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Background: The COVID-19 pandemic has had an enormous toll on human
health and well-being and led to major social and economic disruptions. Public
health interventions in response to burgeoning case numbers and hospitalizations
have repeatedly bent down the epidemic curve in many jurisdictions, effectively
creating a closed-loop dynamic system. We aim to formalize and illustrate how to
incorporate principles of feedback control into pandemic projections and decision
making.

Methods: Starting with a SEEIQR epidemiological model, we illustrate how
feedback control can be incorporated into pandemic management using a simple
design (proportional-integral or PI control), which couples recent changes in case
numbers or hospital occupancy with explicit policy restrictions. We then anal-
yse a closed-loop system between the SEEIQR model and the designed feedback
controller to illustrate the potential benefits of pandemic policy design that incor-
porates feedback.

Findings: We first explored a feedback design that responded to hospital mea-
sured infections , demonstrating robust ability to control a pandemic despite simu-
lating large uncertainty in reproduction number R0 (range: 1.04-5.18) and average
time to hospital admission (range: 4-28 days). The second design compared re-
sponding to hospital occupancy to responding to case counts, showing that shorter
delays reduced both the cumulative case count and the average level of interven-
tions. Finally, we show that feedback is robust to changing public compliance to
public health directives and to systemic changes associated with new variants of
concern and with the introduction of a vaccination program.

Interpretation: The negative impact of a pandemic on human health and so-
cietal disruption can be reduced by coupling models of disease propagation with
models of the decision-making process. This creates a closed-loop system that
better represents the coupled dynamics of a disease and public health responses.
Importantly, we show that feedback control is robust to delays in both measure-
ments and responses and to uncertainty in model parameters and the efficacy of
control measures.
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Research in context

Evidence before this study: A search on Pubmed on August 24 2021
for the keywords ((COVID[Title/Abstract]) AND (model[Title/Abstract]))
AND ((projection[Title/Abstract]) OR (forecast[Title/Abstract])) returned
422 articles, reflecting challenges in accurate modeling of the pandemic. This
pandemic has put both the influence and limitations of modeling into the
public eye. A google search with the keywords “covid death model” AND
“wrong” returns scientific articles as well as opinion and newspaper articles
including in influential media. Many of the modeling papers include simu-
lation scenarios evaluating possible interventions and control strategies. We
found very few articles that take the inherent feedback into account that
happens when intervention policies are determined in practice. An excep-
tion is the widely simulated ad hoc on-off policy where interventions are
triggered when case or hospitalization levels are reached. A google scholar
search using the keywords “covid 19 feedback control” returns over 30 arti-
cles in engineering journals that explicitly address the inherent feedback in
the decision-making process. Many of these articles are highly technical and
one of our goals in this study is to connect the engineering community with
the public health and epidemiology community.
Added value of this study: This study aims to provide the public health
community with a brief overview of feedback control principles and how they
apply to decision-making for a pandemic such as COVID-19. In this work
we shift the focus from prediction to the design of interventions. We used
a standard SEEIQR model with a simple controller to simulate the implica-
tion of feedback in the decision-making process. We show that, in contrast
to highly varying open-loop projections, incorporating feedback explicitly in
the decision-making process is more reflective of real-world situations and
illustrates that effective decision making can be made even with only mod-
erately accurate models. We show that effective feedback policy can be
designed using daily case counts or hospitalizations and that it is not neces-
sary to know the fraction of cases that is detected to control the pandemic.
We illustrate how fundamental limitations of feedback impact the achievable
level of control.
Implications of all the available evidence: It is recommended that mod-
els of propagation of the virus be augmented with models of the decision-
making process to produce a closed-loop system that is more representative
of the real-world situation. Policy decisions resulting from systematic in-
tervention design, rather than ad hoc decisions, will make projections more
reliable and can encourage taking earlier and smaller actions, which reduce
both case counts and the severity of interventions. Using feedback principles,
effective control strategies can be designed even if the pandemic character-
istics remain highly uncertain. Case numbers as well as total interventions
can be reduced by minimizing all delays in the chain of information from
testing and reporting to decision making and public response.
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1. Introduction

With over 220 million cases and 4.6 million deaths (WHO dashboard, accessed
September 12, 2021), the COVID-19 pandemic has placed an enormous burden on
individuals, health systems, and society. In order to reduce the rate of transmis-
sion of the disease, most countries have implemented similar measures, including
lockdowns, closures of restaurants, bars and non-essential services, school closures,
curfews, prohibition of large gatherings, obligatory mask-wearing, travel restric-
tions, testing and tracing, and more recently mass vaccination. All along, public
health authorities and governments have had to adjust and modulate those public
health measures in response to a very fluid and rapidly evolving dynamic situa-
tion. Deciding which intervention to implement and when remains challenging:
i) epidemiological models predicting the course of the epidemic show significant
uncertainty [1, 2, 3] ii) the efficacy of individual measures remains poorly known
and may change over time [4] and iii) there is hesitancy to impose strict measures
that have significant social, health and economic implications. In order to do so,
decision-makers use up-to-date measures such as daily or weekly incidence rates,
hospital admissions and ICU occupancy rate to set restrictions. They are thus
implicitly using feedback.

