilation_cvar_30sec -

N1, cpc_lfc -

N1, cpc_hfc -

N2, hrv_nn -

N2, hrv_vlf +

N2, hrv_lf +

N2, ibi -

N2, rr_10s_smooth + +

N2, instability_30sec -

N2, ventilation_cvar_30sec -

N3, hrv_nn -

N3, hrv_vlf +

N3, hrv_lf +

N3, hrv_hf +

N3, hrv_rmssd +

N3, instability_30sec +

N3, ventilation_cvar_30sec +

N3, cpc_lfc + +

R, hrv_rmssd +

R, cpc_hfc +  
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For each 24-hour segment included (inclusion criteria: at least 2 hours of concordant sleep), we 

obtained the proportion of discordant sleep, which is a number in the [0, 1] interval. To make the 

variable unbounded and more gaussian, we used the following transformation: 

proportion_transformed = ln (proportion / (1 – proportion)). 

 

We computed the mean, standard deviation, 0.25-, 0.50-, and 0.75 quantiles for each feature for 

every 24-hour segment and for each sleep stage. This lead to 886 features, and as a consequence, 

we used the LASSO penalty for multilinear regression. We start with a penalty of 0 and with a 

step size of 0.1, we increase the penalty until 10. For each penalty value, we train a LASSO 

model, obtain the variables included in the model and with those variables train a vanilla 

multilinear regression model for which we obtain the F-test statistic, F-test p-value and the r-

squared. The result is shown in Figure S4, indicating overfitted models close to a penalty of 0 

and underfitted models close to a penalty of 10. A penalty of 4 results in a regression model that 

contains 53 variables, an F-statistic of 1.51, a F-test p-value of 0.036, and an r-squared of 0.42. 

Hence, we obtained evidence that up to 42% of the variance in the discordance sleep proportion 

over a full 24-hour segment can be explained by HRV and breathing based features that are 

computed over pooled discordant and concordant parts.  

 

 

Figure S5. Model development for error analysis. We trained linear regression models with 

varying LASSO penalty. A penalty of 4 results in a regression model that contains 53 variables, 

an F-statistic of 1.51, a F-test p-value of 0.036, and an r-squared of 0.42, showing 42% of the 

variance in discordant sleep proportion is explained by this model.  
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Table S11. Correlations between proportion of discordant sleep and Sequential Organ Failure 

Assessment (SOFA) score or medications administered. Medications included in the analysis: 

Opioids (Buprenorphine, Morphine, Oxycodone, Hydrocodone, Hydromorphone, Fentanyl, 

Meperidine, Codeine, Tramadol), Benzodiazepines (Alprazolam, Chlordiazepoxide, 

Clonazepam, Diazepam, Lorazepam, Midazolam, Oxazepam, Phenobarbital, Propofol), 

Antipsychotics (Olanzapine, Clozapine, Thiothixene, Haloperidol, Fluphenazine, 

Prochlorperazine, Trifluoperazine, Loxapine, Quetiapine, Asenapine). Medications within a 

category were converted to equivalent doses before summed(5–7). 

 

 

Pearson 

Correlation 

Pearson

p-value

Spearman 

Correlation 

Spearman

p-value

SOFA 0.059 0.457 0.090 0.256

Opioids -0.086 0.276 -0.080 0.308

Benzodiazepines -0.022 0.776 0.012 0.877

Antipsychotics -0.039 0.620 0.020 0.800  

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.23.21264039doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21264039


F. Statistical Analysis – Breathing. 

Table S12. Breathing Main Summary. Mean feature per night distributions. 

