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Abstract 
Background: Global tuberculosis (TB) drug resistance (DR) surveillance is largely focused on 
the drug rifampicin. We leveraged public and surveillance M. tuberculosis (Mtb) whole genome 
sequencing (WGS) data, to generate more comprehensive country-level resistance prevalence 
estimates (antibiograms) using in silico resistance prediction. 
 
Methods: We curated and quality-controlled Mtb WGS data. We used a validated random forest 
model to predict phenotypic resistance to twelve drugs and bias-corrected for model 
performance, outbreak sampling, and resistance oversampling. We validated our estimates 
using a national DR survey conducted in South Africa.  
 
Results: Mtb isolates from 29 countries (n=19,149) met sequence quality criteria. Marginal 
genotypic resistance estimates overlapped with the South African DR survey for all drugs 
except isoniazid and second-line injectables that were underestimated (n=3,134); among multi-
drug resistant (MDR) TB, estimates overlapped for pyrazinamide and the fluoroquinolones. 
Globally, mono-resistance to isoniazid was estimated at 10.9% (95% CI: 10.2-11.7%, n = 
14,012. Mono-levofloxacin resistance rates were highest in South Asia (Pakistan 3.4% [0.1-
11%], n=111 and India 2.8% [0.08-9.4%], n=114). Rates of resistance discordance between 
isoniazid and ethionamide were high with 74.4% (IQR: 64.5-79.7%) of isoniazid resistant 
isolates predicted to be ethionamide susceptible. The global susceptibility rate to pyrazinamide 
and levofloxacin among MDR was 15.1% (95% CI: 10.2-19.9%, n=3,964).  
 
Conclusions: This is the first attempt at global Mtb antibiogram estimation. DR prevalence in 
Mtb can be reliably estimated using public WGS and phenotypic resistance prediction for key 
antibiotics. Our results raise concerns about the empiric use of short-course fluoroquinolone 
regimens for drug susceptible TB in South Asia and suggest that ethionamide is an under-
utilized drug in MDR treatment.  
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Introduction 
Tuberculosis (TB) and its causative agent Mycobacterium tuberculosis (Mtb) are a persistent 
global health threat resulting in more than 10 million incident cases and 1.5 million deaths 
annually1. TB was only recently overtaken as the top infectious disease killer by the coronavirus 
disease 2019 (COVID-19) in the year 2020. One of the major challenges in TB control is the 
emergence of antibiotic-resistant TB that is difficult and expensive to cure2 with favorable 
treatment outcomes achieved in only 56% of cases1,3. Improved strategies to tackle resistant TB 
first require improved local estimates of resistance burden. National estimates currently reported 
by the World Health Organization (WHO) focus on rifampin resistance. These rely on either 
modeling, periodic surveys, or pooling rifampicin testing data, often derived from NAATs, 
including cartridge-based tests or LPAs, for countries that routinely test for rifampicin 
resistance1. Resistance estimates for the remaining agents are even more limited and still, 
largely rely on expensive and labor-intensive culture-based antibiotic susceptibility testing. 
Surveillance of resistance to other first- and second-line agents, e.g. pyrazinamide, 
fluoroquinolones, is needed to guide disease control and to project patient eligibility to 
standardized regimens, including newer fluoroquinolone-based regimens for antibiotic 
susceptible TB4 and short-course regimens for multi-drug resistance5.  
 
Whole-genome sequencing (WGS) of clinical M. tuberculosis isolates is increasingly performed 
for research, surveillance and, clinical care and increasingly representative of high TB 
prevalence settings6. Between 2000 and 2010, 395 Mtb genomes were published in the 
National Center for Biotechnology Information’s Sequence Read Archive (SRA). This number 
rose to 79,716 between 2011 and 2020. Major motivators for sequencing include the study of 
TB transmission/outbreaks7 as well as genotypic surveillance of MDR or rifampin resistance in 
TB in both high8 and low burden countries9. While these efforts involve oversampling of MDR or 
rifampin-resistant isolates, they are less likely to oversample higher-level resistance including 
pre-XDR and XDR TB, as this information is difficult to obtain pre-sampling due to the laboratory 
cost and biohazard, especially in high burden settings.   
 