So, just like Molière’s Mr Jourdain1 who “For more than forty years (has) been
speaking prose without knowing anything about it”, public health officers and
decision makers have been using feedback in an ad-hoc manner without knowing
feedback theory or the full range of tools that it offers.

The aim of this paper is thus to provide the public health community a brief
overview of basic feedback control principles and an illustration of how to use
them in the decision-making process when designing interventions to manage a
pandemic such as COVID-19. Pandemic control is, at its core, not just about
disease spread but about behavioural and policy reactions to the disease (i.e.,
feedback). The vast literature on control theory is, however, largely unknown to
epidemiologists and public health decision makers. In the context of the current
COVID-19 pandemic, we highlight control principles that could help pandemic
management, with the goal of reducing both case counts and social impacts of
restrictions.

Explicit consideration of feedback shifts the focus from prediction to design of in-
terventions. COVID-19 predictions show large uncertainty in part because they
are scenario based, where one fixed intervention sequence is used to predict possible
outcomes (open-loop). In reality, the decision-making process will assess outcomes

1Le Bourgeois Gentilhomme, Molière, 1670
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PANDEMIC POLICY DESIGN VIA FEEDBACK 5

and adjust accordingly; if the pandemic continues to grow, additional interven-
tions are likely put in place. This decision-making process uses feedback, even if
used informally, implicitly or inconsistently. By representing control of COVID-19
explicitly in a feedback framework, the impact of such reactive measures (closed-
loop) can be systematically and rigorously analyzed. Instead of implementing
ad-hoc policies, transparent and effective policies can be planned and optimized
using feedback theory.

Feedback is a powerful tool when wielded carefully. It can permit aggressive
decision-making under uncertain conditions. However when used inappropriately
it can also introduce undesirable behaviors. Too conservative a design is safe but
will respond too slowly to a changing environment and disturbances. An overly
aggressive design is too sensitive to model uncertainty, which may result in wild
swings in behaviour or exponential growth.

Implementing an appropriate feedback design can reduce the health, social, and
economic costs and also be more robust as the pandemic changes over time, through
viral evolution or ongoing vaccinations. Such unpredictable changes can be dealt
with via consistent use of feedback based on measurements reflecting the state of
the pandemic, even in the presence of significant and uncertain time delays.

Figure 1 illustrates the range of outcomes that can result from apparently subtle
changes in interventions, applied to a COVID-19 epidemiological model. It also
shows that small early interventions can avoid large interventions later. Hesitancy
in implementing control measures risks a greater toll from the disease. The goal
of this paper is to demonstrate how this sensitivity can be harnessed and used to
advantage in designing aggressive yet robust public policies even under conditions
of high uncertainty. While this will not make difficult decisions easier, it will make
them more transparent, informed, and effective.

2. Methods

2.1. Models. Simulation results are based on a two-group compartmental SEEIQR
model which was developed to estimate the effect of social distancing in early 2020
in British Columbia, Canada [5]. As the focus of this study is the decision-making
rather than the modeling, only a brief overview of the simulation model follows,
details may be found in the Appendix.

This model contains two groups, one representing individuals who are socially dis-
tancing and one representing individuals who cannot distance, for example due to
their profession. The model compartments represent the number of susceptible (S),
exposed (E1), pre-symptomatic and infectious (E2), symptomatic and infectious
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Figure 1. High sensitivity to interventions: The average level of
interventions, as well as the initial and final daily case rates, are
the same for all three scenarios. In the first scenario, interventions
that lead to zero growth from the initial IT = 400 are maintained,
leading to a cumulative infection case count of

∫
IT (t)dt of 48516. In

the second scenario, restrictions are initially relaxed, leading to pan-
demic growth. Tighter restrictions are then implemented to return
to the initial number of infections IT , leading to almost twice the
number of total infections:

∫
IT (t)dt = 95174 illustrating the cost of

delayed action. The third scenario starts by implementing stricter
interventions followed by relaxation, resulting in

∫
IT (t)dt = 34821,

a reduction of 28% from the first case despite the same average level
of restrictions. The variable u(t) represents the activity level of those
who can socially distance, ranging from u(t) = 0 with complete dis-
tancing to u(t) = 1 for normal levels of activity (see Appendix A).

(I), quarantined (Q), recovered or deceased (R) for each group. The recovered (R)
group does not affect infection rates and is omitted in this work. The model was
extended to include vaccinations and the appearance of new variants as detailed
in the Appendix.