ICU Sleeplab All S.Lab AHI<5 S.Lab AHI>15

n subjects 63 188 69 48

Resp. Rate a) 17.4 (3.2) *** 15.9 (2.3) *** 16.1 (2.2) *** 15.7 (2.3)

Inter-Breath-Interval a) 3.9 (0.8) *** 4.7 (0.8) *** 4.5 (0.7) *** 5.0 (0.9)

Variability Index 
b
) 0.17 (0.14) 0.18 (0.1) 0.15 (0.07)  *** 0.2 (0.1)

Ventilation CVar b) 0.16 (0.13) * 0.2 (0.12) 0.16 (0.09) *** 0.3 (0.15)
a) mean (std), b) median (iqr)  

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.23.21264039doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21264039


Table S13. Breathing feature analysis –feature mean (e.g. mean respiratory rate) per night, per 

patient.
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RR IBI Var Vent RR IBI Var Vent RR IBI Var Vent

ICU, N_Subj 63 63 63 63 56 56 56 56 38 38 38 38

Lab All, N_Subj 188 188 188 188 185 185 185 185 167 167 167 167

Lab AHI 0-5, N_Subj 69 69 69 69 66 66 66 66 64 64 64 64

Lab AHI 15-100, N_Subj 48 48 48 48 48 48 48 48 37 37 37 37

ICU, Mean 17.4 3.9 0.2 0.19 17.3 4 0.23 0.22 17.1 4 0.19 0.19

ICU, Median 17.4 3.8 0.17 0.16 17.3 3.9 0.21 0.2 17.6 3.7 0.14 0.13

Lab All, Mean ** 15.9 4.8 0.2 0.24 ** 15.4 ** 5.2 ** 0.3 0.31 * 15.9 4.6 0.18 0.21

Lab All, Median 15.8 ** 4.7 0.18 * 0.2 15.2 5.1 0.26 ** 0.3 16 ** 4.5 0.16 0.18

Lab AHI 0-5, Mean ** 16.1 ** 4.5 0.17 0.19 ** 15.6 ** 5.0 0.23 0.27 16.1 ** 4.4 0.16 0.18

Lab AHI 0-5, Median 16.2 4.5 0.15 0.17 15.3 4.9 0.22 * 0.2 16.2 4.5 0.13 0.15

Lab AHI 15-100, Mean ** 15.7 ** 5.0 0.27 0.32 15.2 ** 5.4 ** 0.3 0.38 15.8 ** 4.8 0.24 0.29

Lab AHI 15-100, Median 15.8 4.9 ** 0.2 ** 0.3 ** 15.2 5.2 0.3 ** 0.4 15.7 4.6 * 0.2 * 0.3

ICU, Std 3.2 0.8 0.09 0.1 3.2 0.8 0.08 0.09 3.4 0.9 0.12 0.13

ICU, Iqr 4 1.1 0.14 0.13 3.6 0.9 0.13 0.12 5.5 1.4 0.14 0.15

ICU, p_dag 0.2637 0.1625 0.0297 0.0031 0.1351 0.2717 0.1091 0.0415 0.3823 0.1913 0.001 0.0001

ICU, p_sha 0.4523 0.0483 0.0013 0.0001 0.363 0.1206 0.0096 0.0025 0.0632 0.0254 0 0

ICU, gaussian True True False False True True True False True True False False

Lab All, p_tt 0 0 0.6084 0.0056 0 0 0.0025 0 0.0127 0 0.6373 0.2537

Lab All, p_medians 0.0032 0 0.799 0.0453 0.0001 0 0.0515 0.0002 0.0988 0.0025 0.2206 0.0519

Lab All, p_mwu 0.0001 0 0.1563 0.0006 0 0 0.0007 0 0.0242 0 0.1591 0.0085

Lab All, Std 2.3 0.8 0.08 0.11 2.1 0.9 0.08 0.12 2.4 0.8 0.08 0.1

Lab All, Iqr 3.1 1 0.1 0.12 2.7 1.1 0.12 0.15 3.4 0.9 0.09 0.11

Lab All, p_dag 0.3474 0.0004 0 0 0.4243 0.1074 0.2931 0 0.4012 0.0002 0 0

Lab All, p_sha 0.6601 0.0001 0 0 0.2886 0.0519 0.2004 0 0.5498 0.0004 0 0

Lab All, gaussian True False False False True True True False True False False False

Lab AHI 0-5, p_tt 0.0047 0 0.0832 0.9502 0.0006 0 0.6386 0.0065 0.0887 0.0033 0.1018 0.572

Lab AHI 0-5, p_medians 0.0814 0 0.2958 1 0.0064 0 0.5857 0.0182 0.3058 0.0078 0.8377 0.3058

