
Automated Detection of Candidate Subjects with Cerebral

Microbleeds using Machine Learning

Vaanathi Sundaresana,b, Christoph Arthoferc,d,a, Giovanna Zambonia,e,f, Robert A.
Dineenc,d,g, Peter M. Rothwelle, Stamatios N. Sotiropoulosc,d,a, Dorothee P. Auerc,d,g,

Daniel Tozerh, Hugh S. Markush, Karla L. Millera, Iulius Dragonui, Nikola Spriggj, Fidel
Alfaro-Almagroa, Mark Jenkinsona,k,l,1, Ludovica Griffantia,m,1,∗

aWellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain,
Nuffield Department of Clinical Neurosciences, University of Oxford, UK

bOxford-Nottingham Centre for Doctoral Training in Biomedical Imaging, University of Oxford, UK
cNIHR Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, UK

dSir Peter Mansfield Imaging Centre, University of Nottingham, UK
eWolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical

Neurosciences, University of Oxford, UK
fDipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio
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Abstract

Cerebral microbleeds (CMBs) appear as small, circular, well defined hypointense lesions

of a few mm in size on T2*-weighted gradient recalled echo (T2*-GRE) images and ap-

pear enhanced on susceptibility weighted images (SWI). Due to their small size, contrast

variations and other mimics (e.g. blood vessels), CMBs are highly challenging to detect

automatically. In large datasets (e.g. the UK Biobank dataset), exhaustively labelling

CMBs manually is difficult and time consuming. Hence it would be useful to preselect

candidate CMB subjects in order to focus on those for manual labelling, which is essen-

tial for training and testing automated CMB detection tools on these datasets. In this

work, we aim to detect CMB candidate subjects from a larger dataset, UK Biobank,

using a machine learning-based, computationally light pipeline. For our evaluation, we

used 3 different datasets, with different intensity characteristics, acquired with different
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scanners. They include the UK Biobank dataset and two clinical datasets with different

pathological conditions. We developed and evaluated our pipelines on different types of

images, consisting of SWI or GRE images. We also used the UK Biobank dataset to com-

pare our approach with alternative CMB preselection methods using non-imaging factors

and/or imaging data. Finally, we evaluated the pipeline’s generalisability across datasets.

Our method provided subject-level detection accuracy > 80% on all the datasets (within-

dataset results), and showed good generalisability across datasets, providing a consistent

accuracy of over 80%, even when evaluated across different modalities.

Keywords: cerebral microbleeds, structural MRI, UK biobank, machine learning,

susceptibility weighted imaging, subject-level detection, T2*-weighted MRI

1. Introduction

Cerebral microbleeds (CMBs) represent focal haemosiderin depositions consisting of

macrophages in microhaemorraghes (Shoamanesh et al., 2011), and are sometimes sur-

rounded by ischemic areas and gliosis (Gouw et al., 2011). CMBs appear as small focal

dark circular lesions on T2*-weighted gradient recalled echo (T2*-GRE) sequences. They

usually range from 2 to 10 mm in size, although further subdivision into microbleeds (2-5

mm) and macrobleeds (>5mm) has been used (Greenberg et al., 2009a). While some of

the CMBs might not be visible at all on T2-GRE images, susceptibility weighted images

(SWI) shows more CMBs and they appear more prominently on SWI due to the blooming

effect (Greenberg et al., 2009b; Charidimou and Werring, 2011). CMBs can be the early

sign of intracerebral haemorrhage (ICH) (Gouw et al., 2011), vascular dementia (Ayaz

et al., 2010) and Alzheimer’s disease (Gouw et al., 2011; Wardlaw et al., 2013; Shoa-

manesh et al., 2011). They have been associated with cognitive decline (Werring et al.,

2004; Won Seo et al., 2007) and several vascular diseases (Nishikawa et al., 2009; Yates

et al., 2014), including lacunar stroke and small vessel diseases (Nannoni et al., 2021).

Moreover, CMBs often occur with vascular damage related to cerebral amyloid angiopa-
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thy (Gouw et al., 2011). Strong associations have been established between CMBs and

risk factors such as age (Roob et al., 2000; Horita et al., 2003; Jeerakathil et al., 2004;

Vernooij et al., 2008; Poels et al., 2010; Takashima et al., 2011), hypertension (Roob et al.,

2000; Tsushima et al., 2002; Horita et al., 2003; Vernooij et al., 2008; Poels et al., 2010)

and white matter damage (Roob et al., 2000).

Recent studies on the predictive value of CMBs for long-term cognitive outcome have

shown inconsistent results, therefore the specific role of CMBs in cognitive impairment and

neurodegeneration remains unclear. Hence, it would be useful to observe the prevalence

and clinical/demographic associations of CMBs in larger populations. However, exhaus-

tive manual labelling of CMBs is difficult and time consuming, especially in large datasets

(e.g. the UK Biobank dataset). Consequently, semi-automated methods (Seghier et al.,

2011; Barnes et al., 2011; van den Heuvel et al., 2016; Morrison et al., 2018; De Bresser

et al., 2013; Kuijf et al., 2012, 2013) were proposed as a possible solution to reduce false

positives. Even though the manual revising step removes the spurious detections effec-

tively, it typically takes at least a few minutes per subject (van den Heuvel et al., 2016;

Kuijf et al., 2013; Morrison et al., 2018) and it is not an efficient solution for CMB de-

tection in very large datasets. Hence, it would be highly useful and efficient to develop a

fully automated CMB candidate subject preselection method (without involving manual

intervention in any stage of the detection pipeline) in the large datasets, and focus on

those subjects for manual labelling to facilitate further semi-automated or fully-automated

methods with more accurate CMB detection, analysis and characterisation (based on size,

shape, location and multiplicity, clustering).

