
Assessing the impact of temperature and humidity exposures during
early infection stages on case-fatality of COVID-19: a modelling study

in Europe

Jingbo Lianga, Hsiang-Yu Yuana,b,∗

aDepartment of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City
University of Hong Kong, Hong Kong

bCentre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong

Abstract

Background Although associations between key weather indicators (i.e. temperature and humid-

ity) and COVID-19 mortality has been reported, the relationship between these exposures among

different timing in early infection stages (from virus exposure up to a few days after symptom

onset) and the probability of death after infection (also called case fatality rate, CFR) has yet to

be determined.

Methods We estimated the instantaneous CFR of eight European countries using Bayesian infer-

ence in conjunction with stochastic transmission models, taking account of delays in reporting the

number of newly confirmed cases and deaths. The exposure-lag–response associations between fa-

tality rate and weather conditions to which patients were exposed at different timing were obtained

using distributed lag nonlinear models coupled with mixed-effect models.

Results Our results showed that the Odds Ratio (OR) of death is negatively associated with the

temperature, with two maxima (OR=1.29 (95% CI: 1.23, 1.35) at -0.1◦C; OR=1.12 (95% CI: 1.08,

1.16) at 0.1◦C) occurred at the time of virus exposure and after symptom onset. Two minima

(OR=0.81 (95% CI: 0.71, 0.92) at 23.2◦C; OR=0.71 (95% CI: 0.63, 0.80) at 21.7◦C) also occurred

at these two distinct periods correspondingly. Low humidity (below 50%) during the early stages

and high humidity (approximately 89%) after symptom onset were related to the lower fatality.

Conclusion Environmental conditions may affect not only the initial viral load when exposure to

viruses but also individuals’ immunity response around symptom onset. Warmer temperatures and
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higher humidity after symptom onset were related to the lower fatality.
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Highlights

• Temperature and humidity conditions that patients were exposed to during their early infec-

tion stages were associated with COVID-19 case fatality rate.

• Warmer temperatures (> 20◦C) at infection time or after symptom onset, but not during

the incubation period, were associated with lower death risk. Low relative humidity (< 50%)

during the early stages and high relative humidity (> 85%) after symptom onset were related

to higher death risk.

• Creating optimal indoor conditions for cases who are under quarantine/isolation may reduce

their risk of death.
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1. Introduction1

The Coronavirus Disease 2019 (COVID-19) pandemic, attributable to the severe acute respi-2

ratory syndrome coronavirus 2 (SARS-CoV-2), has posed unprecedented challenges to the world3

including many European countries. The number of deaths in Europe (1,116,017) counts for ap-4

proximately 27% of all COVID-19 deaths worldwide (data accessed on July 17, 2021 [1]). The5

relationship between weather conditions and COVID-19 fatality rates in Europe have not been6

fully determined. Furthermore, the impact of the weather conditions to which patients were ex-7

posed during the early infection stages (i.e. between virus infection and a few days after symptom8

onset) is unknown.9

Temperature and humidity can likely influence the outcome of infection in two ways: affecting10

the initial viral load and modulating the immune response in patients. A possible distinction11

between these two mechanisms is the time point at which environmental risk factors take effect12

during the course of infection. The stability and the viability of SARS-CoV-2 are likely to be13

affected by environmental conditions when individuals are exposed to the virus [2]. A higher initial14

viral load may pose a higher risk for developing severe diseases later. On the other hand, the local15

innate immune responses that occur in the upper or lower respiratory tract could be activated16

immediately after symptom onset [3]. The dynamics of the innate response can be influenced by17

temperature or humidity [4, 5], presumably, during the time when it was activated.18

According to the states of immune responses and pathogenesis, the infection course of SARS-19

CoV-2 could be divided into three stages: asymptomatic incubation period, non-severe symptomatic20

period, and severe respiratory symptomatic stage [6]. If certain controllable environmental condi-21

tions (e.g. temperature and humidity) during the non-severe symptomatic period can affect patients’22

innate immune responses [7, 8, 4] and hence their risk of death, preventive measures can be designed23

to reduce COVID-19 severity for these cases. However, until now, no such preventive measures are24

proposed due to that the impact of those conditions during the symptomatic period is unknown.25

Although many studies have reported that low temperatures may increase the COVID-19 deaths26

or mortality [9, 10, 11, 12, 13, 14], these studies did not have a direct measurement on the risk of27

death. Case fatality rate (CFR) [15, 16] is an important index to measure the disease severity, but28

one limitation is that this rate only represents the average proportion of deaths among all confirmed29

cases over a duration of time, without the ability to reflect the instantaneous probability of death.30

This time-varying instantaneous probability, also called instantaneous CFR (iCFR) [17], can be31
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influenced by many factors, such as change in health care capacity [18] and variations in weather32

conditions [19, 20], etc. Challenges exist in estimating the iCFR due to the time delays between33

confirming a positive case and reporting his/her outcome [15, 21]. A more accurate estimation of34

the iCFR can be obtained if these delays are incorporated in modelling.35

The study aimed at assessing the impact of weather conditions COVID-19 patients were exposed36

to at different timing of the early infection course on the death risk. To resolve the above issues37

in delays and to estimate the iCFR, stochastic modelling [22] was used, taking into account of38

the delays in reporting the number of newly confirmed cases and deaths in each of the European39

countries. After adjusting delays in reporting cases and deaths, the correlation between the iCFR40

and daily weather conditions at different timing since the infection was obtained using distributed41

lag non-linear models (DLNMs) coupled with generalized linear mixed models.42

2. Material and Methods43

2.1. Data collection44

Our study focused on eight European countries (the United Kingdom, Italy, France, Spain,45