Enabled by an improved understanding of genetic resistance mechanisms, prediction from 
WGS is now a reliable approach to resistance diagnosis for the majority of Mtb antibiotics10,11. 
Several methods have been developed to predict resistance in silico from WGS data, these 
span simpler methods, like direct association, to machine learning12–15. Among the best-
performing methods that have been validated across 12 different antibiotics is a random forest 
classifier (see Methods for performance details)16. We leveraged this model to comprehensively 
survey TB antibiotic resistance at the country level using public and surveillance WGS data. We 
outline an approach to correct DR and outbreak oversampling bias, and the model’s imperfect 
sensitivity and specificity. We validate our WGS based estimates of drug resistance burden 
against national drug resistance survey data for South Africa. The results are accessible to the 
user using a point-and-click open web platform that can be refined over time as new WGS data 
and models become available. 
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Methods 

Data curation: 
We curated Mtb genomes from NCBI, PATRIC and, published literature8,10,17–19 
(Supplementary Table 1). We also included genotype and resistance phenotype data from the 
WGS-based resistance survey from seven countries led by the WHO8. This survey performed 
cluster sampling of Mtb isolates from new and retreatment TB patients. The methods used for 
the curation of Mtb genomes and associated metadata, including geographic data, have been 
described previously20. We used metatools_ncbi (https://github.com/farhat-lab/metatools_ncbi) 
to download geographic location metadata from NCBI for each isolate. A summary table is 
available at (https://github.com/farhat-lab/resdata-
ng/blob/master/metadata/summary_tables/geo_sampling.txt). 

Phenotypic DST 
Phenotypic DST data were curated from PATRIC and the published literature. Details of 
phenotypic testing methodology used by each study are shown in Supplementary Table 1. For 
studies that reported minimal inhibitory concentrations, we converted the results into a binary 
variable (indicating sensitive or resistant) using critical concentrations endorsed by the WHO21.    

Genomic analysis/variant calling:  
We used a previously validated genomic analysis pipeline for Mtb22 with modifications as 
described earlier20. Briefly, reads were trimmed using PRINSEQ23 setting the average phred 
score threshold to 20. Raw read data was confirmed to belong to the Mtb complex using 
Kraken24. Isolates with <90% mapping were excluded. Reads were aligned to H37Rv (GenBank 
NC000962.3) reference genome using BWA MEM25. Duplicate reads were removed using 
PICARD26. We excluded any isolates with coverage of <95% at 10x or higher in known antibiotic 
resistance regions (katG, inhA & its promoter, rpoB, embA, embB, embC & embB promoter, 
ethA, gyrA, gyrB, rrs, rpsL, gid, pncA, rpsA, eis promoter). Variants were called using Pilon27 
that uses local assembly to increase indel (insertions and deletions) call accuracy. Variants 
were excluded if Pilon filter indicated low coverage.  

Implementation of Random Forest (RF) Predictor: 
We used a previously described RF model12 for in-silico resistance prediction. Briefly, this model 
was trained using non-lineage marker nonsynonymous mutations in 18 loci adjusting for class 
imbalance using weights. The performance of the model has been re-validated recently on 
20,408 isolates (sensitivity: rifampin 95.0% [95% CI: 94.4-95.6], isoniazid 91.8% [91.0-92.5] 
among rifampin-resistant and 81.1% [78.4-84.0] among rifampin susceptible, pyrazinamide 
61.3% [59.2-63.4] and levofloxacin 80.2% [71.6-88.2])16.  

