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Summary 
Background More contagious SARS-CoV-2 virus variants, breakthrough infections, waning immunity, and 
sub-optimal rates of COVID-19 vaccination account for a new surge of infections leading to record numbers of 
hospitalizations and deaths in several European countries. This is a particularly concerning scenario for 
resource-limited countries, which have a lower vaccination rate and fewer clinical tools to fight against the next 
pandemic waves. There is an urgent need for clinically valuable, generalizable, and parsimonious triage tools 
assisting the appropriate allocation of hospital resources. We aimed to develop and extensively validate 
CODOP, a machine learning-based tool for accurately predicting the clinical outcome of hospitalized COVID-
19 patients. 
 
Methods CODOP was built using modified stable iterative variable selection and linear regression with lasso 
regularisation. To avoid generalization problems, CODOP was trained and tested with three time-sliced and 
geographically distinct cohorts encompassing 40 511 blood-based analyses of COVID-19 patients from more 
than 110 hospitals in Spain and the USA during 2020-21. We assessed the discriminative ability of the model 
using the Area Under the Receiving Operative Curve (AUROC) as well as horizon and Kaplan-Meier risk 
stratification analyses. To reckon the fluctuating pressure levels in hospitals through the pandemic, we offer two 
online CODOP calculators suited for undertriage or overtriage scenarios. We challenged their generalizability 
and clinical utility throughout an evaluation on a cohort of patients hospitalized in five hospitals from three 
Latin American countries.  
 
Findings CODOP uses 12 clinical parameters commonly measured at hospital admission and associated with 
the pathophysiology of COVID-19. CODOP reaches high discriminative ability up to nine days before clinical 
resolution (AUROC: 0·90-0·96, 95% CI 0·879-0·970), it is well calibrated, and it enables an effective dynamic 
risk stratification during hospitalization. The two CODOP online calculators demonstrate their potential for 
triage decisions when challenged with the distinctive Latin American evaluation cohorts (73-100% sensitivity 
and 84-100% specificity). 
	
Interpretation The high predictive performance of CODOP in geographically disperse patient cohorts and the 
easiness-of-use, strongly suggest its clinical utility as a global triage tool, particularly in resource-limited 
countries. 
 
Funding The Max Planck Society. 
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Research in context  
Evidence before this study  
We have searched PubMed for articles about the existence of in-hospital COVID-19 mortality predictive 
models, using the search terms “coronavirus”, “COVID-19”, “risk”, “death”, “mortality”, and “prediction”, 
focusing on studies published between March 1, 2020 and 31 August, 2021. The studies we identified generally 
used small-medium size cohorts of patients that are geographically restricted to small regions of the developed 
world (many times, to the same city). We haven’t found studies that challenged their models in extended cohorts 
of patients from very distinct health system populations, particularly from resource-limited countries. Further, 
most of the previous models are rigid by not acknowledging the fluctuating availability of hospital resources 
during the pandemic (e.g., beds, oxygen supply). These and other limitations have been pointed out by expert 
reviews indicating that published in-hospital COVID-19 mortality predictive models are subject to high risk of 
bias, report an over-optimistic performance, and have limited clinical value in assisting daily triage decisions. A 
parsimonious, accurate and extensively validated model is yet to be developed. 
 
Added value of this study  
We analysed clinical data from different cohorts totalling 21 607 COVID-19 patients treated in more than 110 
hospitals in Spain and the USA during three different pandemic waves extending from February 2020 to April 
2021. The new CODOP in-hospital mortality prediction model is based on 11 blood biochemistry parameters 
(representing main biological pathways involved in the pathogenesis of SARS-CoV-2) plus Age, all of them 
commonly measured upon hospitalization. CODOP accurately predicted mortality risk up to nine days before 
clinical resolution (AUROC: 0·90-0·96, 95% CI 0·879-0·970), it is well calibrated, and it enables an effective 
dynamic risk stratification during hospitalization. We offer two online CODOP calculator subtypes 
(https://gomezvarelalab.em.mpg.de/codop/) tailored to overtriage and undertriage scenarios. The online 
calculators were able to reach the desired prediction performance in five independent evaluation cohorts 
gathered in hospitals of three Latin American countries from March 7th 2020 to June 7th 2021. 
 