Germany, Netherlands, Sweden, and Romania) where the cumulative number of deaths was larger46

than 2000 during the first wave of the pandemic. The daily numbers of reported COVID-19 cases47

and deaths in these eight European countries from 16th February to 31st June 2020 were collected48

from ‘Our World in Data’ [1]. We defined the community outbreak began from the first two49

consecutive days whose average case number exceeded the country’s baseline (the 5% quantile of50

the maximal daily number of new cases) and ended at the first two consecutive days whose average51

case number was less than that baseline.52

Daily mean temperatures for the eight European countries and daily relative humidity values for53

five countries (Italy, Spain, Germany, Netherlands, and Sweden) were collected from the European54

Climate Assessment and Dataset (ECAD)[23]. For countries (the United Kindom, France, and Ro-55

mania) lacking relative humidity data, we calculated relative humidity values using the ratio of the56

actual water vapor pressure divided by the saturation water vapor pressure[13] (see Supplementary57

Methods). In this study, the daily mean temperatures and relative humidity values for each country58

were calculated using the average records from all monitoring stations.59
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2.2. Estimating COVID-19 transmission patterns by SEIR model60

We constructed a stochastic model that extended Susceptible - Exposed - Infectious - Recovered61

(SEIR) model to reproduce the COVID-19 transmission dynamic and estimate the iCFR and the62

effective reproduction number (Re) for each of countries during their outbreaks. The extended63

SEIR model contained three additional compartments: HR, hospital confirmed cases who later64

recovered; HD, hospital confirmed cases who later died of infection; and D, total deaths (Figure65

1). In order to calculate the iCFR of the date of case confirmation, newly confirmed cases were66

divided into HR and HD compartments following the probabilities of 1-iCFR and iCFR upon67

the date of case confirmation. Delays for case confirmation and death reporting were included.68

To estimate parameters in stochastic models, the Particle Markov chain Monte Carlo (PMCMC)69

method [22, 24], a combination of particle filtering and Markov chain Monte Carlo approaches was70

used (See Supplementary Methods). Posterior distributions of all parameters used in the model71

were obtained using the Nimble package in R [25] (version 3.6.1). The settings of prior distributions72

for these parameters were provided in Supplementary Methods.73

2.3. Estimating the effects of temperature and relative humidity on the COVID-19 iCFR based on74

a DLNM model75

In order to avoid the impacts from the variations in non-pharmaceutical interventions (NPIs)76

[26], we estimated the effects of weather conditions during the epidemic period when Re remained77

relatively stable below 1.5. Presumably, the variations of NPIs were assumed to be minor during78

this period.79

To explore the non-linear association between weather conditions and the iCFR with taking80

account of other unknown local factors for each of countries, a combination of distributed lag81

nonlinear models (DLNMs) [27] and generalized linear mixed models (GLMM) was adopted to82

estimate the differential effects of weather conditions exposed during the early infection stages on83

the iCFR. For detailed steps, please see Supplementary Methods.84

2.4. Model validation85

To assess convergence of parameters in the SEIR model, we constructed three independent86

chains of algorithm sets with 100,000 iterations and calculated the Gelman-Rubin convergence87

diagnostic statistics [28] across the three chains. For DLNM models, we used different combinations88
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of temperature and relative humidity as predictors. The model with the lowest Akaike information89

criterion (AIC) and Bayesian information criterion (BIC) was chosen as the best-fitting model. The90

prediction performance of the best-fitting model was presented by comparing its model-predicted91

iCFR with the iCFR calculated by SEIR models (Supplementary Figure 1).92

3. Results93

3.1. Case fatality in Europe94

In order to estimate the iCFR among the eight European countries, we developed a stochastic95

epidemic model (See Method and Figure 1A) taking account of delays between symptom onset and96

the confirmation of infection (i.e. confirmation delay) and delays between the confirmation and97

death (i.e. infection outcome delay). The model estimated the mean confirmation delays varied98

from 2.4 to 5.4 days, and the mean infection outcome delays varied from 7.9 to 12.4 days among99

these countries (Figure 1B, Supplementary Table 1). Incorporating the variations of such delays100

allowed a more accurate estimation of the country-specific iCFR and hence its relationship with101

weather conditions.102

Our model successfully captured the dynamics of the daily new cases and deaths during the103

first wave (Figure 2, Supplementary Table 2). The epidemic patterns were similar (reaching a104

maximum of approximately or over eighty cases per one million people per day in April) among105

most of the countries, except Sweden, and Romania. Generally, the daily maximum number of106

deaths occurred in April. Four countries (including the United Kingdom, Italy, France, and Spain;107

see Figure 2A) had higher mortality rates (number of deaths per one million people): Spain had108

the highest daily estimated mortality rate of 18, followed by the United Kingdom 14, Italy 13, and109

France 11. The remaining countries (including Germany, Netherlands, Sweden and Romania; see110

Figure 2B ) demonstrated lower mortality rates during similar periods: Netherlands had the highest111

daily estimated mortality rate of 9, followed by Sweden 7, Germany 3 and Romania 2.112

Generally, the estimated iCFRs in most of the countries decreased rapidly after reaching the113

maximum value in late March or early April and became more stable after then (Figure 3); however,114

variations still exist among countries. Among the four high mortality countries, iCFRs appeared115

to increase again slowly after reaching their minimum values (Figure 3A): the rates increased again116

from the minimum values 0.12 to 0.14 in the United Kingdom; 0.11 to 0.13 in Italy; 0.18 to 0.20 in117
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France; and 0.09 to 0.12 in Spain. iCFRs among low mortality countries generally demonstrated118

a decreasing trend or maintained at low values (Figure 3B): the rates maintained between 0.05119

and 0.06 in Germany; 0.07 and 0.08 in the Netherlands. In Sweden and Romania, after reaching120

their peaks in mid-April, the iCFR continued decreasing from 0.10 to 0.03 and from 0.07 to 0.03,121

respectively. In order to explore the association between weather conditions and the iCFR without122

the impacts of changes in NPIs, only the period when the value of Re remained below 1.5 was used.123