Estimation of resistance burden/antibiograms by country: 
We developed a procedure to correct for the possible oversampling of outbreaks in our dataset. 
To exclude genetically similar isolates, we first calculated pairwise SNP distance across all 
isolates. Among the entire dataset of 24,015 isolates, 703,755 total SNPs were identified of 
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which 50,396 were further excluded because they either had low Empirical Base-level Recall 
(EBR) score28, were located in mobile genetic element regions, or were missing in >10% of 
isolates (Supplementary Figure 1) with 653,359 SNP sites remaining. We excluded 1,416 
isolates that had >=10% missing calls at these SNP sites and further excluded 15,771 SNPs 
where the minor allele didn’t occur in any remaining isolates with 637,588 SNPs remaining 
among 22,599 total isolates (Supplementary Figure 1). We then calculated pairwise Euclidean 
SNP distances using a custom script. Using the R package igraph29, we identified closely 
related isolates that had a genetic distance of less than or equal to 10 SNPs for each country 
and randomly selected one isolate from each group of isolates where each isolate was <= 10 
SNP apart from the others. In groups of isolates where all isolates were not <=10 SNP apart, we 
excluded isolates with the highest relatedness iteratively until the least related isolates (>10 
SNPs apart) remained. We compared resistance burden estimates with and without this 
outbreak correction.   

We calculated the proportion of isolates resistant to each antibiotic, by country, using the 
number of isolates predicted as resistant divided by total isolates available for prediction for 
each country. We focus on four basic resistance estimates: (1) the marginal proportion of 
resistance among all TB isolates available, and the conditional proportion of resistance to a 
specific agent among (2) rifampin-susceptible isolates that we label as mono-resistant, (3) 
rifampin-resistant isolates, and (4) MDR isolates. In each case, we estimated the bias-corrected 
prevalence of antibiotic resistance (φ) using the genotypic prevalence (θ), using the sensitivity 
(se) and specificity (sp) of the RF model, as given by the formula below and described in Zignol 
et al.8: 

� �  
� �  �� � 1

�
 �  �� � 1
 

A distinction was made for the performance of the RF model in predicting isoniazid resistance 
among rifampin susceptible and rifampin-resistant isolates. We additionally assessed the 
performance of the RF model in predicting eligibility for the short course regimen defined as 
MDR isolates susceptible to both pyrazinamide and levofloxacin (or moxifloxacin where 
available using phenotypic testing). Uncertainty around each parameter was propagated using a 
Bayesian model using R library rjags to interface with JAGS 4.3.030. To set up the model, se 
and sp were assumed to follow a Beta distribution with parameters obtained using the method 
of moments. The model was updated and re-fit 10,000 times. The posterior distribution of φ was 
randomly sampled to estimate the mean and standard deviation of the bias-corrected 
prevalence.  

We also corrected for resistance oversampling among sequenced isolates. The formula below 
details this correction. We used rifampin resistance rates reported by the WHO from country-
specific surveillance. We calculated a composite WHO rifampin resistance estimate using the 
proportion of rifampin resistance among new and retreatment cases reported by each country. 

The probability (P) of resistance (R) to antibiotic A is given by:  
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�� � �� � �� � �|��������  � �� � �|��������  

where ����� is available from the WHO, ����� is given by 1 �  �����, and �� � �����, and 
�� � �|���, i.e. mono-resistance to A, were the bias-corrected estimates of antibiotic 
resistance among rifampin-resistant and rifampin-susceptible isolates, respectively. We 
generated 95% confidence intervals (CI) by calculating the combined variance (���) using the 
delta method. 

Validation using national survey data:  
We used the results of the South African national TB antibiotic resistance survey from 2012-
148,31 to study residual bias in genotype-based estimates of drug resistance after correction for 
outbreak sampling. We extracted the overall resistance estimates (among both new and 
previously treated patients) for each antibiotic reported in the survey and compared these to 
marginal estimates generated by our method for all isolates and for MDR isolates separately.  

Other analysis, data, and code availability: 
Antibiograms were plotted for each country using ggplot232(p2). All the custom scripts used for 
this analysis were written using R 3.6.1 and Python 3.7.4 are available on GitHub at 
https://github.com/farhat-lab/tb_antibiogram.  