Implications of all the available evidence  
We present here a highly accurate, parsimonious and extensively validated COVID-19 in-hospital mortality 
prediction model, derived from working with the largest number and the most geographically extended 
representation of patients and health systems to date.  
The rigorous analytical methods, the generalizability of the model in distinct world regions, and its flexibility to 
reckon with the changing availability of hospital resources point to CODOP as a clinically useful tool 
potentially improving the outcome prediction and the management of COVID-19 hospitalized patients.  
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Introduction 
Since the first reported case in Wuhan at the end of 2019, COVID-19 has exerted extreme pressure on hospitals 
throughout the globe. The World Health Organization (WHO) estimated the pandemic as the direct cause of 
more than 5 million deaths. Despite positive data showing a decrease in hospitalizations and deaths among 
vaccinated people, warning signs forecast a scenario with health systems under severe strains leading to a bigger 
number of COVID-19 related deaths. The appearance of viral variants that are more contagious and that carry a 
higher risk of hospitalization,1 the waning of the immune protection, the significant amount of infections in 
vaccinated individuals (breakthrough infections) together with their ability to transmit the virus, and the slow 
and unequal rollout of vaccines worldwide, support recent models showing that a vaccine-alone exit strategy 
will likely not be sufficient to contain further outbreaks and their consequences.2 At the time of submission of 
this study, many European countries are reaching record-high numbers of infections, hospitalizations and 
deaths. This new pandemic wave depicts a worrisome prospect for resource-limited countries with similar or 
lower vaccination rates and with fewer clinical tools. 
Prediction models that estimate the risk of death in hospitalized COVID-19 patients could be valuable both to 
clinicians and patients by assisting medical staff to stratify treatment strategy and by planning for appropriate 
allocation of limited resources. Thus, numerous models have been developed to assist triage decisions of 
hospitalized COVID-19 patients. However, independent evaluations have pointed out their lack of 
generalizability and their limited clinical use3, 4 due to causes belonging to the “dataset shift” problem.5 
Moreover, the heterogeneity of the host-pathogen interaction (what results in more than 60 disease subtypes of 
COVID-196) together with the fast evolution of the pandemic makes COVID-19 outcome prediction a 
challenging endeavour, especially if a profound evaluation using patient cohorts from geographically distinct 
regions is not performed. 
To address this need, we used the largest and the most geographically extended patient’s dataset to date for 
developing and extensively validating a simple but yet clinically useful machine learning-based online model 
for doctors to predict mortality in COVID-19 patients at any time during hospitalization. To assist the real 
clinical needs during different pandemic scenarios we offer two predictor subtypes suited for undertriage and 
overtriage situations (https://gomezvarelalab.em.mpg.de/codop/). 
The collective effort presented here unveils the power of machine learning for helping clinicians and patients in 
this pandemic. Based on its easiness to use and its generalizability among geographically very distinct patient 
cohorts, we aim for CODOP to become a useful triage tool, particularly in resource-limited countries.  
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Methods 
Patient cohorts 
The training and two test cohorts (test 1 and test 2) of this study are based on the SEMI (Sociedad Espanola de 
Medicina Interna) COVID-19 Registry.7 It is an ongoing multicentre nationwide cohort of consecutive patients 
hospitalized for COVID-19 across different Spanish regions (109 hospitals). Eligibility criteria were age ≥ 18 
years, confirmed diagnosis of COVID-19, defined as a positive result on real-time reverse-transcription-
polymerase-chain-reaction (RT-PCR) for the presence of SARS-CoV-2 in nasopharyngeal swab specimens or 
sputum samples, first hospital admission for COVID-19, and hospital discharge or in-hospital death.7 The 
SEMI-COVID-Registry was approved by the Provincial Research Ethics Committee of Málaga (Spain) and the 
Institutional Research Ethics Committees of each participating hospital. 
The test cohort from New York is based on the study from Del Valle et. al.8 consisting of 2 021 COVID-19 
patients hospitalized in the Mount Sinai Health System in New York City between March 21st and April 28th, 
2020. 
The evaluation cohorts used in the evaluation of the two online CODOP subtypes were provided by Honduras 
Medical Centre (45 patients, Tegucigalpa, Honduras), Hospital Santa Cruz Caja Petrolera de Salud (30 patients, 
Santa Cruz de la Sierra, Bolivia), Hospital San Juan de Dios (93 patients, Santa Cruz, Bolivia), Hospital Vélez 
Sarsfield (100 patients, Buenos Aires, Argentina), and Hospital Británico de Buenos Aires (150 patients, Buenos 
Aires, Argentina). The released of anonymized clinical data of all patients with COVID-19 used in this study 
has been reviewed by the institutional ethical review boards for each institution participating in this study. 
 
