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Abstract

We present a method for rapid calculation of coronavirus growth rates
and R-numbers tailored to the publicly available data in the UK. The
R-number is derived from time-series of case data, using bespoke data
processing to remove systematic and errors and stochastic fluctuations. In
principle, growth rate can be obtained by differentiating the reported case
numbers, but in fact daily stochastic fluctuations disqualify this method.
We therefore assume that the case data comprises a smooth, underlying
trend which is differentiable and a noise term. The approach produces,
up-to-date estimates of the R-number throughout the period of data avail-
ability. Our method is validated against published consensus R-numbers
from the UK government, and shown to produce comparable results. A
significant advantage of our method is that it is stable up to the most re-
cent data, this enables us to make R-number estimates available over two
weeks ahead of the published consensus. The short-lived peaks observed in
the R-number and case data cannot be explained by a well-mixed model
and are suggestive of spread on a localised network. Such a localised
spread model tends to give an Rt number close to 1, regardless of how
large R0 is. The case-driven approach is combined with Weight-Shift-Scale
(WSS) methods to monitor trends in the epidemic and for medium term
predictions. Using case-fatality ratios, we create a narrative for trends in
the UK epidemic increased infectiousness of the alpha and delta variants,
and the effectiveness of vaccination in reducing severity of infection.

1 Introduction

During the coronavirus epidemic, the so-called ”R-number” has become one of
the best-known concepts from epidemiology. It can be defined as ”the average
number of onward infections from each infected person”. It is conventional to
define R0 as the R-number at the outset of an outbreak, and Rt as its value
some time t later. The significant feature is that an R-number greater than
1 implies a exponential growth in case numbers, whereas less than 1 implies
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exponential decay. Typically Rt < R0 due to acquired immunity or behavioural
changes reducing spread.

1.1 Defining R

In a real epidemic, this conceptual definition of Rt is ambiguous: it may refer to
people infected at time t; or to people infectious at time t; or to the rate of in-
fection at time t1. The first two definitions incorporate infections in the future,
and therefore under these definitions Rt is defined in that way is unknowable
at time t. If using the third definition, the conversion from growth rate to R
depends on some model for how the epidemic is spreading, for example ”ex-
ponential growth” which is generally true only for a homogeneous, well-mixed
population. If the outbreak is spreading in space, then infectors may come from
a different population from the infectees, and the epidemic will be limited by
diffusion and will not be exponential2.

Further ambiguity comes from the term ”average”. This could refer to either
the arithmetic or geometric mean. The average might be taken over the whole
population, or only over those who are actually infected.

Any epidemic model which does not represent each individual person cannot
simply count the number of subsequent infections per person. Thus definitions
of R are usually related to growth rate. Assuming that the of number of new
infections is proportional to the number of currently infected people, the growth
rate is:

dI(t)

dt
/I(t) =

d ln I(t)

dt
= [(Rt − 1)/τ ] (1)

which introduces a timescale τ , similar to the time between infections and
therefore referred to as the generation time3. This definition of Rt shares im-
portant features with other definitions, in particular that R = 1 is the critical
value separating a growing and diminishing outbreak. Its advantage is that it
does not depend on future events.

Our approach to R is even more pragmatic. We define R as a quantity based
directly on available data which satisfies the constraint that R = 1 is the critical
value and reproduces the rate of growth of the epidemic. In practice, this means
using the equivalent to equation 1 using reported positive PCR test data (cases,
C(t)) in place of infection data. This leads to a different Rt, defined by

dC(t)

dt
/C(t) =

d lnC(t)

dt
= [(Rt − 1)/τ ] (2)

Not all infections will be reported, and reported cases may include false
positives. A vital feature of this equation is that even if only a fraction of in-
fections are reported, that fraction cancels out: Rt is independent of systematic
underreporting.

1.2 Using R derived from case data for policy

The R number is often used by policymakers to trigger interventions. It is
particularly useful because it is a leading indicator: R can been seen to

1In which case it is equivalent to growth rate.
2e.g. It could be modelled as a reaction-diffusion process in two dimensions, for which

cases grow quadratically in time
3Another term used ambiguously in the literature
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exceed the epidemic value R = 1 long before cases, hospitalizations and deaths
reach critical levels. Local measures of R enable governments to use well-focused
interventions to achieve maximum disease suppression with minimal disruption.
However, care must be taken that the correct measure is being used.

The growth rate is determined by infectees, but many policies are aimed
at infectors. If these groups are different, ignoring this distinction can lead to
misapprehensions. For example, a rural area may have R < 1 such that cases
are entirely driven by incomers from an urban area. If the I(t) in equation 1 is
dominated by incomers, the R value calculated from equation 2 will reflect the
R of the urban area, and unaffected by local measures for the suppression of R
4.