Results 

Data and estimation of antibiograms 
We identified 22,599 isolates with data on country-of-origin that met sequence quality criteria 
(Methods). Average sequencing depth across resistance genes was 115X and 99% of bases in 
these regions were covered at ≥10X sequencing reads (Methods). There were 82 countries 
represented by at least one isolate and 32 countries by at least 100 isolates that met sequence 
quality criteria.  

Phenotypic resistance data: Of the 22,599 isolates, 12,023 had phenotypic drug susceptibility 
testing (DST) results (Figure 1). The 12,023 isolates originated from 43 countries; 11,343 were 
tested for both isoniazid and rifampicin, and 2,856 (25% [95% CI: 24-26%]) were resistant to 
both, i.e. were MDR. Among the MDR isolates, 554 (19% [95% CI: 18-21%]) were resistant to at 
least one second-line injectable (capreomycin, amikacin, or kanamycin), 456 (16% [95% CI: 15-
17%]) were resistant to at least one fluoroquinolone (ofloxacin, ciprofloxacin, levofloxacin, or 
moxifloxacin) and 259 (9% [95% CI: 8-10%]) were resistant to both. Among the 17 countries 
with at least 100 isolates with phenotypic DST, we computed the raw frequency of MDR in the 
sample. In comparison to the WHO reported MDR rates, 16 of the 17 countries had a higher 
MDR rate confirming the concern of overrepresentation of MDR in public genomic data.  

Due to overrepresentation of MDR/rifampicin resistance, we assessed phenotypic resistance 
patterns strictly among rifampicin susceptible isolates (n=8,581 from 43 countries, median 30 
isolates per country [IQR=3-225]). Isoniazid mono-resistance by phenotypic assay was seen in 
9% (780/8,581) of isolates globally; Peru had the highest proportion at 33% (95% CI: 28-37%, 
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n=423) and none were isoniazid mono-resistant from China (95% CI: 0.0-8.2%, n=43). Among 
isolates susceptible to rifampin with DST to levofloxacin and/or moxifloxacin, 1.6% (95% CI: 1.1- 
2.2%, n=1,906 from eight countries) were resistant. Among the four countries with at least 100 
rifampin susceptible isolates with DST to at least one fluoroquinolone, the highest proportion of 
fluoroquinolone mono-resistance was found in Bangladesh (3.9%, 95% CI: 2.3-6.2%, n=431, 
Supplementary Table 2). Genotype-based antibiograms, as detailed below, showed trends 
consistent with these phenotypic patterns even after bias correction. Genotype-based prediction 
allowed for estimation in a larger number of countries. Concordance between phenotypic DST 
and genotypic prediction was high for first-line drugs and lower for second-line drugs and 
consistent with published validation data16 (Supplementary Results). 

Genotypic antibiogram estimation: To generate 12-drug antibiograms, we followed a three-step 
procedure. We first filtered isolates that may represent Mtb outbreaks. We next applied a 
Bayesian correction for the imperfect sensitivity and specificity of the in silico resistance model. 
And lastly, to generate marginal antibiograms, we marginalized over rifampicin resistance 
categories using the WHO reported rate of rifampicin resistance for that country (Methods). As 
a substantial proportion of MDR-TB cases are related to recent transmission20,33, and because 
outbreak investigation is one application of Mtb WGS resulting in oversampling of specific 
resistance genotypes, we applied an outbreak correction (Methods) to the 22,599 isolates that 
met sequence quality criteria. This led to the exclusion of 2,354 isolates, with 20,245 isolates 
from 78 countries remaining. The median percentage of isolates excluded from each country 
was 14.7% (IQR: 0.0-15.6%). Denmark, Argentina, and Djibouti were excluded as they had 
fewer than 100 isolates remaining after outbreak correction. We provide estimates with and 
without outbreak correction for the 29 countries represented by at least 100 sequenced isolates 
(median 342 isolates per country [IQR: 198-829]) in Supplementary Table 3.   