For most countries, Re reduced rapidly before April and fluctuated around 1 after then (Figure 3).124

3.2. Weather effects on iCFRs125

Daily mean temperatures among these European countries gradually increased during the first126

wave of the pandemic (Figure 4). Daily relative humidity in low mortality countries generally127

increased (Figure 4B), but the increase was not clearly observed in high mortality countries (Figure128

4A). During the study period, the median daily temperatures ranged between 10.4◦C and 16.5◦C129

among the eight countries, and the median relative humidity ranged between 61.8% and 75.4%130

(Supplementary Table 3). Furthermore, most countries had temperatures ranging from 4◦C to131

20◦C, and relative humidity ranged from 40% to 87%. The temperature changed the most in132

Sweden from -2◦C to 21◦C, and changed the least in Spain from 7◦C to 20◦C. Romania had the133

largest change in the relative humidity (i.e. 30% to 87%), and Spain had the smallest (i.e. 63% to134

86%).135

The DLNM model with both temperature and relative humidity as predictors was selected as the136

best-fitting model for assessing the effects of environmental conditions (see Methods, Supplementary137

Table 4 and Supplementary Table 5). Figure 5B depicted the associations between temperatures and138

risk of death with a median temperature of 11◦C as the reference. Lower temperatures, especially139

when temperatures were below 8◦C, were more likely to increase COVID-19 iCFRs. We found that140

the estimated odds ratio (OR) of fatality peaked at virus exposure time when the temperature was141

low (OR=1.29 (95% CI: 1.23, 1.35) at -0.1◦C). However, surprisingly the OR reached a second peak142

value one day after symptom onset with similar temperature (OR=1.12 (95% CI: 1.08, 1.16) at143

0.1◦C, see Figure 5B). The lowest OR occurred at two days after symptom onset (OR=0.71 (95%144

CI: 0.63, 0.80) at 21.7◦C), and the second-lowest was observed at virus exposure time (OR=0.81145

(95% CI: 0.71, 0.92) at 23.2◦C).146

These results suggest that both the initial viral load during the virus exposure time, and the147
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immune responses at approximately a few days after symptom onset were affected by environmental148

temperatures. Furthermore, results showed the impacts of temperatures on the risk of death were149

greater at virus exposure time and few days after symptom onset than other periods during early150

infection stages. For example, a decrease from 5◦C to 0◦C at one day after symptom onset increased151

the risk of deaths significantly (OR increased from 1.03 to 1.07; see Figure 5B). This increase was152

significantly greater than during the presymptomatic transmission period (e.g. 6-folds greater than153

that) at three days before symptom onset (OR only increased from 1.006 to 1.012).154

The overall cumulative OR of temperature during the early infection stages was calculated by155

summing the effect of each time point between exposure to the virus and two days after symptom156

onset. A negative relationship between temperature and the OR of fatality was observed over the157

range of -2◦C to 22◦C (Figure 5C). With exposure to a warm temperature of 24◦C, the cumulative158

ORs during the first two days after symptom onset was 0.79. In order to check whether the results159

are caused by autocorrelation in weather, we further performed Fourier analysis. We found that160

temperature in Italy has a more distinct pattern of 7 or 8-day periodicity. There is no similar161

pattern in temperature among other countries or in relative humidity (Supplementary Figure 2).162

Figure 5D showed the associations between the humidity and risk of death, with a relative163

humidity of 62% as the reference. The highest OR (1.08, 95% CI: 1.07, 1.10) was observed at 79.6%164

relative humidity at symptom onset time. Figure 5E showed the cumulative OR increased when the165

humidity raised from 30% to 80%. However, the cumulative OR clearly reduced when the humidity166

increased from 80% to 89%. This reduction was mainly resulted from the effect of humidity after167

symptom onset (see Figure 5D). The cumulative ORs for the first two days after symptom onset168

was 0.66, with the exposure of relative humidity of 89%.169

We checked the robustness of the estimated associations between weather conditions and the170

risks of death after re-fitting the model to data during different periods of time (i.e. from March to171

April, March to May, and March to June). In addition, to verify if the selected model is affected172

by the sample size, we re-fitted the model using smaller-size data sets (i.e. 5%, 10%, 15% and173

20% of samples were removed from the full dataset). In both cases, we found that the effects of174

weather conditions on the risk of death were generally consistent (see Supplementary Figure 3 and175

Supplementary Figure 4).176

In summary, the variations of iCFRs within the eight European countries were associated with177

changes in weather conditions. Furthermore, the OR of fatality was clearly associated with the178
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temperature and humidity that patients were exposed to at two distinct infection stages: virus179

exposure and after symptom onset.180

4. Discussion181

Although previous studies have demonstrated the impact of weather conditions (e.g. tempera-182

ture and humidity) on COVID-19 deaths [29, 30, 13], it is still unknown how such conditions affect183