To illustrate the effect of mixing on R, we examine a two population SIR
model. Consider an urban population 1 which lives mainly in a high R-area
(R1 = 2), the rural population 2 which lives mainly in a low R-area (R2 = 0.5).
R1 and R2 follow the normal definition of R within the SIR model based on
contact between individuals. For simplicity, we assume the populations are of
equal size. The urban population spends some fraction x of its time in the rural
area.

di1
dt

= (1− x)(R1 − 1)s1i1 + x(R2 − 1)s1i2 − i1

di2
dt

= x(R1 − 1)s2i1 + (1− x)(R2 − 1)s2i2 − i2

where the populations s, i, r are fractions of the total, and ds1
dt and dr1

dt follow

trivially from the terms in di1
dt .

Assuming that the measurable quantity is the number of cases i(t), figure 1
shows the results of applying equation 1 to infer Rt. Two cases are considered:

With x=0, the populations are unmixed: in the urban population s1 is
reduced until herd immunity is obtained; in the rural population the s2 ≈ 1 and
initial infection dies out exponentially.

A modest 5% mixing is enough to change the picture completely: rural case
numbers are driven by incomers, and the measured R-numbers of the two regions
become equal.

Although framed in terms of geographical populations, the same principles
apply to any coupled subsystems with different levels of infection, e.g. age
groups, vaccinated/unvaccinated, isolating/non-isolating. The R-number in-
ferred from cases will always be due to the subpopulation with more cases, not
the subpopulation being measured.

The relevance from a policy viewpoint is that measures imposed to suppress
R2 serve no purpose in suppressing the epidemic, despite the inferred R in that
region being well above 1.

Infection rates are also linked to seasonality, and even to weather - contact
rates will change if people spend more time indoors. This is a real effect, but
weather-induced fluctuation will be high-frequency and indistinguishable from
noise. Policy should not depend on previous weather, so ignoring weather as a
factor is appropriate.

4Changes in calculated R will exhibit some delay from the exponential decay of R < 1,
and local suppression measures will speed this decay.
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Figure 1: Detectable R-numbers from coupled SIR model. Both i(0)=0.00001.
Red lines are Rt derived from population i1, black lines relate to populations i2
Solid lines show no mixing (x = 0), dashed lines have (x = 0.05). The time axis
is in units of the generation time.
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1.3 R in the UK

Here, we attempt to define and model the R-number in the UK based on con-
temporary data. We constrain ourselves to use only publicly available data, in
particular the case data from the government website[1] and similar data from
the Scottish government[2]. Our approach is pragmatic - we do not assume it
to be in any sense “more accurate” than other authors: indeed, our expectation
is that it will be less accurate due to the data constraints and the simplicity
and transparency of the model. ”An 80% right paper before a policy decision is
made it is worth ten 95% right papers afterwards, provided the methodological
limitations imposed by doing it fast are made clear.”[3]

Our model provides R estimates some two weeks ahead of those published
by the UK government[1]. To examine whether our method is at least ”80%
right” we will benchmark our predictions by hindcasting against “gold standard”
model-based work contributing to government policy.

In most epidemic theory models, Rt is uniquely defined by the rate of growth
of the number of infections of the epidemic.

In the second wave we had reasonable data for the number of cases as a
function of time from positive PCR tests C(t). This is significantly less than
the number of infections, as measured by the Zoe and ONS random/weighted
cohort survey I(t), but they they are proportional which, as already discussed,
is sufficient for R calculation. There is also a delay between infection and test
of approximately 5 days, such that any estimate based on case data will be
out of date. We use reports of the first positive test based on PCR by sample
date - the ONS cohort survey typically has a larger time between infection and
reporting, so is less useful for up-to-date surveillance.

Using case data rather than the cohort study introduces an important bias,
towards a group which has above average level of infection. If one imagines
every individual has their own R-number, then the measured R-number is not
the average of those. This is because the people with higher individual R-
numbers are more likely to be infected, and therefore more likely to be included.
As an example, consider two unconnected cities with R-numbers 1.5 and 0.5
respectively - only the first suffers an epidemic and contributes to measured
cases. Thus the measured average R-number across the two cities is 1.5.

Another important issue is that because growth is exponential, removing
noise using simple averages of R can be misleading. As an example, suppose
the “true” R rate across two generations is 1, such that the third generation
has as many cases as the first. Now, suppose due to noise the measured R rates
are 2 and 0.5 such that, again, the third generation has the same number of
cases. This is all consistent, but applying the average R (1.25) would wrongly
suggest a 56% increase. A harmonic mean gives a correct result. In general,
using geometrically averaged R numbers in place of noisy data always implies
more cases than are present in the data.

2 Methods

2.1 Inference from the future and the Second Law

We have previously used a case-driven kernel compartment model (WSS) to
track the course of the epidemic. In this method, each reported cases on day t
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Figure 2: Raw official data for cases for England. A strong weekly oscillation
is evident. Although it is plausible that more infections happen on weekdays
when people are at work, we will assume the oscillation is from the amount of
testing
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generates a probability distribution into other compartments in the future. The
simplest case is a two-compartment model with compartments being cases C(t)
and deaths D(t), in which we write:

D(t) =

∫ t

∞
C(t′)gC|D(t− t′)dt′ (3)

In which gC|D(t) is the distribution of times between reported case (i.e.
positive test) and death, has been measured from case data to follow a Gamma
distribution[4] this can be written as the probability of death on day t given
case on day t′ p(D(t)|C(t′)).