The detection of CMBs, however, even at subject-level, is highly challenging since

CMBs occur sparsely, are difficult to detect due to their size, contrast variations and

the fact that they are often accompanied by other signs (e.g. haemorrhages). The SWI

modality has been shown to aid in identifying more CMBs (at least >67% (Nandigam

et al., 2009)) compared to T2*-GRE images, since SWI improves CMB contrast. How-

ever, the presence of other paramagnetic substances, apart from haemosiderin, causes

enhanced appearance of dark structures that resemble CMBs, known as CMB ‘mimics’

(Greenberg et al., 2009b; Charidimou and Werring, 2011). The mimics could be haem-
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orrhagic/paramagnetic such as cavernous malformations, haemorrhagic micrometastases,

diffusion axonal injury, small haemorrhages nearer to the infarcts and ICH areas, or non-

haemorrhagic such as flow voids, calcifications, motion artefacts, Gibb’s ringing artefact

and partial volume artefacts at air-bone interfaces (Greenberg et al., 2009b). For descrip-

tion and features of CMB mimics refer to suppl. table S1.

So far, the proposed automated methods for lesion-level CMB detection used shape

descriptors (Bian et al., 2013; Fazlollahi et al., 2014, 2015), intensity and geometric in-

formation (Ghafaryasl et al., 2012), and location-based features (Dou et al., 2015). The

use of comprehensive features, integrating the geometry, intensity, scale and local image

structures from multiple modalities have been shown to improve CMB detection (Gha-

faryasl et al., 2012; Dou et al., 2015). Over recent years, with the advent of deep learning,

methods using convolution neural networks (CNNs) (Dou et al., 2016; Liu et al., 2019;

Chen et al., 2018) and hybrid methods using a combination of CNNs and intensity in-

formation (Chen et al., 2015; Dou et al., 2015) have been proposed, occasionally with

additional postprocessing steps (Liu et al., 2019). While CNN-based methods provide

more accurate CMB detection when compared to conventional methods, they require a

large amount of labelled training data. Alternatively, techniques such as semi-supervised

and omni-supervised learning (Huang et al., 2018) requires more representative labelled

CMB instances that would not bias the method towards CMB mimics. While the occur-

rence of CMBs could be high in disease groups (e.g. small vessel disease), in general, the

prevalence of CMBs is low in population-based cohorts (e.g. UK Biobank). In datasets

from populations with low prevalence of CMBs, it would be extremely time consuming to

look at all subjects manually. A way to automatically preselect a subset that was enriched

for CMBs would allow better use of the available manual identification time and lead to

better and clinically relevant training datasets for further CMB analyses.

In this work, our aim is to develop a subject-level preselection method that is compu-

tationally light, easy to train and scalable to large datasets. Towards this aim, we propose

a fully automated method using intensity, shape and location-based features for detecting

CMB candidate subjects from large datasets such as the UK Biobank. We evaluated the

method on datasets with different image modalities (GRE and SWI) and in the presence
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of other pathological signs. We then applied the method to the UK Biobank dataset for

CMB candidate subject preselection, and compared our method with various alternative

methods using non-imaging factors and/or imaging data (CMB count). We finally evalu-

ated the ability of our proposed pipeline to adapt to differences in image characteristics

and demographics of the datasets, by training our pipeline on one dataset and testing it

on a different one.

2. Dataset details

In this work we used the following datasets to develop and evaluate the preselection

pipeline. The datasets are diverse in their intensity characteristics and are acquired using

different protocols. A brief overview of the datasets is provided below.

The Oxford Vascular Study (OXVASC) dataset: The dataset consists of T2*-

GRE images from 40 participants from the OXVASC study (Rothwell et al., 2004), who

had recently experienced a minor non-disabling stroke or transient ischemic attack. The

age range was 35.6 - 94.8 years, mean age 68.7 ± 15.5 years, median age 67.4 years, and

female to male ratio F:M = 15:25. The 2D single-echo T2*-GRE images were acquired

using a 3T Siemens Verio scanner with GRAPPA factor = 2, TR/TE = 504/15 ms, flip

angle 20o, voxel resolution of 0.9 × 0.8 × 5 mm, with image dimensions of 640 × 640

× 25 voxels. Out of 40 subjects, 20 subjects have CMBs and the corresponding manual

segmentations, labelled on T2*-GRE images, are available. The total number of CMBs

is 267, mean: 13.3 ± 1.13 CMBs/subject.

The Tranexamic acid for IntraCerebral Haemorrhage 2 (TICH2) trial MRI

substudy dataset: This is a subset of the MRI dataset used in Dineen et al. (2018)

obtained as part of the TICH2 trial (Dineen et al., 2018; Sprigg et al., 2018). The

age range was 29 - 88 years, mean age 64.76 ± 15.5 years, median age 66.5 years, and

female to male ratio F:M = 24:26. The dataset consists of images acquired at multiple

centres and on multiple MRI platforms with variations in image dimensions and voxel

resolutions. MR acquisition parameters for the TICH2 MRI substudy dataset can be

found in Dineen et al. (2018). The dataset used in this work consists of 50 SWI images from
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subjects with spontaneous intracerebral haemorrhage. Out of 50 subjects, 25 subjects

have CMBs and manual segmentations for CMBs are available for all 25 subjects. The

manual segmentations were labelled on SWI images as either definite or possible according

to the microbleed anatomical rating scale (MARS) (Gregoire et al., 2009). Total number

of CMBs: 505, mean: 20 ± 32.6 CMBs/subject.