COVID-19 fatality risk during the infection progress. This was the first study focused on the im-184

pact of weather exposures at the early infection course on the probability of death. We found that185

the temperature and humidity affected the risk of death significantly not only at virus exposure186

time but also after symptom onset (Figure 5), which suggests that environmental conditions may187

influence both the initial viral load and an individual’s immune response to the virus (presumably188

through the innate immune system). These findings were obtained from distributed lag nonlinear189

models [27] with the iCFR estimated using a stochastic disease transmission model that accounted190

for delays in infection confirmation and infection outcome.191

During the first epidemic wave in Europe, certain countries suffered high mortality rates. We192

found that warm conditions reduced the risk of deaths especially when the temperature was greater193

than 15◦C. Among the study countries, Romania showed a temperature warmer than this threshold194

for a long period of time (more than half of the study period). Sweden and Netherlands also showed195

a warmer temperature for several days. In addition, our results showed that the risk of death was196

low when the relative humidity ranged below 50% (Figure 5E). Germany and Romania had humidity197

below 50% for a longer time, which may be a possible reason to explain why they experienced lower198

iCFR. A negative relationship between the relative humidity and iCFR was observed when the199

humidity was larger than 80%. Our results may help explain diverging patterns in previous studies,200

namely that humidity and case fatality are negatively correlated in humid areas [29], but positively201

correlated in arid regions [30].202

How extremely high humidity (> 80% in Figure 5E) can affect the severity of COVID-19 remains203

largely unknown. Humidified air has been previously found to reduce the severity of respiratory204

infection of influenza in mice, through increasing the function of mucosal barrier [31]. Similarly,205

a recent study proposed that the use of face masks is linked to the reduced severity of COVID-19206

infections because the humidity of inspired air increases [5]. The beneficial effect of extremely high207

humidity (>80%) that was observed is likely due to a similar mechanism. Mucus layers constitute208
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a biochemical barrier to inhibit pathogen penetration [32]. A well-hydrated mucus layer ensures209

the continuous flow of mucus, responsible for removing pathogens from the airways and lungs [33].210

Although the association between weather and COVID-19 related deaths has been previously211

reported [29, 30, 13], questions such as when (e.g. which infectious stage) and how these factors212

affect disease fatality have not been clarified. Many infected individuals, after being contact-213

traced or developing symptoms, are isolated at home or quarantine/isolation centers. During this214

period, certain environmental risk exposures can be manually controlled or avoided through an215

air-conditioner or other devices. We found that exposure to warmer temperatures (24◦C) during216

the first two days after symptom onset can roughly reduce the iCFR by 19% compared to exposure217

to the reference temperature (11◦C). Consistent with recent laboratory experiments showing that218

wearing face masks can increase the humidity of inspired air and reduce the severity of COVID-19219

[5], we found that exposure to high relative humidity (89%) during the first few days after symptom220

onset can reduce the CFR by 31% compared to the reference level (62% relative humidity). Based221

on all these results, therefore, we recommend adopting certain individual preventive measures: 1.222

to stay in a proper warm place after symptom onset; 2. to wear a face mask to increase the humidity223

of inspired air. However, further epidemiological observational studies (e.g. case-control study) in224

different population and environments are still needed to determine optimal indoor environmental225

conditions after symptoms appeared.226

In addition to the evidence that low temperatures increased the stability and viability of the227

virus, inhalation of cold air at the initial virus exposure time, can make the upper airway more228

suitable for viral replication [34, 4], resulting in large viral load, and potentially more severe adverse229

outcomes. On the other hand, how the temperature that patients were exposed to after symptom230

onset affect immune responses is still unclear. This can be explained by some hypotheses of innate231

immunity. Macrophages, which produces cytokines and chemokines, have been found to increase232

in the lower airways after exposure to cold air [35]. IL-6 and TNF-alpha, the cytokines that play233

important roles in mediating SARS-CoV-2-associated cytokine storms [36, 37] have been reported to234

increase after cold exposure [38]. The activation of these factors usually begins within a week after235

symptom onset [3]. In general vagus nerve circuits can regulate cytokines release in macrophages to236

prevent potentially damaging inflammation [39, 40, 8]. However, exposure to cold stimulates cold237

receptors of the skin, which increase sympathetic tone and might antagonistically reduce this vagus238

activity [7, 41]. The overall net effect might reduce the neural mediated anti-inflammatory activity.239
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Over reaction of innate immunity may cause immune system dysregulation and severe adverse240

outcomes (i.e. acute respiratory distress syndrome, systemic inflammatory response syndrome, and241

cardiac failure [42]). These hypotheses of innate immunity suggest that there exists a link between242

temperature exposure in the early infection stages and COVID-19 disease severity.243

Some limitations exist in this study. First, the effects of other interventions (e.g. increasing244

number of PCR tests performed and improvement of medical treatment) on the iCFR were not245

considered. There are minor variations in the weekly number of COVID-19 tests conducted in the246

eight European countries during the study period [43]. To avoid the effects caused by the variation247

of medical treatment and NPIs, we used the data during the first wave of the pandemic when the248

changes in interventions were minor (when Re was stable and near one). Second, the data of indoor249

temperature and humidity are not available. It is reasonable to believe that the house indoor250

temperature and humidity are largely affected by the weather in Europe where air-conditioners251

or heaters are not frequently used at home during our study period. Thus, there is a monotonic252

relationship between house indoor condition and weather. Third, we cannot rule out the effect of253

certain confounding factors related to personal behaviours. (e.g. the dry air in winter can irritate254

people’s airways, which triggers more people to be cautious and reduce outdoor activities). In255

addition, because in some countries, many cases were confirmed and isolated in hospitals around256

two days after symptom onset on average (see Figure 1B), hence their environmental exposure257

would mainly be determined by the hospital air conditioning system. Therefore, we only assess the258

impact of weather exposure no longer than that time.259
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Figure 1: (A) Schematic of the extended Susceptible, Exposed, Infectious and Recovered model with case confirmation
and death statuses. The total population was divided into seven compartments: S (susceptible), E (exposed), I
(infectious after the incubation period), HR (hospital confirmed cases who later recovered), HD (hospital confirmed
cases who later died), R (recovered), and D (death). β is the transmission rate, 1