We will be using case data to infer R. There is some distribution of times
between infection, symptoms appearing and positive testing. It may appear that
one could apply Bayes theorem using the ”probability that infection occurred
on day t, given a positive test on day t + t′” to infer infections from the case
data.

However, to do so violates an even more fundamental principle - the Second
Law of Thermodynamics - the relevant form of which states that for an irre-
versible process, entropy (in this case uncertainty about dates) must increase.

¬(I(t) =

∫ ∞
t

C(t′)gI|C(t+ t′)dt′ (4)

In the present case, a sharp rise in R (e.g. from lifting of restrictions) will
produce an increase in cases spread across several days. Following the second
law, the sharp feature should precede the broad one.

But by projecting the case data backwards in time by applying the distri-
bution of time lags, the features in R will be spread out, giving an implausible
situation where sharp features in the case data arise from slow changes in R.

Thus R defined on cases (eq. 2) will be more slowly-varying than R defined
from infections (eq. 1).

We note that equation 4 can be read as ”Bayes theorem cannot be applied
backwards in time to an irreversible process”. The problem lies in assuming that
gC|I(t− t′) is independent of t′. In some previous work the ”reducing entropy”
problem is avoided by using strong low-entropy priors for the infection-based R,
e.g. insisting that it is piecewise constant[5].

2.2 What is the case data?

The UK case data (Fig. 2) entails daily reports of order 104 positive tests. We
assume this will be subject to day-to-day statistical stochastic noise5

√
C(t) ≈

100, and variations in reporting depending on day of the week so we write the
raw data as:

C̃0(t) = C(t)(1 + a(t)) +
√
C(t)η (5)

Where C̃0(t) is the reported data, defined only at integer t, C(t) is the
underlying trend, a(t) is a systematic reporting error and η is a random variable.
C(t) is a differentiable function, but η is not. To differentiate this function

5This assumes independent infection events, if superspreading events are significant the
noise will be larger, although some smoothing is already provided by the distribution of times
from infection to test
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requires methods from stochastic calculus, but for practical purposes we move
directly to algorithms to deal with the data. In practice, we shall require that
the R-number be defined in such a way that, if we re-create the epidemic by
integrating R through time, it must reproduce the actual epidemic size.

2.3 Identifying and eliminating the systematic errors, a(t)

We identify four courses of systematic error in the data:

• False Positives and Negatives

• Underreporting at weekends, and associated catch-up

• Underreporting on holiday, and associated catch-up

• Delayed reporting at the end of the time series

• Misreporting 6

The false positive rate was identified from the case fatality rate (CFR)[6] as a
significant fraction of reported cases in September 2021, without which the CFR
would have been unreasonably low. It was estimated to be approximately 0.4%.
This is much higher than previously assumed[7] based on the total fatality rate
in the summer. The cause of this discrepancy may be cross-contamination[8].
The amount of testing, and by implication the number of false positives, has
varied relatively slowly compared with the changes in C(t).

In terms of R number calculations, the false positive rate, as with anything
which means that a constant fraction of cases are not reported, has no effect.

Systematic underreporting of cases at the weekend is evident in the data.It
is systematic, so we cannot treat as an enhanced stochastic term. To eliminate
this, we make an assumption that across the epidemic the number of infections
is independent of the day of the week. Specifically, we rescale the cases by a
factor:

wj =
7N∑
i

C̃0(i)/
N∑
i

7C̃0(7i+ j)

With N the number of weeks of data. This means that the total number of
cases on Mondays is reset to be equal to the total on Sundays, etc. It removes
an obvious source of systematic error.

Across the Christmas period the weekend effect breaks down, and there are
even larger fluctuations in the case data. Hence, over the 12 day period from
day 153-164 (Dec 24th-Jan 4th) we fit a straight line through the cases data,
constrained to preserve the total number of cases.

We also investigated a rolling 7-day average. This gives some smoothing,
but systematically flattens peaks and fills troughs in the data. The calculation
was also repeated by taking seven separate streams of data, one for each day,
calculating R based on seven day changes, then averaging these values.

6The reported number of cases for England is approximately 1% higher than the sum of
the regions, this is because of cases which cannot be assigned to any region
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There is a short delay between positive test and reporting. Using historical
data we found this to be systematic, which allows us to make even more up-to-
date measurements. Within Scotland, we find ratios between cases reported for
the three most recent days and the final totals for those days. These are of 2.9
(±0.2), 1.05 (±0.01), and 1.005(±0.002) respectively.