The effect of social restrictions is introduced in this model through the variable
u(t) in (7)-(9), which can vary with time and affects transmission rates involving
the distanced group. Public health policies are assumed to impact u(t), where
u(t) = 0 represents completely restricted social interactions with no transmission
among distancing individuals and u(t) = 1 represents normal activity levels.
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Next we define the variable to be measured to inform the policy decisions. While
the model (7)-(9) contains four groups (unable or able to socially distance, non-
variant or variant), any measure of infections or hospitalizations represents the
total of these groups: IT (t) = I(t) + Id(t) + Iv(t) + Idv(t). The epidemiological
model detailed in Appendix A describes how the number of cases in each infected
group changes over time. The exact number of infected individuals, IT (t), is not
known but is estimated by some measure in a lagged fashion:

(1) y(t) = p · IT (t− d)

where p represents the fraction of the infected population being identified or mea-
sured and d represents the delay in days of before measurement. In this paper we
will contrast two different measures. In Scenario 1 we seek to represent hospital
occupancy, and we set p = 0.073 and a delay of d = 14 days.2

(2) yh(t) = 0.073 · IT (t− 14)

Scenario 2 is intended to reflect detecting new cases with fast public testing, and
there we set a much shorter delay of d = 2 days, but an unknown fraction p of
tests performed:

(3) yt(t) = p · IT (t− 2)

Note that the observed cases y will generally differ from the actual cases depending
on the rates of false positive (FP) and false negative (FN) rates in the test used.
We will discuss this point further in Section 2.2.

2.2. Systematic feedback design of interventions. There are many tech-
niques developed, deployed, and industrially validated over several decades for
the design of feedback control systems, see for example [6]. Generally, these tech-
niques allow the designer to balance the speed of control against the harms of
overreacting, especially given system noise, delays, and model uncertainty.

We will assume that pandemic intervention policies are defined by a function:

(4) u(t) = f(IT (t))

meaning that there is some rule, f(), that translates the number of infected cases
IT (t) into public health measures, u(t), that affect transmission among those in-
dividuals able to socially distance (see Appendix A). The formulation in (4) is
general enough to cover most policies, whether ad hoc heuristics or more system-
atic approaches. The goal is then to design this function such that the resulting
closed-loop delivers the desired performance and stability.

2https://health-infobase.canada.ca/src/data/covidLive/Epidemiological-summary-of-
COVID-19-cases-in-Canada-Canada.ca.pdf accessed on Sept 14 2021
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We select a straightforward control design technique known as SIMC (simple in-
ternal model control), originally developed for process control applications, where
dynamics are often complex and nonlinear [7]. We selected SIMC and the par-
ticular type of controller it implements (“proportional-integral-derivative” PID)
because they are more straightforward to describe and to implement, improving
the chance of successful application of feedback systems for pandemic control.

The SIMC design method includes the following steps: 1) Obtain a linear first-
or second-order plus time-delay model approximating the process. 2) Depending
on the characteristics of the approximate model, the SIMC rules suggest a con-
troller structure and controller parameters as a function of the estimated model
parameters.

In this design technique we thus use a linear approximation of the nonlinear
SEEIQR model to synthesize the controller, but all simulations of that control
policy will be performed against the full nonlinear model in Appendix A. The
linear approximation is obtained in three steps that are described in detail in
the Appendix. First, the number of susceptible individuals is assumed constant,
S(t) = S0. This assumption is commonly used to linearize epidemiological mod-
els. The relationship between the social activity level, u(t), and the measure of
cases, y(t), remains nonlinear. Second we transform the measured cases variable
z(t) = ln(y(t)) and the intervention variable v(t) = u(t) − u0, where u0 is the
unknown level of restrictions required to achieve zero pandemic growth. This re-
sults in an approximate linear relationship3 in the dynamics relating transformed
inputs v(t) and transformed states z(t) and is insensitive to scaling. Lastly, the
transformed model is injected with a series of steps in intervention u(t) to obtain
an input-output response over a range of operating points and a linear dynamic
model4 fit to the response using a non-linear least squares estimation (the output-
error method [8]):

(5)
d2z(t)

dt2
= A

dz(t)

dt
+B · v(t− d)

resulting in constants A = −0.5787 and B = 0.1572 for the parameters of model
(7)-(9), as described in Appendix C.

3For the special case of a simple one-group SIR model the transformation leads to an exactly
linear relationship, see Appendix C.

4In practice, the fraction p of infections that are detected is often not known. However, as
long as this fraction p is (piecewise) constant, it does not affect the linearized model (due to the
log transformation above), and the scaling does not need to be known to implement effective
control strategies (see Appendix C for details).
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Next, for systems such as (5) where the response delay, d, is significant, the SIMC
method [7] recommends a proportional-integral control policy:

(6) v(t) = Kp · e(t) +Ki ·
∫ t

t0

e(τ)dτ

where e(t) = r(t) − z(t) is the error between the feedback values z(t) and their
desired value, setpoint r(t) (which in practice would typically be set to correspond
to a number of cases that is smaller than the healthcare capacity of the region).
The format of this controller is the structure used in over 90% of control engineering
applications [9]. The integrator in the second term in feedback controller (6) has
the desired effect of driving measured outputs to the setpoint z(t) = r(t) in spite
of model uncertainty.5 Implicit feedback systems, as used to manage COVID-19 in
most jurisdictions, do not use an integrator (Ki) but respond directly to measures
such as case counts. As we shall see below, this results in less effective control.

When engaging a feedback controller into a situation where the system has previ-
ously been running in open-loop we need to manage the initial transient behavior
to mitigate any large undesirable jumps in v(t). Generally there are techniques
known as “bumpless transfer” that are employed in industry for this purpose (see
for example [11]). The parameter t0 in (6) should be set to the time when the con-
troller is engaged to initialize the control action and not for example backdated to
the start of the data set, which could result in the cumulative error in the second
term being quite large.