UK Biobank (UKBB) dataset: Out of ≈ 20,000 subjects from the January 2018

release of UKBB, 14,521 had the required data fields (e.g. availability of SWI images

and the factors specified below). From these subjects, we randomly selected 180 subjects

with age range 46.8 - 76.8 years, mean age 58.9 ± 9.1 years, median age 58.8 years, and

female to male ratio F:M = 86:94. We used SWI images from the selected subjects for our

experiments, which were constructed from 3D multi-echo GRE images acquired using a

3T Siemens Magnetom Skyra syngo MR D13 scanner with TR/TE1/TE2 = 27/9.4/20 ms,

flip angle 15o, voxel resolution of 0.8 × 0.8 × 3 mm, with image dimensions of 256 × 288 ×

48 voxels. Subject-level manual labels were available for the selected subjects, indicating

whether each subject was a CMB or a non-CMB subject (only including those graded

as definite CMB based on MARS scale). However, lesion-level manual segmentations of

CMBs were not available for the dataset. On the UKBB dataset, we also used several

non-imaging factors that are known to be associated with CMBs (given these data were

collected as a part of the study), including demographic factors such as age (Charidimou

and Werring, 2011; Greenberg et al., 2009b), blood pressure (BP) (Roob et al., 2000;

Tsushima et al., 2002; Poels et al., 2010; Vernooij et al., 2008), risk factors such as smoking

(Tsushima et al., 2002; Poels et al., 2010), clinical conditions such as white matter damage

(Roob et al., 2000) and cognitive decline (Werring et al., 2004; Won Seo et al., 2007). We

used the non-imaging factors for a comparison experiment on the dataset (for more details,

refer to section 3.4.2). Summary statistics for the shortlisted factors for 180 subjects are:

age (range provided above), BP (102/50 - 202/118 mmHg, mean: 134.7/80.7 ± 42.4/25.3

mmHg, median: 147.5/90.5 mmHg), smoking (smoking:non-smoking = 70:110), white

matter hyperintensity (WMH) volume (535 - 45,186 mm3, mean: 5,465 ± 4,349 mm3,

median: 2,929 mm3) and mean reaction time (MRT, as an indicator of cognitive ability)

(397 - 896 ms, mean: 563 ± 96.5 ms, median: 546 ms).
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2.1. Data preprocessing

We reoriented the T2*-GRE and SWI images to match the orientation of the standard

MNI template, retaining their original resolutions, in order to aid in further process-

ing. We skull stripped the images using FSL BET (Smith, 2002), followed by bias field

correction using FSL FAST (Zhang et al., 2001).

3. Pipeline for detection of CMB candidate subjects

The automated pipeline for CMB candidate subject preselection takes T2*-GRE images

or SWI as input and provides a subject-level decision on whether the subject has CMBs

or not. The pipeline consists of three steps: 1. removal of blood vessels and sulci, 2.

voxel-wise detection of initial CMB candidates, 3. filtering of initial candidates using

shape-based attributes.

3.1. Removal of blood vessels and sulci

In the first step, we removed the blood vessels, sulci and other elongated dark structures

in the input image to reduce the prevalence of CMB mimics. Figure 1 shows the ex-

tracted features and a few samples of images with blood vessels and sulci removed. We

exploited the elongated tubular structure of vessels/sulci to extract the following edge

and orientation-based features:

1. Frangi filters: Frangi filters (Frangi et al., 1998) use the multiscale second order

local structure of the image and denote the degree of vessel-like/edge characteristics

at each voxel. We extracted voxel-wise intensity values of Frangi filter outputs as

features (figure 1b). While applying Frangi filters, we adjusted the parameters β1

and β2 (controlling the discrimination of lines from blob-like structures and the

elimination of background noise respectively) to avoid detection of CMBs during

vessel detection. Based on the results on the training data, we empirically set the

values of β1 and β2 to 0.9 and 20.
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2. The eigenvalues of the structure tensor: The structure tensor is the covariance

matrix, at each voxel, consisting of partial derivatives of the gradients (Förstner,

1994). The eigenvalues λ1 and λ2 of this matrix indicate the edge strength. We

considered the combination of the principal eigenvalue λ1 and the linearity measure

l = |λ1 − λ2|/2 (figure 1c) as voxel-wise features.

We used K-means clustering, an unsupervised learning algorithm, with the above

features to classify voxels into 2 classes (vessel vs background). The detected voxels with

vessel-like structures and sulci are used as masks for inpainting. We filled the masked

regions with intensity values similar to those in the non-masked neighbourhood (mean of

the nearest 3 voxels) to remove linear dark structures from the input image.

Figure 1: Features used for the vessel/sulci removal, along with a few samples of images with vessel/sulci
removed. Top panel: (a) Input image, (b) Frangi filter output, (c) Structure tensor linearity measure
output and (d) image with vessel / sulci removed. Note that the edges of the haemorrhages have also
been smoothed out, aiding in false positive reduction. Bottom panel: A few instances of images shown in
(e), along with their vessel removed results in (f). The arrows indicate the areas of noticeable vessel/sulci
removal.
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3.2. Voxel-wise detection of initial CMB candidates

In the second step, as shown in figure 2, we extracted the following 7 features at each

voxel on the vessel-removed image for the initial CMB candidate detection:

1. Intensity transformations (3 features): At each voxel, we extracted the inten-

sity value (figure 2a). Additionally, to obtain contrast enhanced intensity features,

we normalised the intensity values using standardisation (subtracting the mean in-

tensity within the brain mask and dividing by standard deviation), extracted the

exponential of the intensity (exp(p × intensity), where p = 1) (figure 2b) and applied

‘contrast limited adaptive histogram equalisation’ (CLAHE, Zuiderveld (1994), us-

ing equalize adapthist in scikit-image package) with a clip limit of 0.01 on the input

image to obtain the CLAHE output at each voxel (figure 2c).