The data with these time-dependent systematic errors removed is shown in
Fig 9 denoted by:

C̃(t) = C(t) +
√
C(t)η (6)

Henceforth, we will use this C̃(t) as case data.

2.4 Stochastic Differentials

If we had a differentiable C(t), we could evaluate R as defined in equation 2.
Unfortunately, the data is C̃(t), not C(t) - it is only defined at integer t and the
stochastic noise is still present. Nevertheless, we can integrate the equivalent of
Eq, 2 and calculate R̃, the ”R-number with stochastic noise”.

We make a further assumption that Rt and τ are slowly varying in time, so
that we can ignore their time-derivatives. Integrating equation 2, we find that∫

d(ln C̃t) = (R̃− 1)∆t/τ (7)

To perform the integral we should use stochastic calculus, and this introduces
some ambiguity: Case data is available daily, so we can take the discretized form
of this equation using the Stratonovitch form:

R̃(t) = 1 + 2τ(C̃(t)− C̃(t− 1)/(C̃(t) + C̃(t− 1)) (8)

Or its Ito Calculus equivalent

R̃(t) = 1 + τ(C̃(t)− C̃(t− 1)/C̃(t− 1) (9)

Alternately, we can define R̃ from the exponential form

R̃(t) = 1 + τ ln[C̃1(t)/C̃1(t− 1)] (10)

The data is discretised with a step of one day: we also investigated elimi-
nating weekend effects by increasing the step to seven days

R̃(t) = 1 +
τ

7

7∑
n=1

ln[C̃1(t− n)/C̃1(t− n− 7)] (11)

In each case, we write R̃(t), noting that R̃(t − 1
2 ) is more appropriate. All

the approaches above were tried, and terms of final results for R, we found little
difference between any of these methods. However, if one attempts to regen-
erate the C(t) using these R̃(t) by integrating eq.2, then only the exponential
discretisation (10) reproduces the time series correctly.
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2.5 Estimating the uncertainty in R

However R is calculated, it involves sampling noisy data over some time, during
which C(t) itself is varying. Early models assumed that R is constant between
changes in policy interventions[5]. If true, this assumption would allow the
fitting errors to be calculated precisely, but there is strong evidence that R(t)
varies steadily in time due to varying compliance, increased post-infection and
post-vaccination immunity and the rise of variants. If R is varying in time,
there is a conflict between reducing the stochastic error by sampling over many
days, and having an up-to-date estimate. We postulate that R(t) is not only
differentiable, but also all its derivatives are slowly varying in time. This means
that we can reduce uncertainty and make more up-to-date measurements of R by
estimating dR

dt and higher derivatives, which is best done using some smoothing
function (see section 2.8).

Since C(t) grows exponentially with R(t), it will be more rapidly varying,
and because of variable time from Infection to Testing, I(t) will vary even more
rapidly. The case data actually defines a growth rate, which is dedimensionalised
by the generation time τ . Our calculated (R − 1) is directly proportional to τ
and so probably the largest uncertainty in R come from the uncertainty of τ .
We take a value of τ = 5 days.

2.6 Do cases rise exponentially?

While R is a well-defined concept in terms of onward infections, the idea of
”Growth rate” assumes an exponential process. We consider three models for
predicting the case data C(t):

• Same as yesterday: C(t) = C(t− 1)

• Exponential Growth C(t) = C(t− 1) ln[C(t− 1)/C(t− 2)]

• Linear Growth C(t) = 2C(t− 1)− C(t− 2)

Averaged across all UK regions, we find that ”Same as Yesterday” gives the
smallest RMS and mean absolute error, with linear growth about 1% better
than logarithmic. The effects of noise are significant, but there is no evidence
that logarithmic growth gives the best short-term prediction of growth.

2.7 What value for R causes an epidemic?

In the SIR model, we have exponential growth and any value for R0 greater
than 1 causes an epidemic in which a finite fraction of the population becomes
infected. The ODE approach to SIR assumes complete mixing of the population,
but network effects[9, 10, 11, 12] can significantly raise the threshold for R to
cause an epidemic. The exact form of the UK contact network is not known,
but there are some well-defined mathematical approximations which can be
implemented in an autonome-based model, and it has long been known that
allowing spatial variation can affect behaviour in many contexts[13, 14, 15].

We simulated a stochastic agent-based model of SIR-autonomes7 with dif-
ferent types of connectivity:

7This is the obvious stochastic cellular automaton generalization of SIR. We first coded
it for the DAP computer installed at EPCC 1984, when it was already a well-established
demonstration application for SIMD archetecture
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• Random connections on a fixed network

• Regular lattices (square, triangular, cubic)

• Small world lattices, with random long-ranged connections added to a
regular lattice

It is natural to interpret the lattice as a division of people in space, with
contact most likely with those living nearby. However, other interpretations
are possible, for example age group: the POLYMOD[16] shows that contact is
primarily with people in one’s own age group.