σ
is the incubation period, µ is

the proportion of pre-symptomatic infectious individuals among the total number of exposed individuals [44], ε is
the recovery rate for un-reported cases (mainly asymptomatic cases), 1

ρ
is the confirmation delay, 1

φ
is the infection

outcome delay, and γ is the recovery rate for hospital confirmed cases. iCFRt is the iCFR at time t. (B) Estimated
confirmation delay and infection outcome delay in the eight European countries. Black dots represent the posterior
mean value and horizontal lines represent the 95% posterior credible intervals.
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Figure 2: Observed and model-estimated daily numbers of cases and deaths per one million people in the eight
European countries during the outbreaks. (A) Daily number of cases and deaths in countries where the mortality
rates were relatively high. (B) Daily number of cases and deaths in countries where the mortality rates were relatively
low. Black dots represent observations, blue and orange curves represent the mean estimation results of daily cases
and deaths; light orange and light blue shaded areas represent their 95% credible intervals. Daily mean estimation
of cases, deaths and their credible intervals were obtained from the PMCMC posterior samples.
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Figure 3: Model-estimated iCFR and Re in the eight European countries. (A) Daily iCFR and Re in countries
where the mortality rates were relatively high. (B) Daily iCFR and Re in countries where the mortality rates were
relatively low. Red and purple curves represent the estimated mean iCFR and Re, light red and dark red shaded
areas represent the 95% and 50% credible intervals for iCFR. Purple shaded areas represent the 95% credible intervals
for Re. The black vertical lines refer to the dates when Re reduced to below 1.5. iCFRs after these dates were used
for estimating the effects of weather conditions. Daily mean iCFR, Re, and their credible intervals were obtained
from the PMCMC posterior samples.
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Figure 4: Daily mean temperature and relative humidity for the eight European countries. (A) Daily mean temper-
ature and humidity in countries where the mortality rates were relatively high. (B) Daily mean temperature and
humidity in countries where the mortality rates were relatively low. The blue curve represents the trend of daily
temperature and humidity, which was obtained from a smoothing curve (a 18th order polynomial function). The
grey shadows represent 95% credible intervals for the trends. The black vertical lines refer to the dates when Re was
reduced to below 1.5.
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Figure 5: The effect of weather conditions on the COVID-19 fatality rate. (A) The timeline of COVID-19 infection
course while taking account of the effects of weather conditions (i.e. temperature and relative humidity). The
duration of home-isolation was approximately equal to the confirmation delay because many cases were isolated at
hospitals after being confirmed. The duration of hospital-isolation for cases who later died was indicated by the
infection outcome delay. Weather conditions mainly affected infected individuals during the early infection period
including exposure to virus, incubation time and home-isolation period. During hospital-isolation period, indoor
temperature and humidity were controlled by hospitals. (B and D) Relationships between weather conditions and
the OR of fatality at different time point between exposure to virus and two days after symptom onset. Redder
colours indicate higher OR. 11◦C of the temperature and 62% of the relative humidity were used as references. (C
and E) The estimated cumulative effects of the temperature and the relative humidity on the fatality. The red lines
are the mean ORs, and the grey shaded areas are the 95% credible intervals.22
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1. Supplementary Methods1

1.1. Data2

For countries (the United Kingdom, France and Romania) lacking relative humidity data, we3

calculated relative humidity values using the ratio of the actual water vapor pressure (Pw) divided4

by the saturation water vapor pressure (Pws) using the following formula [1]:5

RH =
Pw

Pws

Pw = P0e
ATd

B+Td

Pws = P0e
ATa

B+Ta

(1)

Where RH denoted the relative humidity. P0 denoted the saturation vapor pressure as 6.11 MB6

with a reference temperature of 273.15◦K. A (17.43) and B (240.73) are constant values [1]. Td is7

the dew point collected from the United States National Oceanic and Atmospheric Administration8

[2], and Ta is the observed temperature. In this study, the daily mean temperatures and relative9

humidity values for each country were calculated as the average records from all monitoring stations.10

1.2. SEIR stochastic model11

There were several assumptions for the SEIR model: (1) susceptible individuals became exposed12

after contacting with the virus; (2) exposed individuals could be divided into two groups, non-13

infectious exposed individuals and infectious pre-symptomatic individuals [3]; and (3) all hospital14

confirmed cases were isolated and could not transmit the disease. Based on these assumptions, our15

SEIR model was derived as follows:16

St = St−1 −△E,t

Et = Et−1 +△E,t −△I,t

It = It−1 +△I,t −△HR,t −△HD,t −△IR,t

HRt = HRt−1 +△HR,t −△HRR,t

HDt = HDt−1 +△HD,t −△D,t

Rt = Rt−1 +△IR,t +△HRR,t

Dt = Dt−1 +△D,t

(2)

2
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Where △E,t represented the number of newly exposed individuals during the time interval t-1 to17

t, △I,t was the number of newly symptom-onset infections, △HR,t was the number of newly hospital-18

confirmed cases who later recovered, △HD,t was the number of newly hospital-confirmed cases who19

later died, △IR,t was the number of newly recovered cases who were not reported (confirmed)20

by hospitals, △HRR,t was the number of newly recovered cases that were reported (confirmed)21

by hospitals, and △D,t was the number of newly reported deaths. We assumed that △E,t, △I,t,22

△HR,t + △HD,t, △IR,t, △HRR,t, and △D,t followed Poisson distributions, and △HD,t followed a23

binomial distribution with the rate parameter as the iCFRt:24

△E,t ∼ Poisson

(
βt−1[µEt−1 + It−1]St−1

N

)
△I,t ∼ Poisson(σEt−1)

△HR,t +△HD,t ∼ Poisson(ρIt−1)