The constants Kp and Ki are tuning parameters through which the policy’s aggres-
siveness and robustness are designed. Using the SIMC formula from [7] described
in the appendix, these are calculated to be Kp = 0.081, Ki = 4.4 ·10−4 for feedback
with 14-day delay (2), and Kp = 0.20, Ki = 2.6 · 10−3 for the feedback with 2-day
delay (3).

In the following section various simulations will be performed with the closed-loop
system formed by the control law (6) and the full nonlinear SEEIQR model (7).

The explicit use of feedback does not require any particular policy update fre-
quency. Frequent changes in public health policy may be undesirable in practice,
leading policy makers to prefer bi-weekly or monthly updates rather than daily

5As noted above the true infection rate and the tested infection rate will differ by the false
positive (FP) and false negative (FN) rates of the test used. So technically the closed-loop will
converge to the desired rate of measured positives, which will differ from the true rate by an offset
c = (FP−FN). These measurements may be combined in a cascaded control loop [10] where the
inner control loop acts quickly on the fast measurements, while an outer control loop operates
from the slower, accurate measurements and provides updates to the setpoint of the inner loop,
correcting for the offset - in this way leveraging the strengths of different measurements.
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Feedback-based decision making

Figure 2. This block diagram illustrates the feedback configuration
of the SEEIQR model (7), measurements of case counts (1), the
control (6), and all transformations described in Section 2.

ones. As shown in the example below, this discretization is straightforward, and
there is little loss in effective control as long as the policy actions are not too
delayed. The interested reader is referred to references such as [12] for details.

3. Results

With the closed-loop system defined above, we examine the impact of various real-
world situations - uncertainty in the model, the role of time delays in case counts,
the impact of waning public compliance, and the introduction of changes including
new variants and vaccinations.

3.1. Model Uncertainty. The effect of feedback on a highly uncertain pandemic
is illustrated with Monte-Carlo simulations. Uncertainty in the parameter values
is introduced by drawing parameters in the SEEIQR model from a range of val-
ues (see Appendix A) and simulating the dynamics, repeating this process for 400
realizations. Feedback control was based on hospital measured infections (2) with
an uncertain delay from infection to hospitalization d (mean of 14 days, range:
4 - 28 days), and R0 varied between 1.04 and 5.18 (see Appendix A for variabil-
ity introduced in other parameters). The controller used the tuning parameters
Kp = 0.081, Ki = 4.4 · 10−4 in (6) (see Appendix B) and targeted a hospital-
measured infected case count of 20 patients (approximately corresponding to a
number of infections of 274). Figure 3 illustrates that the feedback (6) has effec-
tively reduced the large variability in case counts and transferred it to different
levels of interventions. In this simulation, we assumed that policy changes could
be made only once every two weeks, discretizing the controller (6). We find that
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Figure 3. Accurate predictions are not required to design an effec-
tive policy to control the pandemic. Monte Carlo simulation results:
The median is indicated with a thick line, the 25-75th percentiles
and the min-max are indicated with shaded regions. Left: Under
an open-loop policy , 40.25 % of the 400 realizations reach a maxi-
mal number of infections over 13500 after June 30th. Right: With
the same dynamic feedback policy in place for all realizations, and
bi-weekly intervention updates, 100 % of realizations maintain infec-
tions below 550 after June 30th. The variability in model parameters
leads to adjustments in the interventions, which compensate for the
differences between the models.

the feedback mechanism controls the pandemic despite the model uncertainty and
broad range of time delays explored (from 4 to 28 days), in contrast to results
presented in [13]. This robustness is due to the near-linear form of the dynamics
of the pandemic when measured on a logarithmic scale (Appendix B and C).

3.2. The Impact of Delays in Measurement. The response to an outbreak is
evaluated and compared in two scenarios: with longer versus shorter delays. In
Scenario 1 (equation (2)), feedback is based on counts from hospital testing, with
a 14-day delay (controller parameters in (6): Kp = 0.081, Ki = 4.4 · 10−4, see
Appendix B). In Scenario 2 (equation (3)), where feedback is based on counts
from rapid public testing, with a 2-day delay (controller parameters in (6): Kp =
0.20, Ki = 2.6 · 10−3). The outbreak is initialized by 100 exposed individuals on
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Figure 4. Minimizing delays in feedback improves performance:
Left: Delays increase the time to detection of outbreaks and limit
how aggressive policy responses can be. The top figure shows the
response to an outbreak on day 0 (100 exposed individuals). Under
feedback with 14 days of delay (blue), the case load as a result of
the outbreak is

∫
IT (t)dt = 2022, compared to

∫
IT (t)dt = 406 for

feedback with 2 days of delay (yellow). The bottom figure shows
the corresponding interventions. Reducing the delay also reduces
the cumulative interventions required to control the outbreak by
6.7 %. Right: The update frequency for interventions needs to be
appropriate for the policy design and objectives. The behaviour of
the feedback policy for 2 days of delay is similar when implemented
with daily updates (yellow), weekly updates (dotted) or updates
every two weeks (dash-dotted). Updates every four weeks (dashed)
introduce too much delay and cause oscillations.

day 0. As illustrated in Figure 4, reducing the delays in measuring the disease
burden from 14 days down to 2 days has the overall effect of reducing both the
cumulative case count by 80% and the average level of interventions v(t) by 6.7%.
Time delay is well-known to place fundamental (i.e., not addressable via controller
tuning) limitations on the performance of a closed-loop system. Thus, to the extent
possible, reducing or eliminating time delays will improve the performance of the
pandemic response.