Lab AHI 0-5, p_mwu 0.004 0 0.0776 0.3293 0.0006 0 0.2448 0.0035 0.0755 0.0015 0.2181 0.3103

Lab AHI 0-5, Std 2.2 0.7 0.07 0.09 2.1 0.9 0.08 0.11 2.2 0.7 0.07 0.09

Lab AHI 0-5, Iqr 2.9 0.9 0.07 0.09 3.3 1.1 0.13 0.16 3.2 0.7 0.07 0.09

Lab AHI 0-5, p_dag 0.8637 0.0214 0 0 0.2761 0.2972 0.0631 0.1523 0.4704 0.0214 0 0

Lab AHI 0-5, p_sha 0.9389 0.0885 0 0 0.2463 0.1272 0.1473 0.0609 0.2964 0.0615 0 0

Lab AHI 0-5, gaussian True True False False True True True True True True False False

Lab AHI 15-100, p_tt 0.0021 0 0.0001 0 0.0002 0 0 0 0.0973 0.0001 0.0392 0.0011

Lab AHI 15-100, p_medians 0.016 0 0.0002 0 0.0002 0 0.0008 0 0.0829 0.0039 0.0154 0.0154

Lab AHI 15-100, p_mwu 0.0009 0 0 0 0.0001 0 0 0 0.0388 0.0001 0.0009 0

Lab AHI 15-100, Std 2.3 0.9 0.08 0.12 2.2 0.9 0.08 0.13 2.9 0.9 0.09 0.13

Lab AHI 15-100, Iqr 2.5 1.5 0.1 0.13 2.3 1.4 0.11 0.17 3 1.5 0.11 0.14

Lab AHI 15-100, p_dag 0.6191 0.204 0.0778 0.0005 0.0283 0.462 0.2983 0.0056 0.0339 0.3913 0.1499 0.0009

Lab AHI 15-100, p_sha 0.8092 0.0346 0.0253 0.0009 0.0462 0.4451 0.1821 0.0092 0.1313 0.1887 0.0796 0.0053

Lab AHI 15-100, gaussian True True True False False True True False True True True False

Sleep Stage N1 Stage N2
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RR IBI Var Vent RR IBI Var Vent RR IBI Var Vent

ICU, N_Subj 25 25 25 25 24 24 24 24 57 57 57 57

Lab All, N_Subj 79 79 79 79 124 124 124 124 180 180 180 180

Lab AHI 0-5, N_Subj 30 30 30 30 50 50 50 50 65 65 65 65

Lab AHI 15-100, N_Subj 16 16 16 16 24 24 24 24 48 48 48 48

ICU, Mean 18.8 3.5 0.13 0.12 19.1 3.5 0.19 0.16 17.9 3.9 0.23 0.21

ICU, Median 18.7 3.4 0.12 0.1 18.6 3.5 0.17 0.15 17.8 3.8 0.22 0.2

Lab All, Mean 16.7 4.3 0.1 0.1 ** 16.4 4.4 0.2 0.22 15.7 5.3 ** 0.3 0.31

Lab All, Median * 16.2 ** 4.2 0.1 0.1 16.4 ** 4.3 0.18 * 0.2 ** 15.6 ** 5.3 0.28 ** 0.3

Lab AHI 0-5, Mean 16.5 4.1 0.09 0.09 ** 16.8 ** 4.2 0.19 * 0.2 15.8 5.2 0.25 ** 0.3

Lab AHI 0-5, Median 16.6 ** 4.1 0.09 0.09 16.7 4.1 0.17 0.18 ** 15.6 ** 5.1 0.25 0.28

Lab AHI 15-100, Mean 18.6 4 0.13 0.13 ** 16.3 ** 4.5 0.21 ** 0.2 15.9 5.4 ** 0.3 ** 0.3

Lab AHI 15-100, Median 18.2 4 0.12 0.12 16 4.4 0.19 0.21 ** 15.9 ** 5.3 0.29 0.34

ICU, Std 4.2 0.8 0.06 0.06 2.9 0.6 0.06 0.06 3 0.7 0.06 0.06

ICU, Iqr 3.1 0.6 0.05 0.04 4 0.7 0.06 0.06 2.6 0.6 0.1 0.09

ICU, p_dag 0.0467 0.0008 0 0 0.6781 0.0469 0.3604 0.1157 0.0054 0.0428 0.1557 0.1384

