Abstract
This work shows a derivation of a multinomial probability function and quantitative measures of the data and epistemic uncertainty as direct output of a 3D U-Net segmentation network. A set of T1 brain MRI images were downloaded from the Connectome Project and segmented using FMRIB’s FAST algorithm to be used as ground truth. A 3D U-Net neural network was trained with sample sizes of 200, 500, and 898 T1 brain images using a loss function defined as the negative logarithm of the likelihood based on a derivation of the definition of the multinomial probability function. From this definition, the epistemic (model) and aleatoric (data) uncertainty equations were derived and used to quantify maps of the uncertainty in data prediction. The epistemic and aleatoric uncertainty decreased based on the increasing number of training data used to train the neural network. The neural network trained with 898 volumes resulted in uncertainty maps that were high primarily in the tissue boundary regions. The uncertainty was averaged over all test data (connectome and tumor separately) and the epistemic uncertainty showed a decreasing trend, as expected, with increasing numbers of data used to train the model. The aleatoric uncertainty showed a similar trend, but it was less obvious, which was also expected as the aleatoric uncertainty is not expected to be as dependent on the number of training data. The derived data and epistemic uncertainty equations from a multinomial probability distribution are applicable for all 2D and 3D neural networks.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Data was used as part of a current Johns Hopkins Medical Institutes approved IRB.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Co-first authors.
The authors have no conflict of interest.
Data Availability
The training and test data was used from the publicly available 1,000 Connectome project https://www.nitrc.org/projects/fcon_1000/. A small set of institutional tumor data was used for further algorithm testing but this data will not be available publicly.