Discretization of these policy updates can be implemented with little loss in effec-
tive control, as long as the delay in policy updates is not too long with respect to
the design objective (see Figure 4).
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3.3. Varying Public Compliance. The effectiveness of non-pharmaceutical in-
terventions has been hard to predict and may vary over time. Indeed, a key benefit
of using feedback control is that appropriate action can be designed without know-
ing the exact effectiveness of these interventions. We simulated the case where the
effectiveness of interventions was reduced by 0.075 on day 50. Even though we
did not adjust the control system in any way, pandemic control with feedback
adjusts the interventions to return the case count to the target (orange curves),
whether we allowed for a continuous range of potential interventions (left) or a
finite set (right). This robustness to changing public behaviour requires the use
of an integral controller (Ki), which takes the cumulative error into account. If,
however, policy decisions were based only on current counts (no integral control:
Ki = 0, holding proportional control Kp constant at 0.20), cases do not return to
the target (purple) and are more sensitive to delays in policy interventions (right).

3.4. New variants and vaccinations. The effect of new, more contagious, vari-
ants and vaccinations is illustrated in Figure 6, again using a controller that tracks
cases (measurement scenario 2 with a 2-day delay). A variant that is 2.5 times
more contagious is introduced 425 days into the pandemic, reflecting the arrival
of the Delta variant in March 2021 in British Columbia, with R0v = 7.5 [14, 15].
Vaccination, with 95% efficacy against transmission, is introduced according to
the vaccination rates in British Columbia6, starting in the week of December 19
2020. Vaccinations up to July 10th 2021 were taken into account, with a final
vaccination rate of 70.92% of the population. The susceptible population was re-
duced by setting the parameter pvac equal to the rate of first dose vaccinations
in BC, delayed by 21 days to account for the maturation of the immune system.
Importantly, the performance of the controller in Figure 6 was achieved without
any information about variants or vaccines, using measured case counts only. If
such variant information is available earlier, the peak may be further reduced by
augmenting the feedback using that information in a feedforward fashion, i.e., by
taking action earlier such that interventions are tightened or loosened proactively
in anticipation of the arrival of a variant or vaccine respectively.

4. Discussion

A well-designed feedback policy can help mitigate the impacts of unknown and un-
knowable sources of uncertainty during a pandemic, including uncertainty in the
dynamics, changing public compliance to recommended interventions, uncertainty
about parameter values for a new disease, uncertainty about which interventions
will work and how well, and the appearance of new variants or vaccines. All of

6https://health-infobase.canada.ca/covid-19/vaccination-coverage/, accessed on July 21 2021
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Figure 5. Feedback mitigates the effect of waning compliance to
health directives. Left: After 50 days, the effectiveness of interven-
tions decreases. Feedback control increases the level of interventions
accordingly to stop pandemic growth. To fully counteract the (in-
put) uncertainty, the cumulative error needs to be taken into account
in the policy update (yellow; i.e., through the integrator term Ki). If
not (purple), the pandemic is stabilized at a sustained higher level of
infections. Right: This effect is amplified if only a limited number
of intervention levels are available. The area under the curve not
using the cumulative error (purple) is 85 % higher than when the
cumulative error is used (yellow).

these impacts are at best only roughly understood when they occur. While accu-
rate models are more helpful than inaccurate models, these simulations illustrate
that feedback-based policies designed on simple linear first-order plus delay ap-
proximations can successfully control a much more sophisticated SEEIQR model
of the COVID-19 pandemic over a wide range of realistic conditions. Simulations
also show that those feedback policies essentially transfer the uncertainty and
variability in the case load to adjustments in the interventions. In nontechnical
terms, if the case load starts to increase (decrease) for any reason, then the policy
tightens (loosens) interventions in order to maintain the case load at its target
(setpoint). The uncertainty-mitigating properties of feedback are fundamental in
control theory.
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Figure 6. Feedback reduces the impact of the uncertainties in-
herent in a pandemic, such as the impact of vaccinations and new
variants. Left: A new variant that is 2.5 times more infectious
(R0v = 7.5, introduced after 425 days indicated by a light blue
dashed line) causes an initial increase in infections (dark orange
line). Feedback control compensates with stricter measures that
lead to extinction of the original strain (light line), while controlling
the new strain at the target (orange line). Center: The effect of vac-
cine roll-out (start indicated by a dark blue dashed line) of a priori
uncertain efficacy is mitigated by feedback, where restrictions are
reduced in response to observed reduced case loads. Right: Feed-
back can mitigate the combined effect of new variants and vaccine
roll-out. In this simulation, vaccination of 70.9% of the population
with a vaccine that is 95% effective is insufficient to stop the more
transmissible variant on its own. The feedback policy adjusts re-
strictions, and the number of infections remains controlled at the
target.