ICU, p_sha 0.2026 0.007 0.0002 0 0.2319 0.0784 0.0745 0.06 0.0053 0.0165 0.0506 0.0222

ICU, gaussian True False False False True True True True False False True True

Lab All, p_tt 0.0192 0.0002 0.0219 0.0602 0 0 0.6089 0.0067 0 0 0.0001 0

Lab All, p_medians 0.0217 0.0013 0.1686 0.3587 0.0001 0 0.8235 0.0142 0 0 0.007 0

Lab All, p_mwu 0.0046 0 0.0079 0.0351 0 0 0.4493 0.0012 0 0 0 0

Lab All, Std 3.7 0.9 0.04 0.04 2.4 0.8 0.07 0.1 2 0.9 0.07 0.11

Lab All, Iqr 4.4 1 0.04 0.04 3.3 0.9 0.08 0.12 2.8 1.2 0.1 0.14

Lab All, p_dag 0.0007 0.0158 0 0 0.8617 0.0007 0 0 0.8296 0.0284 0.4131 0.0045

Lab All, p_sha 0.0012 0.0587 0 0 0.9268 0.0002 0 0 0.9074 0.0042 0.3842 0.0011

Lab All, gaussian False True False False True False False False True False True False

Lab AHI 0-5, p_tt 0.0277 0.004 0.0017 0.0154 0.0002 0 0.8247 0.0314 0 0 0.0897 0

Lab AHI 0-5, p_medians 0.0804 0.0018 0.0804 0.0804 0.0063 0 1 0.0822 0 0 0.1466 0.0003

Lab AHI 0-5, p_mwu 0.0045 0.0004 0.001 0.0032 0.0002 0 0.3409 0.0148 0 0 0.0467 0

Lab AHI 0-5, Std 3.2 0.7 0.02 0.02 2.1 0.7 0.06 0.07 2.2 1 0.08 0.11

Lab AHI 0-5, Iqr 3.5 0.8 0.03 0.03 2.7 0.8 0.08 0.11 2.8 1.3 0.1 0.15

Lab AHI 0-5, p_dag 0 0.8084 0.6682 0.6959 0.8907 0.0789 0.2226 0.1576 0.8125 0.0024 0.2555 0.2669

Lab AHI 0-5, p_sha 0.0028 0.9955 0.7991 0.3258 0.8184 0.291 0.0405 0.0443 0.939 0.0004 0.1907 0.0755

Lab AHI 0-5, gaussian False True True True True True True True True False True True

Lab AHI 15-100, p_tt 0.8935 0.09 0.8368 0.8155 0.001 0 0.356 0.0078 0.0001 0 0 0

Lab AHI 15-100, p_medians 0.8452 0.0843 0.8452 0.2776 0.0015 0.0002 0.7728 0.1489 0.0012 0 0.0001 0

Lab AHI 15-100, p_mwu 0.4521 0.0263 0.2919 0.1172 0.0004 0 0.2514 0.0045 0 0 0 0

Lab AHI 15-100, Std 4.4 1 0.04 0.03 2.7 0.9 0.08 0.1 2 0.8 0.07 0.1

Lab AHI 15-100, Iqr 6 1 0.08 0.05 2.3 1.2 0.12 0.14 2.8 1.3 0.09 0.13

Lab AHI 15-100, p_dag 0.5921 0.2752 0.3055 0.6715 0.2161 0.5336 0.1563 0.0321 0.903 0.3198 0.99 0.4688

Lab AHI 15-100, p_sha 0.7358 0.7662 0.2263 0.8064 0.1637 0.3835 0.11 0.057 0.7408 0.2948 0.9796 0.4818

Lab AHI 15-100, gaussian True True True True True True True True True True True True

Stage N3 Stage R Wake
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Figure S6. Breathing features per night (mean and standard deviation) for each sleep stage and 

for ICU and sleeplab AHI<5 and AHI>15 cohort. Distributions were fit with a kernel density 

estimation method, iso mass levels 0.1, 0.2, and 0.5 are shown in the plot. 
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