Each simulation is seeded with 10 infected sites, and transitions from S → I
or I → R are implemented according to the Gillespie algorithm[17]. Once
the network is defined, this model has only one parameter, R0, the ratio of
attempted infection rates 8 to recovery rate.

It is evident from Fig.3 that R0 = 1 is a poor predictor of whether the
infection triggers an epidemic. The ODE result of a threshhold at R0 = 1 is re-
covered for a fully connected network. Less densely connected random networks
require dozens of connections per node to generate an epidemic with R0 = 1.
For the sparser networks the total number of infections can be significantly less
than the total population. For two dimensional lattice networks the thresh-
hold for an epidemic is R0 = 2. This can be understood by noting that the
SIR-lattice can be mapped to a reaction-diffusion equation, which generates a
travelling wave[18] moving at constant velocity - in the SIR context autonome
behind the wave are predominantly I and R, while ahead of the wave they are
S. New infectees typically lie on the boundary between previously infected and
fully susceptible regions - so from early in the epidemic approximately half their
neighbours are S.

The R-number for these lattice models is shown in Fig.3b,c). These scatter-
plots come from many hundreds of different simulated epidemics with an order
of magnitude variation in 1 < R0 < 10. Each point represents the value of Rt

which would be measured in the epidemic. Individual epidemics are not tracked,
but two distinct behaviours are evident: either the epidemic does spread, and
Rt drops to zero after some time, or it does spread across the system.

Remarkably, for any R0 large enough to generate an epidemic, Rt tends to
1, after some transient time. This is completely different from an ODE-based
well-mixed SIR model, for which the value of Rt decreases steadily with time
with no special behaviour as it passes through 1 (Fig.1).

The lattice model neglects long range connections: we introduce these with a
”Small World” network in which additional random connections to anywhere in
the system are added to the 8 neighbours. The R-numbers for such a network
with one long-range connection per site are depicted in Fig.3c). The plot is
broadly similar to Fig.3b), although notice the difference in the axes. We see
that

• The timescale of the epidemic is very much reduced by the long range
connections.

• The high R0 epidemics retain a high value of R because the epidemic is
over before the transient ends

8which fail if the target is already in state I or R
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• Intermediate values of R0 still tend to R(t) = 1

2.8 Smoothing the data

This R̃(t) is the required R(t), plus a term arising from the stochastic noise.
Within the UK, case numbers are typically of order 10000, so we can expect

stochastic noise of
√

10000, i.e. about ± 1% error in daily growth rate (which
is typically of order 1%). Thus we can expect that direct calculation of growth
from single day’s change, even with systematic error removed, will have 100%
uncertainty. Fig 4 shows that the noise is indeed dominant, and across the
pandemic the standard deviation of R̃(t) is about 0.6. This value is confounded
by the actual RMS variation

√
〈(R(t)− 〈R(t)〉)2〉 = 0.16, and by any slow-

varying systematic errors such as the effectiveness amount of testing. . We
now make our final approximation, smoothing the data to eliminate the high-
frequency noise in R̃ while retaining the smoothly varying signal R(t).

Various standard methods of smoothing the data were considered: weekly
averaging, LOESS, spline fits with various number of splines, and independent
spline fits starting and finishing at, or 5 days after, imposition or removal of
lockdown, to account for discontinuity in R(t) when policy changes. Where
case numbers are low, the stochastic term is larger relative to the signal, so all
fits are weighted the square root of the number of cases.

All smoothing methods give similar results, so we chose to use splines, and
applied them to the various methods of evaluating R: eq.9; eq. 10; mean R
across the entire period (1.04); C(t) from eq.6 by smoothing C̃. Figure 4 shows
that all smoothing methods appear to give similar variation in R. However,
if one attempts to reproduce the trajectory of the case numbers using these
different measures small differences in R are magnified.

3 Validation

3.1 Sensitivity of R of R to fitting methods

In addition to the type of smoothing applied, the amount of smoothing leads
to variations in predicted R. Fig.5 shows independent piecewise fits to periods
between lockdowns and unlockings. Curiously, the discontinuous piecewise fits
are found to still give a nearly continuous behaviour, the one exception being
around Christmas and New Year where the reporting data is erratic and does
not follow the weekly variations. So, we can reasonably assume that R(t) is a
slowly varying function, and that dR/dt is a continuous function which can be
used to improve the estimate of R(t) beyond the average over the smoothing
period and into the future. All of these features mean that the uncertainty in
our R(t) will be much lower that the residuals typically calculated by fitting
codes, although without knowing exact functional forms, it is impossible know
by how much.