2. Fast radial symmetry transform (FRST): We performed FRST (Loy and

Zelinsky, 2002). In FRST, at each voxel, the orientation (pointing towards or away

from the voxel) and magnitude maps of gradients are calculated at a certain radius.

These maps are then used to obtain a voxel-wise symmetry information within the

radius. We used 4 different radii: 2, 3, 4 and 6 voxels, and calculated the mean

value of all 4 outputs at each voxel as a feature (figure 2d).

3. The eigenvalues of structure tensor: We considered the principal eigenvalue λ1

(since this reduced the noise in background voxels) of the structure tensor at each

voxel as a feature (figure 2e).

4. Gaussian filter: We smoothed the vessel removed image I with a Gaussian filter

with σ = 1.5 voxels (empirically determined to roughly match the size of CMBs)

to get a smoothed image IS. The difference Iδ = I − IS removes the background

and highlights the sharper objects and blobs, and hence can be interpreted as a

‘blobness’ measure (figure 2f).

5. Laplacian of Gaussian filter (LoG): Since CMBs have well-defined edges, we

applied LoG (with σ = 1.5 voxels), a second order derivative filter for edge detection,
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on the vessel removed image and obtained the filtered output (figure 2g) at each

voxel.

Figure 2: Features extracted for the voxel-wise CMB candidate detection. Images showing (a) Input
intensity, (b) exponential transformed intensity, (c) CLAHE output, (d) fast radial symmetry transform
(FRST) output, (e) structure tensor output, (f) Gaussian filtered output and (g) Laplacian of Gaussian
(LoG) output. Inset figures show the magnified versions of the regions indicated in the boxes.

We normalised the above features individually by dividing by their maximum value

across the current image and use the normalised features for training a support vector

machine (SVM) classifier at the voxel-level, using voxel-wise manual segmentations avail-

able for the OXVASC and TICH2 datasets, to obtain a probability map PCMB. We then

thresholded it at a global threshold thprob of 0.8. The threshold value was determined em-

pirically (using the training data from the OXVASC and TICH2 datasets), based on the

cluster-wise performance metrics with respect to lesion-level manual segmentations, by

varying thprob within a range [0, 1] (for the details on the cluster-wise evaluation metrics

used and the results, refer to the suppl. section 2).

3.3. Filtering of initial candidates using shape-based attributes

The small dark structures in the image other than CMBs (including noise and stray frag-

ments of blood vessels) are detected as false positives (FPs) in the voxel-level classification.
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In this step, we used the following shape- and location-based object-level attributes for

reducing FP as shown in figure 3:

1. Volume Vc of the candidate in mm3. Candidates with 5 mm3 < Vc <120 mm3 were

selected as CMBs.

2. Ellipticity εc: A measure of elongated nature of an object. The value ranges

between [0,1] and a sphere has a value of 0. Candidates having εc < 0.2 were

selected as CMBs.

3. Solidity Sc: The ratio between volume of the candidate and its convex volume. The

value ranges within [0,1] and an object with its volume equal to that of its convex

hull has a value of 1; this criterion removes the curved fragments of blood vessels

and intersection of vessels that survived the vessel removal step, since they would

have low solidity. A lower threshold value of 0.6 was applied on Sc of candidates to

be selected as CMBs.

4. Diameter Dc of the candidate in mm. Here, diameter is the distance between the

endpoints of the longest line that can be drawn through the candidate. Candidates

with diameters 2mm < Dc < 10mm were selected as CMBs.

Figure 3: An instance of the shape-based filtering of initial candidates. (a) Input image with green
boxes indicating manually segmented CMBs, (b) vessel removed image and (c) result of the shape-based
filtering. In the output (c), blue boxes indicate initial candidates that were then rejected by the filtering
stage and yellow boxes indicate the final CMB candidates that survived the filtering stage.

We considered a candidate as a CMB if all the above criteria were satisfied. The

values for the above criteria were chosen empirically by a trial-and-error method based on
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the best subject-level performance on the training data from the OXVASC and TICH2

datasets using the metrics specified in section 3.5. The final cluster-wise performance

values (providing lesion-level CMB detection performance) after the filtering step are

provided in suppl. section 2.2.1.

Preselection criterion: Finally, a subject is classified as having CMBs if the count of

the detected CMB candidates (after the filtering stage) exceeds an empirically set thresh-

old value ThNCMB. For each dataset, we determined the ThNCMB value by measuring the

subject-level performance values (specified in section 3.5) at various thresholds within a

pre-specified range, and choosing the threshold that provided the best set of performance

values as ThNCMB (refer to section 4.1). The range of threshold values was set to be

slightly higher than the average number of CMBs in the OXVASC and TICH2 datasets

since we had to allow for the presence of false positives (e.g. vessel fragments and sulci

missed in the vessel removal stage).