Comparison with national antibiotic resistance survey data 
We used the South African national TB antibiotic resistance survey from 2012-148,31 to study 
residual bias in genotype-based estimates of drug resistance after correction for outbreak 
sampling (Figure 2). Marginal resistance estimates overlapped for all drugs except for isoniazid 
and second-line injectables. For the latter two drug/classes, the rate estimates were lower using 
pooled public WGS data (n=3,134) than in the national resistance survey. Among MDR isolates 
(n=268), estimates using public WGS data overlapped estimates reported in the national DR 
survey for pyrazinamide, levofloxacin and para-amino salicylic acid, but were higher for other 
drugs including ethambutol, and second-line injectables (Figure 2).  

Country-level estimates of antibiotic resistance 
In additional to marginal antibiograms, we generated country-level bias-corrected estimates of 
mono-isoniazid and mono-levofloxacin resistance i.e., only among rifampicin susceptible 
isolates, for the 26 countries with at least 50 rifampin susceptible isolates available for analysis 
(Figure 3A-B). We also estimated resistance to eleven drugs including pyrazinamide, and 
levofloxacin among MDR-TB for the 15 countries with at least 100 sequenced MDR-TB isolates 
(Supplementary Figure 3).  
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Marginal rates of resistance: The global rate of isoniazid marginal resistance was 11.6% (95% 
CI: 8.5-14.6%, n = 19,149) across 29 countries. For 10 of the 29 countries, >30% of isolates 
were estimated resistant to isoniazid; five of these were former Soviet Union countries 
(Supplementary Figure 2). The highest isoniazid resistance rate was estimated for Russia 
(66%, 95% CI: 45-87%, n=829), followed by Ukraine (58%, 95% CI: 39-76%, n=957). Isolates 
from the five former Soviet Union countries also had the highest pyrazinamide resistance rates 
(Supplementary Table 3). For countries outside of the former Soviet Union, the highest 
isoniazid resistance rate was measured in the Philippines (43%, 95% CI: 40-46%, n=181), 
Portugal (39%, 95%CI: 38-40%, n=100) and Peru (39%, 95% CI: 31-42%, n=1,521). The lowest 
isoniazid resistance rate was seen in South Africa (4.7%, 95% CI: 3.3-6.2%, n=3,134) and 
Japan (8%, 95% CI: 6-10%, n=368).  

Marginal rates of ethionamide resistance also showed a wide range globally. On one extreme 
was the Republic of Moldova with a rate of 32% (95% CI: 22-42%, n=278) while the lowest rate 
was seen in the United Kingdom at 0.15% (95% CI: 0.05-0.30%, n=2,831). All countries (n=29) 
had higher rates of resistance to isoniazid compared to ethionamide with a median difference of 
16.3% (IQR: 9.5-28.1%). Among isoniazid resistant isolates (n=6,090 from 29 countries, median 
145 [IQR: 96-246] isolates per country), a median of 74.4% (IQR: 64.5-79.7%) were predicted to 
be ethionamide susceptible. Of the 4,827 total isolates that were predicted to be isoniazid 
resistant but ethionamide susceptible, 4,477 (92.7%) harbored antibiotic resistance conferring 
mutations in katG but not in inhA. Phenotypic DST was available for 565 of the 4,477 isolates 
and of these 80.2% tested resistant to isoniazid but susceptible to ethionamide.  

Mono-resistance to isoniazid and fluoroquinolones: Twenty six of the 29 countries were 
represented by at least 50 rifampin susceptible isolates (median 237 [IQR:116-500] isolates per 
country). The global rate of isoniazid mono-resistance was estimated at 10.9% (95% CI: 10.2-
11.7%, n = 14,012 across the 26 countries and explained most of the marginal rate of isoniazid 
resistance (11.6%, 95% CI: 8.5-14.6%, n=19,149) as noted above. By country (Figure 3A), we 
found evidence of over-estimation and under estimation at the two extremes of mono-resistance 
to isoniazid: highest in the Philippines (40%, 95% CI: 30-51%, n=119), and lowest in South 
Africa (1.2%, 95% CI: 0.5-2%, n=2,746). We verified high genotype and phenotype 
concordance for isoniazid in the Philippines and found evidence for over sampling of INH mono-
resistance in public WGS data compared with the DR survey (Supplementary Results). For 
South Africa, isoniazid mono-resistance was underestimated due to the lack of resistance 
mutations in 60% of isolates; the remaining 40% of isoniazid mono-resistance was missed due 
to rare mutations in katG and the ahpC promoter, but not in the fabG1-inhA promoter 
(Supplementary Tables 8 and 9). 