△HD,t ∼ Binom(iCFRt,△HR,t +△HD,t)

△IR,t ∼ Poisson(εIt−1)

△HRR,t ∼ Poisson(γHRt−1)

△D,t ∼ Poisson(φHDt−1)

βt = βt−1e
X1 , X1 ∼ Normal(0, τ1

2)

iCFRt = iCFRt−1e
X2 , X2 ∼ Normal(0, τ2

2)

(3)

where βt is the transmission rate; µ is the proportion of infectious pre-symptomatic individuals25

among all exposed individuals, calculated as µ =
( 1

σ− 1
η

1
σ

)
[3], in which η was the rate at which26

exposed individuals become infectious pre-symptomatic infections (1/η was the latent period), and σ27

was the rate at which exposed individuals become symptom-onset infections (1/σ was the incubation28

period); ρ was the case confirmation rate (1/ρ was the time between symptom onset and case29

confirmation), iCFRt was the iCFR at time t, γ was the recovery rate of hospital-confirmed cases30

(1/γ was the time between case confirmation and recovery), ε was the recovery rate of cases who31

were not reported (confirmed) by hospitals, and φ was the death rate (1/φ was the time between32

case confirmation and death). During model fitting, we assumed that βt and iCFRt followed33

Brownian motion by time [4] with the standard deviation parameters as τ1 and τ2. τ1 was set as34

0.25 for Sweden’s, Romania’s and the United Kingdom’s model; as 0.3 for Germany’s and France’s35

3
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model; as 0.35 for Netherlands’ and Italy’s model; as 0.4 for Spain’s model. τ2 was set as 0.25 for36

Sweden’s and Romania’s model; as 0.3 for the United Kingdom’s and Germany’s model; as 0.35 for37

Italy’s, France’s and Netherlands’ model; as 0.4 for Spain’s model. The values of τ1 and τ2 were38

chosen by the smallest Watanabe–Akaike Information Criterion (WAIC) [5, 6].39

To map our model outputs to actual observed data, we constructed an observation model (equa-40

tion (4)), assuming the variations between the actual data and our model predictions follow Gaus-41

sian distributions. As equation (4) showed, the likelihood of observing daily reported new cases42

(Casesrep,t) was calculated through a Gaussian distribution with the mean defined as the num-43

ber of model predicted new-confirmed cases (△HR,t + △HD,t) where τc (20% of the maximum of44

Casesrep,t) was the standard deviation. Similarly, the likelihood of observing daily new deaths45

(Deathsrep,t) was also calculated through a Gaussain distribution with the mean defined as the46

number of model predicted new deaths (△D,t), where τd (20% of the maximum of Deathsrep,t) was47

the standard deviation.48

Casesrep,t ∼ Normal(△HR,t +△HD,t, τc
2)

Deathsrep,t ∼ Normal(△D,t, τd
2)

(4)

Based on the next-generation matrix (NGM) method [7], time-varied country-specific Re was49

calculated as the first eigenvector of the matrix NGMt [8]:50

NGMt =

(−1)

βt

( 1
σ

− 1
η

1
σ

)
St

N
βtSt

N

0 0


−σ 0

σ −ρ)

−1
 (5)

Prior distributions for the parameters were set as follows: for the latent period, 1/η ∼ U[2, 3]51

[9]; for the incubation period, 1/σ ∼ N[5.5, 0.25] [10]; for the time between symptom onset and52

case confirmation, 1/ρ ∼ U[2, 6] [11, 12]; for the recovery time of hospital-confirmed cases, 1/γ ∼53

N[14, 0.01] [13]; for the recovery time of hidden cases who were not reported (confirmed) by hospitals,54

1/ε ∼ U[16, 0.01] [13]; for the time between case confirmation and death, 1/φ ∼ U[7, 14] [14, 12].55

1.3. DLNM model56

To explore the effects of weather conditions during the early infection period, we defined the57

minimum lag times (lag = 0) as the second day after symptom onset, given some infected cases58

would be isolated in the hospitals two days after symptom onset (Supplementary Table 2) and59

4
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the outdoor environment would not influence their infection process during that time; we set the60

maximum lag time as nine days (the length between exposure to the virus and two days after61

symptom onset, Supplementary Table 2). In this study, we used the odds ratio (OR) of fatality to62

explore the association of death and different levels of temperature/humidity. The OR of fatality63

was calculated as the ratio of the odds of fatality when subjects were exposed to a particular level64

of temperature/humidity to the odds of fatality when subjects were exposed to the reference tem-65

perature/humidity. Here, we choose a median reference temperature of 11◦C and relative humidity66

of 62%.67

The model was formulated as:

log

(
iCFRt

i

1− iCFRt
i

)
= α+ αi +

8∑
lag=0

cb
(
Tempt

i, lag
)
+

8∑
lag=0

cb
(
RHt

i, lag
)

(6)

where iCFRt
i was the expected iCFR in country i at time t; α was the intercept; αi represented68

country-specific random effects (e.g. local conditions in health care); Tempt
i was the daily mean69

temperature; RHt
i was the daily mean relative humidity value; lag was the lag time between70

exposure to the virus and two days after symptom onset; cb
(
Tempt

i, lag
)

and cb
(
RHt

i, lag
)

were71

cross basis functions [15], modeling weather exposure-response and lag-response relationships, with72

quadratic B-spline function knots placed at equal intervals in the weather range to permit sufficient73

flexibility in the tails. The Akaike information criterion (AIC) was used to test the model robustness74

using different degrees of freedom (knots). We found five degrees of freedom for temperature and75

relative humidity had the best performance in model fitting.76

2. Country-specific effect on fatality rate77

We used a generalized linear mixed model (i.e. supplementary Equation (6)) to incorporate78

the country-level variations as random effects (i.e. varying-intercept random model). To explore79

these random effects on fatality rates for different periods of time, we re-fitted the model using data80

during March to April, March to May, and March to June separately.81

As shown in Supplementary Table 6, France had the largest intercept (i.e. country-specific effect82

on case fatality rate) when the full data set (i.e. March to July) was used. Italy had the second83

largest. Sweden had the lowest intercepts. According to the model formula in the supplementary84