3.4. Evaluation of the CMB candidate preselection pipeline

We evaluated the proposed pipeline by training and testing it using different datasets

(with different modalities and acquisition characteristics) to study the effect of dataset

characteristics on its performance. We performed the following experiments:

3.4.1. Initial evaluation of the proposed preselection pipeline within datasets

We performed leave-one-out validation separately on the OXVASC and TICH2 datasets.

We used T2*-GRE images from 40 subjects from the OXVASC dataset and, separately,

SWI from 50 subjects from the TICH2 dataset. For the UKBB dataset, we performed 5-

fold cross-validation on SWI images from 180 subjects with training/validation/test split

of 70/10/20%. Note that, for the cross-validation on the UKBB dataset, we used the SVM

model trained on the TICH2 dataset for the initial candidate detection (since voxel-wise

manual segmentations were not available for the UKBB dataset). We determined the

performance metric values (specified in section 3.5) at different settings of the threshold

ThNCMB in order to plot the ROC curve.
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3.4.2. Comparison of the proposed pipeline with algorithms using imaging/non-

imaging factors on the UKBB dataset

In addition to the CMB lesion count extracted from imaging data, various non-imaging

demographic/clinical factors have been associated with the incidence of CMBs, with age

and BP being the common ones (Roob et al., 2000; Horita et al., 2003; Vernooij et al.,

2008; Poels et al., 2010). We compared the following category of methods (including the

proposed method) using imaging and/or non-imaging information:

1. Method 1: demographic/clinical factors: We considered factors such as age,

diastolic BP and systolic BP separately by applying a range of thresholds to each

factor to determine the baseline performance of each factor.

2. Method 2: other non-imaging factors: While age and BP are the most com-

mon factors, several other factors have also been associated with CMBs. Therefore,

we considered other non-imaging factors such as smoking, white matter hyperinten-

sity (WMH) volume and mean reaction time (MRT, linked with cognitive ability)

in addition to age and BP. We used these 6 factors as features to train a SVM

classifier (SVMNI) and a random forest classifier (RFNI). For SVMNI , we used

a radial basis function kernel, with tolerance value of 1 × 10−3 and ε of 0.1 (used

fitrsvm in Matlab (2016b)). For RFNI , we used 150 trees, samples at leaf node

= 5, mean squared error (MSE) as criteria for splitting and out-of-bag error score

set to True in TreeBagger command in Matlab (for getting feature importance,

see below). The above training hyperparameters were chosen using trial-and-error

method on the validation data. We performed 5-fold cross-validation with the same

training-validation-test split used in section 3.4.1. We also performed feature rank-

ing to determine the importance of individual features using the out-of-bag (OOB)

prediction2 error metric in RFNI .

2In RF, OOB predictions are those obtained on the samples that were left out while randomly choosing
the training subsets for individual trees during bootstrap aggregating (bagging). We considered the
increase in MSE while permuting the OOB observations across each feature, averaged over all trees in
the ensemble and divided by the standard deviation obtained over the trees. Hence, larger increase in
MSE indicates more important features.
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3. Method 3: determining CMB lesion count using imaging-based methods:

Similar to our proposed pipeline, we used imaging data (T2*-GRE from OXVASC

and SWI from TICH2) and applied another baseline method, where we replaced

the SVM-based CMB candidate detection step with a thresholding method to de-

tect initial CMB candidates. We used the same preprocessing steps used in our

pipeline (refer to section 2.1) and applied a threshold value at the lower 5th per-

centile of the intensity value (determined empirically from the intensity histograms)

and considered the voxels within the brain mask below the threshold as initial CMB

candidates. We compared the 5-fold cross-validation results of our proposed method

with the thresholding method.

4. Method 4: non-imaging factors + CMB lesion count determined from

imaging data: We used a total of 7 features including the 6 factors used in method

2 and the CMB lesion count (determined using the proposed pipeline). Similar to

method 2, we trained a SVM (SVMNI+I) and RF (RFNI+I) classifiers and eval-

uated them using 5-fold cross-validation. In addition, we determined the feature

importance from OOB prediction error using RFNI+I . For training the RF and

SVM classifiers, we used the same parameters used in method 2.

From all the above methods we determined the performance values (specified in sec-

tion 3.5) at different thresholds for plotting the ROC curves.

3.4.3. Evaluation of the generalisability of our method across datasets

We trained our pipeline (SVM classifier in the candidate detection step) on T2*-GRE

images from 40 subjects of the OXVASC dataset (and performed hyper-parameter opti-

misation on the held-out data from the OXVASC dataset as specified in suppl. section

2). We later evaluated it on the SWI from 50 subjects of the TICH2 dataset. Similarly,

we trained the pipeline on SWI from the TICH2 dataset and evaluated it on T2*-GRE

images of the OXVASC dataset. Finally, we applied both OXVASC-trained and TICH2-

trained pipelines on SWI from 180 subjects of the UKBB dataset. We could not train

the SVM model on the UKBB dataset due to non-availability of voxel-wise manual labels
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and hence all training/testing combinations were not possible. For these experiments, we

determined the performance of the preselection pipeline using the evaluation measures

specified in section 3.5.

3.5. Performance evaluation metrics for CMB candidate subject

preselection pipeline

For the CMB candidate subject preselection pipeline, we used the following measures for

evaluation:

• Subject-level true positive rate (TPR): For a given dataset D, the subject-

level TPR is the number of predicted TP CMB subjects (STP ) divided by the number

of true CMB subjects, as given by,

subject-level TPR =
STP

(STP + SFN)
(1)

where SFN is the number of false negative subjects.