The global rate of mono-resistance to levofloxacin was estimated at 0.1% (95% CI: 0.003-0.3%, 
n = 14,012). There was considerable geographic variation: Pakistan and India had the highest 
rate of levofloxacin resistance, at 3.4% (0.1-11.1%) and 2.8% (0.1-9.4%) of 111 and 114 
rifampicin susceptible isolates, respectively. In Bangladesh, which had a high prevalence of 
fluroquinolone mono-resistance based on phenotypic data, the bias corrected genotypic 
estimate was 0.7% (0.02-2.3%, n=454). Results by country are shown in Figure 3B. For India, 
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we compared the estimates to the national TB antibiotic resistance survey performed in 2014-
2016 and in which the prevalence of levofloxacin resistance among new TB patients was 2.7% 
(95% CI: 2.2-3.4%)34 (Supplementary Figure 3). 

Resistance among MDR isolates: Fifteen countries had at least 100 MDR isolates after filtering 
of closely related isolates (n=3,964, median 179 isolates/country [IQR: 147.5-299.5]). We 
estimated MDR antibiograms for the 15 countries and across the whole sample, with and 
without outbreak correction (Supplementary Figure 4A-B, Supplementary Table 4). The 
global estimated rate of pyrazinamide resistance among MDR was 62.7% (95%CI: 59.3-66.1%, 
n=3,964); by country-level this rate ranged from 80% (95% CI: 74-86%, n=968) in Peru to 41% 
(95% CI: 29-53%, n=148) in Thailand. The global rate of levofloxacin resistance among MDR-
TB was 8.6% (95% CI: 0.5-19.8%, n=3,964); by country this ranged from 48% in Japan (95% 
CI: 27%-69%, n=135) to 0.98% in the DRC (95% CI: 0.02-3.59%, n=144).  

Susceptibility to antibiotics used in the MDR-TB Short Course Regimen  
We estimated the bias-corrected proportion of MDR isolate with combined susceptibility to 
antibiotics used in the short course regimen (also known as “Bangladesh regimen”) by country. 
Specifically, we focused on two antibiotic classes, pyrazinamide and 
moxifloxacin/levofloxacin35,36, as our approach predicted resistance to these drugs reliably in 
comparison with the South African DR survey. This approach provides a best-case scenario of 
feasibility of the use of short course regimen because: (1) the sensitivity and specificity of the 
RF model to identify eligibility was 91.1% and 59.5%, respectively (Supplementary Table 5 
and 6), and (2) it ignores resistance to ethambutol and kanamycin which can be common 
among MDR-TB patients globally. For example, in our sample of 382 isolates that were 
phenotypically MDR and susceptible to pyrazinamide and levofloxacin/moxifloxacin, 64% were 
phenotypically tested resistant to ethambutol.  

Phenotypic resistance only allowed us to explore estimates for Peru, Russia, and South Africa 
because these countries had at least 100 MDR isolates with phenotypic data to the two classes 
of antibiotics (pyrazinamide and moxifloxacin/levofloxacin). Phenotypic resistance to one or 
more of these drugs was 87% (n=124) in South Africa, 73% (n=733) in Peru, and 48% (n=295) 
in Russia.  

WGS data allowed us to estimate feasibility across 15 countries. We measured an average 
global bias-corrected estimate, using susceptibility rate to both pyrazinamide and levofloxacin 
among MDR-TB, of 15.1% (95% CI: 10.2-19.9%, n=3,964). This combined rate was high for 
Democratic Republic of Congo (60.7% [95% CI: 45.6-75.1%, n=144]), the Netherlands (60.5% 
[46.4-73.8%, n=178]) and former Soviet Union countries had the lowest combined rates (e.g., 
Azerbaijan: 3.5% [0.1-11.3%, n=179] and Moldova: 3.8% [0.1-12.1%, n=163]) (Figure 4). For 
Bangladesh, where the regimen was originally developed, the combined rate was 42.5% (19.8-
64.6%, n=69). 