A final check on the uncertainties in the method comes from comparing the
R-value obtained by the different smoothing methods, and different smoothing
periods (Figure 5). Reassuringly, these are all consistent within ±0.1.
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Figure 3: Figure shows (a) the size of the final epidemic for various network
structures and values of R0. Legend gives the different lattice structures and the
number of connections each has. To obtain the given R0, infection probability
per link is lower in more highly connected lattices. Epidemics spread on the two
dimensional lattice only for R0 >, the smallest values appearing for the densest
networks. (b) Scatterplot of measured R(t) = −∆S/∆R from simulations with
8-neighbour square lattice, 500,000 sites, R0 ranging from 1 to 10. 20 simulations
at each 0.1 increment in R0 are shown. Timescale has recovery rate set to 1.
Other lattices are similar. (c) Small-World version of (b) with 8 neighbours plus
one added long range connection.
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Figure 4: (top) R values calculated from various methods. Points: R̃ eq.10,
Violet: Ito integration +smoothing of R̃, Blue: log integration +smoothing of
R̃, Red: smoothing of C̃ + log integration , Green: average value. (bottom)
Modelled case numbers using these R-numbers from October 2020, with initial
case numbers chosen to give correct total number of cases. Black circles show
actual data, which R̃. reproduces by construction.
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3.2 Validation by Reverse-engineering the epidemic

.
Since the R-number is the gradient of the case numbers, it should be possi-

ble to recreate the case number data using only the R-number and the initial
caseload. If C̃(t) were a continuous variable, this would be straightforward,
but if we smooth C̃(t) or R̃(t), then we lose information because the smoothing
process is not reversible.

Figure 4 compares with the actual number of cases with those regenerated
from R-numbers. One sensible constraint is that, whatever we do, the integral
on C(t) - i.e. the total number of cases - should be correct.∫

C0 exp((R(t)− 1)t/τ =

∫
C̃(t)dt

This is done by adjusting C0, the initial number of cases, which allows recre-
ated trajectories from different smoothing methods to be compared on an equal
footing.

Using R̃(t) exactly reproduces the data, but all smoothed versions of R̃(t)
overestimate the growth rate - as evidenced by the second peak being much
higher than the first when the total number of cases is set equal. Smoothing
the case data first, then calculating R from smoothed case data, gives a better
fit, with the feature somewhat broadened for reasons similar to Section4.

We note that the error is in part because the form of the noise is not known.
So for example, if we assume a form for η such as white noise or Gaussian
random variable such that: ∫

η(t)dt = 0

Then it trivially follows that ∫
exp(η(t))dt 6= 0

Since the R-number appears in the exponential of the epidemic growth, it follows
that the ”noise” gives a non-zero contribution to the growth rate which should
or should not be incorporated in R(t), depending on R’s precise definition.

We see that stochastic integration using Ito’s method gives the worst results,
giving a systematic overestimate of R which equates to too-high case number at
long times. Integration using log cases performs better. The better reproduction
of the epidemic suggests that it is better to treat the noise in C̃ rather than R̃

3.3 Validation by appeal to authority

R is not directly measurable, so there is no way to empirically validate these
results. We therefore compare our predictions to those from more sophisticated
epidemic models from the UK government’s SPI-M[19] committee 9. UK Gov-
ernment data about R is derived as a weekly consensus across many different
methodologies and groups. 10

9https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-
modelling

10https://www.gov.uk/government/publications/reproduction-number-r-and-growth-rate-
methodology/reproduction-number-r-and-growth-rate-methodology
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Figure 5: R-numbers for England. Black points are our central estimate, based
on piecewise fit between major locking and unlocking events. Coloured lines
(red, green, blue, violet) show LOESS smoothed R-numbers from Eq.10 with
span= 0.05, 0.1, 0.2 and 0.3 respectively Black lines are the published bounds on
R data from SPI-M consensus: to obtain this agreement, the consensus values
are assigned to a date 16 days before publication.

It is clear from the figure that our R-estimates are compatible with the
reference values published 16 days later. This is reasonable, since published data
is stated as being an average over the preceding weeks. The SPI-M consensus is
reached during the week prior to publication in advance of the published data
and are therefore available earlier to policymakers. Nevertheless, our direct
method is capable of providing reliable values well in advance of the currently-
published values.

A definitive empirical measurement of R is lacking, so it is possible that both
simple and detailed models are similarly wrong. Regardless, our method has
been demonstrated to be an excellent predictor of future published results.
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Figure 6: R-numbers for UK nations and English regions, shading is the mean
squared error associated with the smoothing (here, LOESS with span = 0.3).
December and June peaks associated with the alpha and delta variants are
evident in all regions. Blips in September and March correspond to low case
numbers, and may be artifacts.
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Figure 7: WSS R-number prediction method applied to case data split by five-
year age group, p indicating the youngest yeargroup. Data is averaged across
all England, smoothed using LOESS span=0.3, shading is uncertainty based on
local fit. See main text explaining why this is a scaled growth rate and not a
conventional R-number.
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4 Implementation and Results

4.1 Code and subdivisions

R-calculation is implemented by the WSS[20] codebase, which is publicly avail-
able and written in R. WSS use imported data updated daily, and executes
within minutes on a single processor.