• Subject-level specificity: For a given dataset D, the subject-level specificity is

the number of predicted true negative subjects (STN) divided by the number of

non-CMB subjects, as given by,

subject-level specificity =
STN

(STN + SFP )
(2)

where SFP is the number of false positive subjects.

• Subject-level accuracy: For a given dataset D consisting of SN subjects, the

subject-level accuracy is given by the number of correctly predicted CMB and non-

CMB subjects (STP and STN) divided by the total number of subjects,

subject-level accuracy =
STP + STN

SN
× 100 (%) (3)

We plotted subject-level ROC curves using subject-level TPR and subject-level false pos-
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itive rate (subject-level FPR = 1 - subject-level specificity) values.

Additionally, although it was not our main focus, we also determined various cluster-

wise measures for obtaining an indicative evaluation of the lesion-level performance at

CMB initial candidate detection step (refer to section 2 of the suppl. material for more

details).

4. Results

4.1. Initial evaluation of the proposed preselection pipeline within

datasets

Figure 4 shows the separate leave-one-out validation results for the OXVASC and the

TICH2 datasets. The best set of performance values for each dataset was determined

from the knee point on the ROC. From the ROC curves it can be seen that, on the

OXVASC dataset, the pipeline achieves the best subject-level performance metric values:

TPR = 0.96, specificity = 0.83 and accuracy = 0.90 at the threshold ThNCMB = 30 CMBs

(and TPR = 0.81, specificity = 0.87 and accuracy = 0.84 at the threshold ThNCMB =

35 CMBs). Similarly, on the TICH2 dataset, the pipeline achieves the best subject-level

performance values: TPR = 0.91, specificity = 0.81 and accuracy = 0.86 at the threshold

ThNCMB = 35 CMBs. On performing the 5-fold cross-validation on the UKBB dataset

(ROC curve shown by black solid line in figure 5), the proposed pipeline achieved the best

subject-level performance with a TPR = 0.91, specificity = 0.86 and accuracy = 0.89 at

ThNCMB = 35 CMBs.

4.2. Comparison of the proposed pipeline with algorithms using

imaging/non-imaging factors on the UKBB dataset

Figure 5 shows the ROC curves for comparison of various methods used for preselecting

CMB candidates from the UKBB dataset. For the best performance metrics from ROC

curves for each method, refer to the suppl. section 3. Out of all the categories, using indi-

vidual demographic/clinical factors (method 1) provided the worst performance. Among
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Figure 4: ROC curves for leave-one-out validations of the full preselection pipeline shown for the OXVASC
(dark blue solid N) and the TICH2 (orange solid •) datasets plotted at threshold values from 10 to 80
CMBs in steps of 5 CMBs (AUC: area under the curve). The points on curves for the threshold value of
30 and 35 CMBs are indicated by hollow and filled black circular markers respectively. The performance
values at the ‘knee point’ of curves were chosen as the best performance values for each dataset.

the individual factors, age provides the worst performance while the diastolic BP provided

better performance, with subject-level TPR = 0.37, specificity = 0.72 and accuracy = 0.54

at a threshold of 93.4 mmHg. For classification based on non-imaging factors (method 2),

the RF classifier provided better results compared to the SVM classifier. Using the RF

classifier, we obtained subject-level TPR = 0.73, specificity = 0.74, accuracy = 0.74 at

a threshold of 0.6. Among imaging-based methods (method 3) used to determine CMB

lesion count, the proposed pipeline provided better results (subject-level TPR = 0.91,

specificity = 0.86 and accuracy = 0.89) compared to the thresholding method, detecting

more CMB lesions in the CMB subjects when compared to the non-CMB subjects, and

hence better at identifying subjects containing CMBs. Of all the methods, classification

using both non-imaging factors and CMB lesion count (method 4) provided the best per-

formance, especially using the RF classifier, achieving subject-level TPR, specificity and

accuracy of 0.95 at a threshold of 0.6.

Figure 6 shows the OOB feature importance of various features used in the RFNI and

RFNI+I classifiers. For RFNI , WMH volume had the highest importance (imp = 2.1)

followed by the BP values (diastolic BP imp = 0.41 and systolic BP imp = 0.42). For
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Figure 5: Results of the comparison of various methods for CMB candidate subject preselection on the
UKBB dataset. ROC curves shown for thresholding on individual factors - age (yellow solid N, threshold
range: 46.9 - 76.9 yrs, steps of 1.5 yrs), diastolic BP (yellow dashed N, threshold range: 50.9 - 118
mmHg, steps of 3.1 mmHg), systolic BP (yellow dotted 4, threshold range: 106.4 - 202 mmHg, steps
of 5.3 mmHg), classification based on non-imaging factors (NI) using an SVM classifier (red dashed �,
threshold range: 0 - 1, steps of 0.05) and a RF classifier (red solid �, threshold range: 0 - 1, steps of
0.05), based on only the CMB lesion count obtained from the proposed pipeline (black solid •, threshold
range: 0 - 90, steps of 5) and the thresholding method (black dashed ◦, threshold range: 0 - 75, steps
of 3), classification based on both non-imaging factors and CMB lesion count (NI+I) obtained from the
proposed pipeline using an SVM classifier (blue dashed ♦, threshold range: 0 - 0.9, steps of 0.05) and
a RF classifier (blue solid �, threshold range: 0 - 0.9, steps of 0.05) (AUC: area under the curve). The
performance values at the ‘knee point’ of curves were chosen as the best performance values for each
curve (for corresponding threshold values, refer to suppl. table 2).