Throughout the world, disease impacts through case counts or hospital load have
been used to adjust restrictions. As discussed here, such feedback loops, using
current values only (Ki = 0), are less efficient at controlling a disease than integral
methods that also account for recent trends (6). Integration allows information
to accumulate that disease impacts are moving beyond a target, allowing earlier
action and improved control (Figure 5).

With feedback control, any significant trend away from a target leads to a shift in
policy, reducing variability in the quantity to be controlled (e.g., the case load).
As a consequence, an effective policy can be designed even when the dynamics are
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uncertain; there is no need to wait for the development of a high-fidelity model. Of
course, such models are useful to validate the performance of the feedback policy
in simulations. Furthermore, any changes that cause a shift in the controlled
variable (e.g., new variants, changing behaviour, vaccination) lead to automatic
adjustments in the interventions. Such adjustments reduce the total burden of a
disease, while also minimizing unnecessary restrictions.

As we have shown, delays in the gathering of information or in responding to
that information limit the performance of a pandemic controller. Indeed time
delays represent a fundamental limitation in closed-loop control systems [16]. An
illustration of this problem is the recent landing on Mars of the Perseverance
rover. The communication delay between Earth and Mars (7 min at the time
of the landing), led NASA to coin the phrase “7 minutes of terror” as the delay
made it impossible to control the descent from Earth. Time delays have to be
explicitly included when designing feedback, lest the system becomes oscillatory
or even unstable. In addition, as uncertainty in delays generally exists, robustness
to delay variation has to be built in as well. Minimizing delays in the chain of
measurement, reporting, decision making, and communication of restrictions is
thus of critical importance. With smaller delays it is possible to reduce both the
cumulative case counts as well as the cumulative severity of interventions. Rapid
antigen testing and wastewater testing are examples of methods that can detect
outbreaks early and so are important tools to consider in pandemic control.

For a new disease, an essential question is the translation of the control signal
obtained by the controller into concrete, feasible public health measures, as there
will initially be little known on how those map back to impact transmission (via
u(t)). Input from epidemiologists, public health experts and behavioural scientists
will be necessary to define and refine the array of measures that can be used to
control a pandemic with increasing stringency.

This work used one of the simplest control algorithms available, the PID controller
in its PI form as suggested in Stewart et al. [17]. Many other, more sophisticated
control algorithms have been proposed since the COVID-19 pandemic started. One
such class of control algorithms is the so-called model-based predictive control or
MPC, (see e.g. [18]), which is one of the most studied control methods for this
problem, see (e.g. [19, 20]). The theoretical advantage of MPC is that it can handle
constraints, e.g., hard limits on variables such as interventions or the number of
hospitalisations or ICU beds. However, in order to achieve that in practice, MPC
requires accurate models and measurements. Another potential advantage of MPC
is that, because it is a multivariable optimization-based control technique, the
performance index to be minimized can be tailored to include not only public
health indicators but socio-economic ones as well, thus allowing an adjustment
of the compromise between managing the pandemic and preserving the economy.
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Nevertheless, for broader understanding and widespread application, the simple
PI controller explored here brings many of the advantages of feedback control,
without needing detailed and accurate knowledge of disease dynamics, which is
often unknowable during a pandemic.

The control community was fast to realize that its tools could be used to help man-
age the pandemic, see e.g. [21] or [22]. Despite that, there has not been widespread
use of feedback control theory by the public health and epidemiology community
to guide decisions about when and how to enact public policies to manage the
pandemic. This may be due to the fact that most of that work was published
in control journals, typically not read by the public health community. Hence,
the main objective of this article: reaching out to the public health community
in order to raise awareness about control techniques and establish collaborations
between the two communities. We hope to have achieved some initial progress
toward this goal.

Appendix A. SEEIQR model for COVID-19 in British Columbia

Simulation results are based on a two-group compartmental SEEIQR model, devel-
oped to estimate the effect of social distancing in early 2020 in British Columbia,
Canada [5].

This model contains two groups, one representing individuals who are socially dis-
tancing and one representing individuals who cannot distance, for example due to
their profession. The model compartments represent the number of susceptible (S),
exposed (E1), pre-symptomatic and infectious (E2), symptomatic and infectious
(I), quarantined (Q), recovered or deceased (R) for each group. The recovered (R)
group does not affect infection rates and is omitted in this work.