5
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Equation (6), while holding all other predictors (i.e. temperature and relative humidity) constant,85

the larger intercept indicates a higher risk of death.86

After re-fitting data during different periods of time (i.e. from March to April, March to May, and87

March to June), we found that the effects of the country-level variations on fatality were similar.88

France consistently had the largest intercept (estimated mean intercept was -2.70 for March to89

April, -2.49 for March to May, -2.22 for March to June); Italy had the second-largest except for90

March to April (estimated mean intercept was -2.88 for March to May, -2.62 for March to June); and91

Germany and Sweden had smaller intercepts. Moreover, we checked the robustness of the estimated92

associations between weather conditions and the risks of death for these re-fitted models. As shown93

in Supplementary Figure 3, the relationships between temperature (and humidity) and risk of death94

risk were consistent when datasets between different time periods were used (i.e. March to April,95

March to May, March to June).96

3. Verification of sample size in DLNM model97

The sample size of each country of the full data set was shown in Supplementary Table 7. In98

order to verify the impact of sample size on the selected model (see equation (6) in supplementary99

methods), we validated the model by using different sample size: we randomly removed 5%, 10%,100

15%, and 20% of the samples in each country from the full data set and re-fitted the model to the101

removed data set. We found that the effects of weather conditions on the risk of death were generally102

consistent even 20% of samples have been removed (Supplementary Figure 4). Warm temperature103

(>= 15◦C) and low high humidity (<=50%) were able to reduce the risk of death compared to104

reference condition (i.e. temperature 11◦C, relative humidity 62%). A negative relationship between105

the relative humidity and iCFR was observed at high humidity (>80%).106
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Supplementary Figures151

Supplementary Figure 1: Prediction for the iCFR based on DLNM models in the eight European
countries during the community outbreaks. The red curves represent the iCFR calculated by SEIR
models. The blue curves represent the mean prediction of iCFR based on DLNM models. The light
blue and dark blue shaded areas respectively represent the 95% and 50% prediction intervals.
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Supplementary Figure 2: Periodogram plot of daily temperature and relative humidity among the
eight countries.
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Supplementary Figure 3: The estimated cumulative effects of the temperature and relative humidity
on fatality rates. The red lines are the mean ORs, and the grey shaded areas are the 95% credible
intervals.
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Supplementary Talbes152

Supplementary Table 2: Summary statistics of daily number of cases, and deaths per 1 million
people in the eight European countries.

Minimum 25% Median 75% Maximum

Cases
United Kingdom 1 11 21 53 82
Italy 5 14 38 66 109
France 2 9 23 40 113
Spain 5 25 63 105 196
Germany 3 8 14 41 76
Netherlands 4 10 16 47 77
Sweden 10 38 55 73 282
Romania 6 10 16 21 70

Deaths
United Kingdom 0 1 3 8 18
Italy 0 3 6 9 16
France 0 2 4 8 30
Spain 0 4 8 13 20
Germany 0 0 1 2 4
Netherlands 0 1 2 6 14
Sweden 0 2 4 8 18
Romania 0 1 1 1 2
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Supplementary Table 3: Summary statistics of daily weather conditions in the eight European
countries.

Minimum 25% Median 75% Maximum Mean±SD

Temperature (℃)
United Kingdom 5.14 9.21 13.08 15.04 20.51 12.15±3.59
Italy 5.33 10.78 13.93 16.4 20.34 13.36±3.63
France 5.85 10.72 13.69 15.55 20.37 13.24±3.29
Spain 7.13 11.35 13.44 14.6 19.73 13.19±2.84
Germany 0.90 7.79 10.77 12.76 17.99 10.13±4.12
Netherlands 4.33 8.2 11.28 14.19 18.72 11.39±3.91
Sweden -2.07 4.81 10.38 14.52 20.99 9.56±5.95
Romania 0.72 11.84 16.51 20.63 25.37 15.73±5.74

Relative humidity(%)
United Kingdom 53.29 66.78 73.09 79.33 88.78 73.28±8.17
Italy 34.89 55.66 63.46 72.04 88.42 64.12±10.92
France 48.11 59.99 66.84 74.56 87.8 66.92±9.56
Spain 62.63 68.56 75.35 79.56 86.38 74.66±6.47
Germany 44.04 57.69 61.84 71.51 81.79 63.46±9.25
Netherlands 48 64.71 70.83 77.66 88.22 70.39±9.48
Sweden 52.62 62.21 67.35 74.59 85.68 68.36±7.9
Romania 30.03 53.46 63.3 73.02 87.31 63.4±13.18

Supplementary Table 4: DLNM Model comparison based on different weather predictors.

Model AIC BIC Loglik

log( iCFRt
i

1−iCFRt
i ) = α+ αi 12857.2 12866.4 -6426.6

log( iCFRt
i

1−iCFRt
i ) = α+ αi +

∑
cb(Tempt

i) 10519.2 10637.8 -5233.6
log( iCFRt

i

1−iCFRt
i ) = α+ αi +

∑
cb((RHt

i) 11921.4 12040.0 -5934.7
log( iCFRt

i

1−iCFRt
i ) = α+ αi +

∑
cb(Tempt

i) +
∑

cb(RHt
i) 9738.3 9966.4 -4819.1
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Supplementary Table 5: The estimation of the fixed intercept and coefficients in DLNM coupled
with a mixed-effect model . The variables of cb.temperaturev1.l1 to cb.humidityv6.l4 are generated
by the cross basis functions in DLNM.