Access to antibiogram estimates: Genotypic estimates are available through a point-and-click 
web interface at https://gentb.hms.harvard.edu/maps/antibiogram/ to allow for quick reference 
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by clinicians and public health practitioners. Users can view the global distribution of overall 
resistance estimates for each drug and filter by resistance estimates among rifampin 
susceptible or rifampin resistant isolates. Country-level estimates of resistance rates are 
viewable by clicking on each country.  

Discussion 

Using a large Mtb genomic dataset, we estimate antibiotic resistance rates to 12 first-line and 
second-line antituberculosis agents across 29 countries with correction applied for oversampling 
of antibiotic-resistant isolates and outbreaks, as well as for genotypic model performance. We 
demonstrate the feasibility of this pathogen sequencing-based approach for resistance 
surveillance, and validate the model estimates against systematic national drug resistance 
survey data. This approach circumvents the major constraint in DR surveillance to-date which is 
limited by the access to culture-based DST. Our results reinforce that public WGS data is 
increasingly representative of TB in high prevalence settings, especially countries with a high 
burden of MDR. Overall, the antibiograms generated here provide key insights into resistance 
prevalence and co-resistance patterns globally, and have implications for TB management 
including empiric short regimen use for both drug susceptible and MDR-TB.  

In recent clinical trials, a four-month fluoroquinolone and rifapentine-based treatment regimen 
for antibiotic susceptible TB was shown to be non-inferior to the current standard of care4. As 
this regimen may be soon rolled out for TB treatment, we studied the proportion of rifampicin 
susceptible isolates (as a proxy for rifapentine susceptibility) that harbored resistance to 
moxifloxacin or levofloxacin. This resistance would not be detectable by the widely used 
GeneXpert MTB/RIF that only detects rifampin resistance mutations1. Globally, the estimated 
prevalence of late-generation fluoroquinolone resistance was low at <1%, yet in countries we 
studied in South Asia the rate was 20-30 times higher. Our estimate of the prevalence was 
consistent with the prevalence among new TB cases reported by the National Drug Survey in 
India34 and with estimates among rifampin susceptible isolates from Pakistan36. We speculate 
that the higher rate of fluoroquinolone resistance, may be related to dysregulated or over-the-
counter use of fluoroquinolones in those countries37,38. But other factors including bacterial 
fitness of fluoroquinolone resistance and transmissibility of such isolates are yet to be 
explored20. Overall, our results highlight the need for comprehensive diagnostics that identify 
antibiotic resistance with a quick turnaround time. These will aid in the rapid identification of 
patients eligible for the newer fluoroquinolone-containing regimen for antibiotic susceptible TB 
or short course regimen for MDR-TB.  
 