The effect of vaccinations is included by reducing the size of the susceptible group.
Variants with a different reproduction number have been included by additional
compartments for each group, introducing a new pandemic drawing from the same
susceptible population. The S,E1, E2, I and Q compartments for the distancing
group are indicated with subscript d, compartments for the variant are indicated
with subscript v. This does not account for possible re-infections. The effect of
non-pharmaceutical interventions is introduced in this model through u(t), which
can vary with time and affects the transmission from and to the distanced group.
Public health policies are assumed to impact u(t) with u(t) = 0 representing
complete restrictions resulting in no transmission involving the distanced group
and u(t) = 1 representing no restrictions. For the original COVID-19 strain (with
(t) omitted for readability), the equations for the group who are not physically
distancing are:
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dS

dt
= −β[I + E2 + u(Id + E2d)]

S

N
− βv[Iv + E2v + u(Idv + E2dv)]

S

N

−mdS +mrSd − pvacN
S

S + Sd
dE1

dt
= β[I + E2 + u(Id + E2d)]

S

N
− k1E1 −mdE1 +mrE1d + eoutbreak

dE2

dt
= k1E1 − k2E2 −mdE2 +mrE2d

dI

dt
= k2E2 − qI − I/D −mdI +mrId

dQ

dt
= qI −Q/D −mdQ+mrQd.

(7)

The transmission parameter, β, is related to the reproductive number, R0, ac-
cording to β = R0

D+1/k2
and βv = R0v

D+1/k2
for the original strain and the variant

respectively. N is the size of the population, md and mr are the rates of move-
ment to and from the physical distancing compartments. These parameters are
assumed to be constant, with md/(mr +md) of the cases initially in the distancing
group. pvac is the fraction of the population vaccinated per day. k1 is the rate of
movement from the E1 to E2 compartment, k2 from the E2 to I compartment and
q from the I to Q compartment. D is the mean duration of the infectious period.
Outbreaks are simulated as imported cases (eoutbreak) in the E1 compartment.

Analogous equations for the group that is distancing are:

dSd
dt

= −uβ[I + E2 + u(Id + E2d)]
Sd
N

− uβv[Iv + E2v + u(Idv + E2dv)]
Sd
N

+mdS −mrSd − pvacN
Sd

S + Sd
dE1d

dt
= uβ[I + E2 + u(Id + E2d)]

Sd
N

− k1E1d +mdE1 −mrE1d

dE2d

dt
= k1E1d − k2E2d +mdE2 −mrE2d

dId
dt

= k2E2d − qId − Id/D +mdI −mrId

dQd

dt
= qId −Qd/D +mdQ−mrQd

(8)
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D k1 k2 q R0 Delay R0v md mr

Nominal 5 0.2 1 0.05 3 14 7.5 0.1 0.02
Standard deviation 1 0.04 0.2 0.01 0.6 4 NA 0 0
Minimum 1.97 0.10 0.41 0.024 1.04 4 NA NA NA
Maximum 8.10 0.32 1.57 0.0784 5.18 28 NA NA NA

Table 1. Nominal model parameters and the range of values used
to conduct Monte Carlo simulations. At the beginning of each of the
400 realizations, parameters were drawn from a normal distribution
with average equal to the nominal values and standard deviations as
indicated. The resulting models were used to simulate the pandemic
with feedback control.

The equations for the new variant are driven by the introduction of one or more
variant cases evariant(t) at a specified time t:

dE1v

dt
= βv[Iv + E2v + u(Idv + E2dv)]

S

N
− k1E1v −mdE1v +mrE1dv + evariant

dE2v

dt
= k1E1v − k2E2v −mdE2v +mrE2dv

dIv
dt

= k2E2v − qIv − Iv/D −mdIv +mrIdv

dQv

dt
= qIv −Qv/D −mdQv +mrQdv

dE1dv

dt
= uβv[Iv + E2v + u(Idv + E2dv)]

Sd
N

− k1E1dv +mdE1v −mrE1dv

dE2dv

dt
= k1E1dv − k2E2dv +mdE2v −mrE2dv

dIdv
dt

= k2E2dv − qIdv − Idv/D +mdIv −mrIdv

dQdv

dt
= qIdv −Qdv/D +mdQv −mrQdv

(9)

The nominal parameters used in the simulations are given in Table 1, as well as
the range of parameters for the Monte-Carlo simulation presented in Section 3.1.

Appendix B. Controller tuning: Simple internal model control
(SIMC)

In this work, we use a simple proportional-integral (PI) feedback controller (6),
tuned using SIMC (simple internal model control). PI and PID (proportional-
integral-derivative) controllers are used in the majority of industrial control appli-
cations, and a multitude of tuning methods exist. The SIMC rules were developed
for process control applications, and presented as “Probably the best simple PID
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Figure 7. Left: Response of z(t) of approximate model to a step
change in v(t) from v(t) = 0 to v(t) = 1. Right: Response of dz(t)/dt
to a step change in v(t) from v(t) = 0 to v(t) = 1.

tuning rules in the world” [7]. Process control applications often involve com-
plex and nonlinear processes for which accurate models may not exist. The SIMC
rules offer a practical solution for such problems, where a simple linear model is
used to approximate a complex system and to identify appropriate parameters for
feedback control. COVID-19 exhibits complex, nonlinear behaviour, yet can be
approximated with a simple approximate model, and therefore the SIMC method
can be used to tune a feedback controller.