Variable Estimate Std. Error z value P-value

Intercept -3.1699289 0.355785 -8.91 <0.001
cb.temperaturev1.l1 0.1411383 0.1275635 1.106 0.268547
cb.temperaturev1.l2 -0.3438178 0.1099579 -3.127 0.001767
cb.temperaturev1.l3 -0.0825041 0.1148768 -0.718 0.472636
cb.temperaturev1.l4 0.1213828 0.1081841 1.122 0.261862
cb.temperaturev2.l1 -0.2599674 0.0972192 -2.674 0.007494
cb.temperaturev2.l2 0.0471271 0.0769912 0.612 0.540465
cb.temperaturev2.l3 -0.0306237 0.0892278 -0.343 0.731442
cb.temperaturev2.l4 -0.3038603 0.0877978 -3.461 <0.001
cb.temperaturev3.l1 -0.0106087 0.1064286 -0.1 0.920599
cb.temperaturev3.l2 -0.0580889 0.0902724 -0.643 0.519909
cb.temperaturev3.l3 -0.3593119 0.0966693 -3.717 <0.001
cb.temperaturev3.l4 -0.120484 0.0927389 -1.299 0.193884
cb.temperaturev4.l1 0.0056769 0.1081349 0.052 0.958132
cb.temperaturev4.l2 -0.0932972 0.0891686 -1.046 0.295422
cb.temperaturev4.l3 -0.3942512 0.0948301 -4.157 <0.001
cb.temperaturev4.l4 0.046028 0.0932205 0.494 0.62148
cb.temperaturev5.l1 0.0921185 0.1746199 0.528 0.59782
cb.temperaturev5.l2 -0.0414536 0.1539405 -0.269 0.787712
cb.temperaturev5.l3 -0.9669605 0.1395523 -6.929 <0.001
cb.temperaturev5.l4 -0.1748473 0.1354429 -1.291 0.196728
cb.temperaturev6.l1 -0.0359648 0.2206378 -0.163 0.870515
cb.temperaturev6.l2 0.1178125 0.2095964 0.562 0.574053
cb.temperaturev6.l3 -0.5157761 0.1696462 -3.04 0.002363
cb.temperaturev6.l4 -0.2525008 0.1463552 -1.725 0.084481
cb.humidityv1.l1 -0.0760959 0.1415298 -0.538 0.590807
cb.humidityv1.l2 0.2974524 0.1564322 1.901 0.057239
cb.humidityv1.l3 0.4239622 0.1249817 3.392 <0.001
cb.humidityv1.l4 -0.3900315 0.1268123 -3.076 0.0021
cb.humidityv2.l1 0.2148096 0.095398 2.252 0.02434
cb.humidityv2.l2 0.3397057 0.1095488 3.101 0.001929
cb.humidityv2.l3 0.4692162 0.0831245 5.645 <0.001
cb.humidityv2.l4 0.0915356 0.0783017 1.169 0.242399
cb.humidityv3.l1 0.0142524 0.114312 0.125 0.900777
cb.humidityv3.l2 0.1509889 0.1272993 1.186 0.235585
cb.humidityv3.l3 0.5810411 0.098065 5.925 <0.001
cb.humidityv3.l4 -0.0502108 0.097828 -0.513 0.607773
cb.humidityv4.l1 0.2520897 0.1003122 2.513 0.011969
cb.humidityv4.l2 0.3407618 0.1148536 2.967 0.003008
cb.humidityv4.l3 0.5995064 0.0878938 6.821 <0.001
cb.humidityv4.l4 -0.0240081 0.0868114 -0.277 0.782122
cb.humidityv5.l1 -0.0465353 0.1176598 -0.396 0.692469
cb.humidityv5.l2 0.0943673 0.1310316 0.72 0.47141
cb.humidityv5.l3 0.5635789 0.1014846 5.553 <0.001
cb.humidityv5.l4 -0.0344524 0.0982732 -0.351 0.725905
cb.humidityv6.l1 -0.0005845 0.1195719 -0.005 0.9961
cb.humidityv6.l2 0.3729215 0.1353168 2.756 0.005853
cb.humidityv6.l3 0.2434892 0.1065491 2.285 0.022299
cb.humidityv6.l4 0.1575367 0.1043284 1.51 0.131041
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Supplementary Table 6: The estimated country-specific intercepts for each country for different
selected months.

Country March to April March to May March to June Full data set (i.e March to July)

United Kingdom -3.08±0.01 -2.99±0.01 -2.70±0.01 -2.79±0.01
Italy -3.13±0.01 -2.88±0.01 -2.62±0.01 -2.73±0.01
France -2.70±0.02 -2.49±0.02 -2.22±0.02 -2.32±0.02
Spain -3.72±0.01 -3.25±0.01 -2.97±0.01 -3.06±0.01
Germany -4.09±0.02 -4.01±0.02 -3.77±0.02 -3.91±0.02
Netherlands -3.43±0.03 -3.29±0.03 -3.03±0.03 -3.13±0.03
Sweden -3.86±0.05 -3.97±0.04 -3.83±0.03 -4.00±0.03
Romania -3.19±0.09 -3.45±0.06 -3.26±0.05 -3.43±0.04

Supplementary Table 7: The country-level sample size (number of days sampled) for the mixed
model.

Country Sample size (day)

United Kingdom 127
Italy 84
France 67
Spain 65
Germany 80
Netherlands 97
Sweden 129
Romania 125
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