The WSS code generates R-numbers at the regional level (Fig. 6). The
statistics for UK nations and nine English regions are sufficient, and are consis-
tent with the SPI-M published values (subject to 16 day lags). We also evaluated
R at the level of individual health boards in Scotland. These showed plausible
trends, except for the smallest boards. The issue there due to insufficent data,
but the fact that rural ”R” values may be driven by incomers as already dis-
cussed in Sec. 11.2 means that case-data may not be indicative of community
infection rates in those areas. The local authority regions in England also often
have too small data for accurate evaluation, although a combination of large
R and high case numbers can be indicative of local hotspots or superspreading
events.

The data can also be sliced to provides a growth-rate breakdown by age
group (Fig.6). Breakdown by age has a similar problem to regions because case
data refers to infectees, not infectors - and generally infectors are in a different
age group from infectees[16]. This intergenerational mixing is particularly true
for families, hospital and carehome situation. Specifically, when case numbers
are unevenly distributed across age groups, the ”R-numbers” ascribed to older
age groups do not imply that these people are responsible for infection.

4.2 Vaccination effects

Vaccination is known to reduce transmissibility of the virus by 60-90%. It may
seem mysterious that there is little sign of an effect of vaccination in the national
or regional R. To understand this, one needs to look more deeply into the data.
Fig. ??, the ”R-number” sliced by age group, shows the large reduction in R
for the older age groups during the vaccination roll out as case numbers are
suppressed. Infection preferentially shifted to the unvaccinated age-groups, and
our national R-number is weighted across subgroups by cases, not population.
So the national R is dominated by the younger population.

Furthermore, R represents the rate of increase in infections, not the total
numbers. Thus it is affected only by the rate of increase of vaccination, not the
total numbers.

We see that R in the older age groups in July rebounded to the national
average once almost everyone in those groups is vaccinated. This similar R
across age groups implies that they are mixing. Given the relative prevalences,
it represents infection of the older ages by the younger, unvaccinated population,
rather than transmission within one age-band. The case numbers in the older
age groups remain low thanks to the strong suppression of R during the vaccine
roll-out.
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4.3 Detection of Events

It is possible to detect individual events in the data, and test correlations by
investigating appropriate subdivision. For example, the peak in December as-
sociated with the alpha variant can be seen to occur earliest in the South East
and later further north, consistent with its believed origins in Kent. Conversely,
the peak associated with the delta variant appears first in the North West, then
almost simultaneously everywhere else, suggesting multiple importations rather
than geographical spread.

Increases correlated with reopening of schools can be seen to occur first in the
youngest age groups and the typical age of parents, again strongly suggestion
of causation. Furthermore, the peak in July which has been associated with
sporting events such as EURO2021 can be seen to be initially driven by men,
spreading subsequently to women.

4.4 Features beyond R

The WSS approach can be applied not only to I(t) and C(t), but also to any
other quantity, for example hospitalization or deathrate. Unlike conventional
ODE-driven compartment models, WSS incorporates a delay moving from one
compartment to the next: thus cases are related to deaths via a generalization
of Eq,

D(t) =

∫ t

−infty
C(t− t′)gD|C(t, t− t′)dt′ (12)

Where gD|C is the probability of death at time t given a case reported at
time t′. Note that the forwards projection avoid the entropy-decrease problem
discussed in section 4, correctly predicting that sharp peaks in C(t) will lead to
broader peaks in D(t).

We write gD|C(t, t− t′) as a function of two variables. The t− t′ dependence
represents the trajectory of the illness from infection to death: this has been
determined in clinical studies. The t dependence represents changes in disease
severity over time. Disentanglng these, we can write:

D(t) = g0(t)

∫ t

−∞
C(t− t′)gD|C1 (t− t′)dt′ (13)

This g0 is a time-dependent case-fatality ratio, and can be plotted as a

ratio of observed to predicted deaths. g
D|C
1 provides the shift forward in time

from case to death: it is fitted using a normalised Gamma distribution. g0 is
extremely dependent on agegroup: we use separate functions for each five-year
age band. (Dobs(t)/DWSS(t)). Fig.8 provides a powerful image of the lethality
of the epidemic. There are three salient features.

The alpha variant is accompanied by a pronounced increase in CFR through
December, plateauing once alpha is ubiquitous. The sharp decline in 2021, and
the onset of the effect in oldest age group first, can be associated with the effect
of the vaccine in causing milder infections. The age-dependence of CFR is so
pronounced that for under-45s (not shown) statistics are too poor for reasonable
analysis.
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Figure 8: Case Fatality ratios, plotted as Deaths per Case from WSS model,
by age group. Lines are a weighted smoothed fit to the data. CFR graphs for
under 45s are excluded as they are so low. Shading shows uncertainty introduced
by smoothing day to day variations, excluding errors on the mean from small
number statistics in September 2020 and May 2021. The eye-catching peak for
over 90s in June 2021 is probably a small-number effect, and it can be eliminated
completely by combining 85-89 with 90+ age groups.