The first step in SIMC is to find a linear first- or second-order plus time delay model
that approximates the system dynamics. Section 2.2 describes the proposed model
approximation, which is then given by:

(10)
d2z(t)

dt2
= A

dz(t)

dt
+B · v(t− d)

The parameter values, A = −0.5787 and B = 0.1572, are derived using a least
squares approximation to the nonlinear SEEIQR model (7) with nominal param-
eters in Table 1. These parameters are thus tuned to this pandemic model for
British Columbia. The response of this approximate model to a step change in
v(t) from v(t) = 0 to v(t) = 1, and its relation to the parameters A,B and d, is
illustrated in Figure 7. The parameters A,B and d determine the time it takes
for the system to respond (the delay d), the time constant to reach the constant
slope, τ2 = −1/A, and the slope of the response, also referred to as the gain of the
system, k = −B/A.

The second step in SIMC involves defining the controller (the function that maps
z(t) to the intervention variable v(t) = u(t) − u0), with controller parameters
determined by the approximate linear dynamics. For a system where the time
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delay d is larger than the time constant τ2, the SIMC rules [7] recommend a
proportional-integral control policy (6), repeated here for readability.

(11) v(t) = Kp · e(t) +Ki ·
∫ t

t0

e(τ)dτ

The controller parameters can then be calculated according to:

θ = d+ τ2 = d− 1/A

Kp =
1

k

1

τc + θ
=

−A
B

1

τc + θ

Ki =
Kp

4(τc + θ)

(12)

The SIMC tuning rules introduce a single tuning parameter τc that defines the
aggressiveness of the controller, by which we mean that a small value of τc corre-
sponds to an aggressive controller with a fast speed of response, while a large value
of τc corresponds to a more conservative controller with a slower response, better
stability and increased robustness to uncertainty in the model. In this work, we
found that τc = 30 days for feedback with a long delay (d = 14 in Scenario 1) and
τc = 15 for a 2-day delay (d = 2 in Scenario 2), represented a reasonable design
tradeoff.

Appendix C. Analytical results: SIR model

The linearization described in Section 2.2 is an approximation of the dynamics of
the nonlinear SEEIQR model (Appendix A). For the special case of a simpler epi-
demiological model with an SIR structure with only one group (i.e. all individuals
are socially distancing), this linearization is exact.

The SIR model, including social distancing measures, can be described as:

dS

dt
= −u(t)βI(t)S(t)/N,

dI

dt
= u(t)βI(t)S(t)/N − γI(t),

dR

dt
= γI(t),

(13)

where S(t), I(t) and R(t) are the susceptible, infected and recovered states respec-
tively, N the total population, β the transmission parameter and γ the recovery
rate. The effect of social distancing is introduced as a factor u(t) that affects trans-
mission, i.e. transmission at time t equals β(t) = u(t)β, with u = 1 corresponding
to no distancing and u = 0 corresponding to reduction of transmission to 0. For
simplicity of notation, we assume the measured variable yc(t) = p · I(t).
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Without social distancing, this nonlinear SIR model can be linearized by assuming
a constant susceptible population (S(t) = S0), or normalized constant susceptible
population (S0/N = 1). The normalized infected population is then given by:

(14)
dI

dt
= u(t)βI(t) − γI(t),

The input-output relation between interventions u(t) and yc(t) = p · I(t) remains
nonlinear.

Assuming that a constant fraction p of the active infections is detected, the trans-
formed variable z(t) = ln(pI(t)) is:

(15)
dz(t)

dt
=
d ln(pI(t))

dt
=
d (ln(p) + ln(I(t)))

dt
=
d ln(I(t))

dt
.

Equation 15 demonstrates why feedback is insensitive to the proportion, p, of de-
tected cases. This result does not depend on the model structure (SIR or SEEIQR)
and is essential for decision making and for updating v(t) and u(t) appropriately,
given incomplete information. It does not matter what proportion of cases is cap-
tured in the feedback, and it is not even necessary to know what the captured
proportion is, because only proportional changes in the measured variable matter.

The proposed log transformation for the SIR model, zc(t) = ln(yc(t)), and affine
transformation v(t) = u(t) − u0 linearize the input-output model:

dzc(t)

dt
=
d ln(I(t))

dt
=

1

I

dI(t)

dt
= u(t)β − γ = v(t)β,(16)

with u0 = γ/β. This result is now insensitive to scaling.

For this (one group) SIR model, the linearization is exact and the linearized model
corresponds to a first order model. In a more complex epidemiological model
such as the SEEIQR model, the linearization is approximate due to the exposed
compartment, which also introduces additional dynamics that can be linearized
by a lag as described in Section 2.27. The SEEIQR model considered in this study
contains two groups, which introduces a second source of non-linearity through the
factor u(t)2. The simulation experiment included a series of step changes to the
intervention u(t) to ensure it covers a representative range of responses to which
we fit the linear model.

When solving the differential equation described by (16), it follows that the number
of infections at any time tc is a function of the initial case count and the cumulative
(integral of) interventions up to time tc. Let L0 represent ln(I0), with I0 the number

7Equation (5) is equivalent to A2
d2z(t)
dt2 = A1

dz(t)
dt + B · v(t − d) with A2 = 1 and A1 = A,

while (16) corresponds to A2 = 0, A1 = −1 and d = 0.
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of infected individuals at time t0. The number of infected individuals at time tc is
then given by:

(17) ln(I(tc)) = L0 +

∫ tc

t0

v(t)β dt.
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