Figure 6: Out-of-bag feature importance values for (a) non-imaging features and (b) non-imaging features
+ CMB lesion count (obtained from the proposed pipeline) as used in the classification for CMB subject
preselection.
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RFNI+I , CMB lesion count had the highest feature importance (imp = 2.8) followed by

WMH volume (imp = 1.25) and diastolic BP (imp = 0.35). The higher feature importance

of diastolic BP compared to age (imp = 0.25) also aligns well with our earlier comparison

where diastolic BP provided the best performance among the individual factors. For both

RFNI and RFNI+I , smoking was the least important feature with imp = -0.08 and 0.01

respectively.

4.3. Evaluation of the generalisability of the proposed pipeline

across datasets

Pipeline trained on OXVASC and evaluated on the TICH2 data: Figure 7a

shows the ROC curve for the prediction of CMB subjects at various values of the threshold

ThNCMB on the number of detected CMBs for individual subjects. We achieved the best

performance with ThNCMB set to 35 CMBs. Despite the presence of haemorrhagic lesions

in all subjects, the pipeline gave a sensitivity of 0.90 and an accuracy of 0.81, with

a subject-level specificity of 0.70. Figure 8 shows a few example cases of correct and

incorrect subject-level detections on the TICH2 dataset (manually segmented CMBs are

indicated with green boxes). From the figure, it can be seen that our algorithm correctly

predicted the subjects with a high number of CMBs (figure 8a,b). Typically these subjects

with high number of CMBs or no CMBs were detected better than subjects with very

low number of CMBs (well under ThNCMB value of 30 CMBs, as shown in 8e) or subjects

having small haemorrhages (figure 8c, d).

Pipeline trained on TICH2 and evaluated on the OXVASC data: Figure 7a

shows the ROC curve for CMB candidate subject preselection with the TICH2-trained

model on the OXVASC dataset. As in the previous case, the model achieved the best

performance for a threshold value ThNCMB of 35 CMBs. The model provided a subject-

level TPR of 0.83, a subject-level specificity of 0.84 and a subject-level accuracy of 0.83.

The number of subjects with high CMB counts (> 50 CMBs) in the training dataset

(TICH2) is higher than that in OXVASC. Hence, the TICH2-trained model was more

specific in detecting CMB subjects on the OXVASC dataset, achieving a higher specificity
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Figure 7: Results of the evaluation of model generalisability by training the pipeline on different dataset
from the one it is evaluated on. ROC curves shown for (a) OXVASC-trained pipeline evaluated on the
TICH2 dataset (orange) and TICH2-trained pipeline evaluated on the OXVASC dataset (dark blue), (b)
OXVASC-trained and TICH2-trained pipelines evaluated on the UKBB dataset (orange and dark blue
curves respectively) (AUC: area under the curve).

of 0.84. We have shown a few examples of subject-level detections in figure 9. As in the

previous case, subjects with high CMB counts (figure 9a and b) were correctly predicted

as CMB subjects.

OXVASC-trained and TICH2-trained pipelines on the UKBB dataset: We

applied both the OXVASC-trained and the TICH2-trained models to the UKBB dataset.

The model trained on the TICH2 dataset provided better performance when compared

to the OXVASC-trained model. For the OXVASC-trained model, the pipeline achieved

subject-level TPR = 0.80, specificity = 0.80 and accuracy = 0.80 using a threshold of

30 CMBs. For the TICH2-trained model, the pipeline achieved the subject-level TPR =

0.85, specificity = 0.86 and accuracy = 0.85 using a threshold of 35 CMBs. We could not

perform the lesion-level analysis on the UKBB dataset (as we did for the OXVASC and

TICH2 datasets), since we had only subject-level manual labels.

5. Discussion and conclusions

In this work, we proposed a fully automated pipeline, which is computationally light and

takes into account various intensity, shape and anatomy-based characteristics of CMBs,

for preselecting CMB candidate subjects from large datasets. We compared various meth-

ods involving non-imaging demographic/clinical factors and CMB lesion count from the
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Figure 8: Example results from the CMB subject preselection pipeline trained on OXVASC data. (a)
and (b) are true positive CMB subjects, (c) and (d) are true negative non-CMB subjects, (e) is a false
positive prediction of non-CMB subject and (f) is a false negative prediction of a CMB subject. The
green and orange boxes indicate the manually segmented CMBs and false positives respectively. The true
CMB count NCMB are provided, along with the number of true positives (NTP ) and the false positives
(NFP ).

imaging data, including our proposed pipeline, on a subset of the UKBB dataset for

which we had subject-level manual labels regarding the presence of CMBs. We finally

applied our pipeline on different datasets for training and evaluation to validate its gen-

eralisability with respect to variations in intensity, acquisition protocols and pathological
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Figure 9: Example results from the CMB subject preselection pipeline trained on TICH2 data. (a)
and (b) are true positive CMB subjects, (c) and (d) are true negative non-CMB subjects, (e) is a false
positive prediction of non-CMB subject and (f) is a false negative prediction of CMB subject. The green
and orange boxes indicate the manually segmented CMBs and false positives respectively. The trueCMB
count NCMB are provided, along with the number of true positives (NTP ) and the false positives (NFP ).

conditions. Our pipeline provided subject-level accuracy >85% during initial validation

on each individual dataset. On applying our pipeline on various datasets, we observed

good generalisability across datasets with subject-level accuracy >85% when trained on
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SWI and applied to SWI/T2*-GRE images, and >80% when trained on T2*-GRE images

and applied to SWI.