A discernable blip in the drop of CFR during May 2021 could be associated
with the arrival of the delta variant (Fig 8).

As well as age-related factors, WSS enables us to discern differences in CFR
across different geographical regions. This indicates a strong north-south divide,
as has been discussed in previous work[6, 21]. CFR is significantly lower in the
south except for a short window when alpha variant was more prevalent there.

5 Conclusions

The published R-number from SPI-M can be predicted some 16 days in advance
of publication by statistical analysis of the publicly available case data using our
WSS code.

Our case-data estimates are themselves necessarily delayed by the time be-
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tween infection and positive test, thus it is likely that the published values are
around three weeks delayed from the actual spreading events. It is likely that the
SPI-M modelling will provide more reliable estimate, however our WSS model
appears to be adequate for making coarse policy-making decisions. For some
applications, the earlier availability is likely to outweigh the loss of accuracy.

Case-number-based R smooths any sharp discontinuities in infection-based
R. WSS is probably less reliable as a tool for analysing the effect of non-
pharmaceutical interventions (NPIs) than models which incorporate infections
explicitly and are parameterised using a Bayesian approach. However, the WSS
R allows us to create a narrative of the second wave:

• Increase of cases through Sep-Oct, with R > 1.

• Sharp reduction of R with NPIs in November, rebounding as B1.117 (al-
pha) becomes established.

• Sharp drop of R at January lockdown (case data show a continuous
drop, but this is consistent with a sharp drop in infections after Jan 6th,
smoothed by variable incubation times).

• Steady rise in R throughout February-May, accelerating as B1.617 (delta)
becomes established and restrictions were released.

• Sharp peak and drop in R in July, despite relaxation of restrictions.

• Rise in R in Scotland during August, not mirrored in England.

The WSS code also produces up-to-date Case-Fatality Ratios[21]. Analysis
of these in Figure.8 shows a sharp decrease in the CFRs correlated with the
vaccine roll out, showing that vaccination has a double-benefit of reducing in-
fections and ameliorating the effects of Covid. The reduction in CFR is about
50%, and this has continued during the rise of the B1.617 variant. Correlation
does not imply causation, but a protective effective of vaccination seems more
likely than other possibilities consistent with the data, for example B1.617 being
less deadly than B1.117.

We note that it may seem counterintuitive that R is increasing during the
vaccination programme. This is because R derived from case data is not the
average over the population but rather the average over those who are infected.
Eliminating infection from a vaccinated subpopulation would mean reported
R refers only to the unvaccinated population. Perhaps the most surprising
outcome of this study is the excellent agreement of this simple method with
far more detailed epidemiological models. This indicates that the case data
currently being produced is sufficient to track the trajectory of the epidemic.

The R-number is well defined but unmeasureable in terms of who-infected-
whom. It can be inferred from case date, however its relation to growth rate
rests on the assumption of short term exponential growth with slowly varying
R. This follows from a well-mixed ODE implementation of SIR or related mod-
els, whereas a lattice-based implementation SIR gives linear growth. These are
limiting cases of a range of network models. The data from the UK coronavirus
epidemic has features closer to the lattice-model end of the spectrum. The R-
number has remained close to 1, with external shocks such as variants producing
transient peaks in R of a few weeks’ duration before returning to 1. This hap-
pened both with a lockdown in January, and without one in July. Similarly, the
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epidemics is more reliably reproduced from R-numbers derived from smoothed
cases, rather than smoothing the R-number itself. This indicates that short
term fluctuations in case data are additive rather than multiplicative implying
medium term linear growth, rather than exponential growth.

The effects of lockdowns etc. in reducing cases and suppressing spread are
significant in all cases - in a well mixed model this manifests in a lowered herd
immunity threshhold, it the lattice models as a slower moving wavefront. Long
distance travel bans have the effect of reducing long range connections, making
the network more lattice-like.

The lattice model indicates that an initial value of R0 above 2 is required to
generate a sustained epidemic, as opposed to 1 for a well-mixed model. However,
if the disease spreads as a wave it generates slightly higher total case numbers
than the well-mixed case. We note that an observed R(t) = 1 value in consistent
with a much higher R0, and that significant reduction of R0 may have little
effect on R(t): individuals at the wavefront can only become infected once, even
when a high R0 implies they may have several encounters which could lead to
infection.

Medium term epidemic predictions for hospital occupation, ICU demand
and deaths are extremely sensitive to assumptions regarding R(t), which most
interventions target R0. It is therefore crucial to understand the relationship
between them. As deduced the UK case data, R has remained close to 1 with
occasional excursions producing short-lived transients. The alpha variant, orig-
inally detected in Kent, spread geographically from south to north in the period
of a couple of months. It appears that the coronavirus is spreading is a network
dominated by localised interactions.
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Figure 9: Effect of removing weekend and Christmas systematic errors: Positive
first PCR test data as published (circles) [1],Weekend and Xmas Smoothed case
data (green) and Corrected for 0.4% false positives (red)[21].
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