We found a high proportion of ethionamide susceptibility among isoniazid resistant isolates 
across the countries studied. The side-effect profile of ethionamide is relatively worse as 
compared to that of isoniazid (e.g. hepatotoxicity seen in up to 5% of patients as compared to 
up to 3% with isoniazid)39 and it is typically reserved as a second-line agent40,41. Our results 
support the wider use and consideration of this agent in treatment of isoniazid mono-resistant or 
MDR-TB. 
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This study had several limitations. This included sampling bias of antibiotic-resistance in public 
TB WGS data. We recognized this limitation and designed a multistep bias correction 
procedure. There was, however, residual bias for resistance to several drugs in MDR 
isolates e.g., ethambutol, and second-line drugs, as well as mono-resistance to isoniazid for 
countries at both extremes in resistance frequency. For isoniazid mono-resistance, we 
confirmed this bias was due to oversampling in available public WGS for the Philippines. 
Nevertheless, our corrected marginal resistance estimates, and estimates for pyrazinamide and 
fluoroquinolones among MDR-TB, overlapped consistently with national drug resistance survey 
data. Another limitation is the imperfect sensitivity of genotypic models for predicting resistance. 
We note that the RF models used in this study had higher sensitivity and specificity than direct 
association as reported for the recently released WHO catalogue of resistance mutations42, but 
there are still notable gaps in sensitivity for mono-resistance to isoniazid, and certain drugs like 
ethambutol and second-line injectables. Our results support that mono-resistance to isoniazid is 
often caused by rare mutations that do not occur in MDR isolates, and hence training separate 
models for isoniazid mono-resistance may be necessary. Isoniazid remains an important agent 
in TB treatment, but second-line injectables are being phased out from clinical practice and 
perhaps surveillance of resistance to these agents may no longer be needed. The novel anti-
tuberculosis agents including bedaquiline have recently become cornerstone agents in MDR-TB 
therapy where drug access allows. We were unable to generate estimates for bedaquiline, 
linezolid and delamanid in this study due to the lack of reliable genotypic prediction methods for 
these drugs. Recent reports do suggest very low rates of resistance to these agents, in part due 
to their recent introduction to clinical practice43. Another limitation is the lack of clinical metadata 
that did not allow us to estimate antibiograms separately for new and previously treated TB 
cases. Lastly, antibiogram estimation was necessarily limited to countries well represented in 
the isolate dataset and does not yet cover all high TB burden countries. We anticipate the wider 
adoption of Mtb sequencing for routine resistance diagnosis in high TB burden countries, 
championed by agencies such as UNITAID44 and the Gates foundation45 to address several of 
the aforementioned limitations in future WGS-based surveillance efforts.  

In conclusion, we present an effort at global and comprehensive resistance rate estimation by 
repurposing public pathogen genomic sequence data and leveraging state-of-the-art resistance 
prediction models. We have made these data publicly accessible for use by clinicians and public 
health practitioners globally. Acknowledging their limitations, these estimates can assist 
geography-specific strategies for the control of TB and drug resistance. With the expansion of 
WGS for use in TB surveillance programs, the data available to generate these estimates is 
expected to grow and can be leveraged to allow for the monitoring of trends in resistance over 
time.  
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Figures and Tables:  
 

 
 
Figure 1: Isolates filtered and available for analysis. QC: Quality Control, SNP: Single 
Nucleotide Polymorphism. See Supplementary Figure 1 for details on computation of pairwise 
SNP distance.  
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Figure 2: Validation of estimates for South Africa. Comparison of drug resistance estimates 
for South Africa from national drug resistance (DR) survey 2012-2014 to those calculated using 
public whole-genome sequences (WGS) in this study from A) all isolates (n=3,134) and, B) 
among multidrug-resistant (MDR) isolates (n=268), i.e., those resistant to both rifampin and 
isoniazid (INH). National DR survey reported second-line injectable resistance estimates were 
used to compare with amikacin (AMK), capreomycin (CAP), and kanamycin (KAN) estimates 
generated using public WGS. National DR survey reported ofloxacin (OFLX) resistance 
estimates were used to compare with OFLX and levofloxacin (LEVO) estimates generated using 
public WGS. EMB: ethambutol, ETH: ethionamide, INH_MONO: INH resistance in rifampicin 
susceptible isolates, PAS: para-amino salicylic acid, PZA: pyrazinamide, STR: streptomycin.  
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Figure 3: Bias-corrected estimates of (A) isoniazid mono-resistance and (B) levofloxacin 
mono-resistance in rifampin susceptible isolates. Only countries with at least 100 total 
isolates of which at least 50 were rifampin susceptible are shown.  
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Figure 4: Bias-corrected estimates of susceptibility to antibiotics used for short course 
regimen for treatment of multidrug resistant tuberculosis (MDR-TB). Numbers shown for 
each country are bias-corrected percentage of MDR isolates that were sensitive to two of the 
antibiotics (pyrazinamide and levofloxacin) used in the short-course regimen. Only countries 
with at least 100 MDR isolates are shown.  
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