During the initial within-dataset evaluation, the pipeline provided better subject-level

results on the OXVASC and UKBB datasets when compared with the results from the

TICH2 dataset. This could be due to the fact that pipeline detected more false positive

lesions along the edges of intracerebral haemorrhages in the TICH2 dataset. In addition

to the presence of haemorrhages, the increased amount of FPs could be related to the use

of SWI. In fact, the best threshold on the CMB lesion count (corresponding to the ‘knee

point’ on the ROC curve) for subject-level is preselection is higher for datasets with SWI

(the threshold is 35 CMBs for both the UKBB and TICH2 datasets) when compared to

the OXVASC dataset with T2*-GRE images (where the threshold is 30 CMBs). This

might be because SWI improves not only the contrast of CMBs but also the mimics that

could lead to more spurious CMB detections and hence a higher threshold is needed on the

CMB lesion count. However, while we chose thresholds that gave the best performance on

the datasets, we cannot exclude the possibility of subjects with low number of true CMBs

(with low number of false positives) being incorrectly classified as non-CMB subjects.

On comparing various methods involving non-imaging and CMB lesion counts from

the imaging data, we observed that applying thresholds on the individual demographic

factors provided the worst results. This shows that even though factors such as age and

hypertension are commonly associated with CMBs, they are not sufficient by themselves

to preselect CMB candidate subjects in a given population. This further supports the need

for pipelines such as ours that can also use the imaging data for subject-level preselection,

especially in large datasets. Interestingly, among age and BP, the latter provides better

preselection (and also has higher feature importance in the RF classifier), despite age

being reported as the most commonly used factor (Vernooij et al., 2008; Poels et al.,

2010; Takashima et al., 2011). Similarly, among the features used in the RF classifiers

(both RFNI and RFNI+I), smoking is the least important feature, even though it has been

reported as one of the risk factors for CMBs in various population-level studies (Tsushima

et al., 2002; Poels et al., 2010). However, more experimentation would be required on a

larger sample size to further establish the relationship between age/smoking status and
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occurrence of CMBs.

The proposed method provided better results than the thresholding method, high-

lighting the utility of shape-based features, in addition to intensity. The best results were

obtained for the classifiers using a combination of non-imaging factors and CMB lesion

counts, however, with CMB lesion count being the most important feature. The high

feature importance of CMB lesion count shows that the proposed pipeline determines

a lesion count that is highly useful, despite the number of false positive lesions. Also,

the best performance of the combination of features and lesion counts shows that the

non-imaging features could be used to improve the results of our proposed pipeline for

CMB candidate subject preselection in large datasets, when manual segmentation is un-

available. While the preselected subjects could be used for manual labelling for research

purposes, from a clinical point of view the pipeline could be used to flag images as likely

to contain CMBs. This could be further used in determining a preliminary CMB or small

vessel disease (SVD) score as done in Staals et al. (2014).

On evaluating the generalisability of the proposed pipeline, the performance when the

training and testing datasets were acquired with different modalities was slightly lower

than the initial cross-validation performance values. Our preselection pipeline provided

results with similar accuracy for different training data, with a slightly better specificity on

the OXVASC dataset using TICH2-trained model when compared to the TICH2 dataset

using OXVASC-trained model, while providing a lower subject-level TPR. The prediction

of CMB candidate subjects was more precise in the OXVASC dataset likely due to the fact

that the pipeline was trained using features extracted from SWI that is highly sensitive

to CMBs and susceptibility artefacts. At this point, it is worth noting that there are

pros and cons with using T2*-weighted GRE or SWI sequences. In the case of T2*-GRE

images (the OXVASC dataset), the contrast between CMBs and background is lower

than in SWI (and some CMBs might not be visible at all on T2*-GRE images) and hence

the number of detected false positives was low, providing high specificity (85%, when

compared to the specificity of 70% in the TICH2 dataset) but low cluster-wise TPR (83%

compared to the TPR of 90% in the TICH2 dataset). This shows that SWI sequences

(the TICH2 dataset) are highly sensitive to CMBs and hence result in detection of more
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CMBs, albeit with increased FPs as well. Therefore, choosing training datasets containing

a similar modality (especially those having single modalities) to train the pipeline could

help in achieving more accurate detection when applied to the large datasets. In fact,

on applying OXVASC-trained and TICH2-trained pipelines to the UKBB dataset, the

TICH2-trained pipeline provided better results since it was trained on SWI, the modality

used in the UKBB dataset. However, it is worth noting that, despite the difference in

population and CMB prevalence across the datasets used in this study, our pipeline showed

comparable performance, even when trained on a dataset with very different prevalence

(e.g. OXVASC, a stroke population, and UKBB, a prospective epidemiological study).

Concluding, we proposed a learning-based method for subject-level preselection of

CMB candidate subjects in large datasets. The preselected subjects could then be manu-

ally segmented and used for further analysis and characterisation of CMBs. Our method

provided accurate preselection of CMB candidate subjects on various datasets consisting

of T2*-GRE and SWI images with subject-level TPR, specificity and accuracy values

>90%, >80% and >85% respectively. Also, our method is computationally efficient, and

provided greater performance when compared to other methods using non-imaging fac-

tors and thresholding methods for obtaining CMB lesion counts from the imaging data.

Our pipeline shows good generalisability across across various datasets providing subject-

level accuracy >80%, and even >85% when applied to datasets with the same modality.

The future direction of this work would be to improve the detection of CMBs at the

lesion-level using deep learning and increase the model generalisability across different

modalities. Also, another potential avenue of research would be to provide automated

ratings of CMBs using their size and count to provide information that is consistent with

clinical rating scales such as MARS scale.
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