Predictors and outcomes 
We included patient characteristics and blood test values (see Supplementary Table 1) that were present in all 
training and test cohorts, measured at different times during hospitalization, as potential predictors. We limited 
our potential predictors to variables that had less than 40% missing values. The percentage of missing values is 
listed in Supplementary Table 1. Most of the variables have less than 5% of missing values. Missing values 
were imputed in all datasets using the mean value of original variables in the training cohort. We trained a 
binary classification model in which the outcome is patient mortality: 1, if the patient was deceased, or 0, if 
discharged. 
For each cohort, the subjects were divided into two groups based on their survival status. The normality of each 
numerical variable in the groups was tested with the Shapiro-Wilk normality test. None of the variables was 
normally distributed. For each variable statistical difference was tested between the two groups with the 
Wilcoxon rank-sum test for numerical variables and with the chi-squared test for categorical variables. The 
obtained P-values were adjusted for multiple testing by Benjamini-Hochberg Procedure.  
 
CODOP development 
CODOP was built using modified stable iterative variable selection (SIVS)9 and linear regression with least 
absolute shrinkage and selection operator (lasso) regularisation.10 In model building only the training cohort was 
used and models were built using 10-fold cross-validation. In the feature selection stage of SIVS, 100 models 
were built and for each model selected variables were recorded. For reducing the number of features to as few as 
possible (therefore, increasing the easiness of use of CODOP), we tuned the weighting function in SIVS (called 
variable importance scoring) so that only features occurring in all of the 100 models were selected for the final 
model building stage. This method has shown to be very efficient, especially when the ratio of positive and 
negative outcomes is imbalanced11. Lasso models were built in R12 (version 3.6.0) package glmnet10 (version 
4.1-1). All predictions were done blinded to the final clinical outcome. For converting numeric prediction into 
binary prediction, Youden’s J statistic was used.13 For building the two online CODOP subtypes we used 
alternative thresholds, which were selected to be the largest threshold value in the training cohort with a 
sensitivity of 95% for CODOP-Ovt and specificity of 95% for CODOP-Unt. Calibration plots were created with 
R package caret14 (version 6.0-86). Survival analysis was performed using univariable Cox proportional hazards 
regression model.15 Survival analysis and Kaplan-Meyer plots were produced with R packages survival16 (R 
package version 3.2-11) and survminer17 (R package version 0.4.9). For horizon analyses, the data were 
considered separately for survival time of one to nine days.  
 
Benchmarking 
To evaluate the performance of CODOP we used three benchmark methods: COPE18, model by Zhang et al.19, 
and a univariable model. COPE model is a linear regression model, which uses variables age, respiratory rate, 
C-reactive protein, lactic dehydrogenase, albumin, and urea. Zhang et al. model is a logistic regression model, 
which uses variables age, sex, neutrophil count, lymphocyte, platelet, C-reactive protein, and creatinine. From 
the different models described in Zhang et al., model DL for prediction of death (Supplementary Table 2 of 
Zhang et al.) was used for benchmarking purposes. Univariable analysis was performed in the training dataset 
for all variables. The best univariable model was selected based on the average ranking of AUROC, accuracy, 
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sensitivity and specificity. Different models were evaluated using four evaluation metrics: area under receiver 
operating curves (AUROC), accuracy, sensitivity, and specificity. The metrics were calculated using R packages 
pROC20 (version 1.17.0.1) and caret14 (R package version 6.0-86). 
 
Online evaluation 
Five different Latin American hospitals provided the values for the 12 features used by CODOP that were 
measured in patients at two different time points between March 7th 2020 and June 7th 2021: during the time of 
hospitalization, and the worst values measured during hospitalization. The former datasets were used for 
calculating AUROC, calibration curves, and confusion matrices. Both times points were used for performing 
horizon analysis and risk-stratification. All predictions were done blinded to the final clinical outcome. 
 
Role of the funding source 
The Max Planck Society support the payment of the article processing fees. No other funding supported the 
study. The funders of the had no role in study design, data collection, data analysis, interpretation of data, 
writing of the report, or in the decision to submit the paper for publication.
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Results 
CODOP development, performance and benchmark. 
We developed CODOP following a multistep process (Figure 1) using a training dataset with measurements of 
20 features (18 blood biochemical parameters plus Age and Sex; Supplementary Table 1) routinely measured 
during admission on 15 902 COVID-19 patients hospitalized in 109 Spanish healthcare centres during the first 
COVID-19 wave that occurred in Spain between February 5th and July 6th 2020 (SEMI-COVID-19 Network 
database7). 
As a first step, data pre-processing included standardization of the laboratory tests units and imputation of the 
missing test values, which is characteristic for real-world clinical practice (Supplementary Table 1). Using linear 
Lasso, 10-fold cross-validation and SIVS we obtained a final CODOP model using 11 blood biochemical 
parameters plus Age (Supplementary Table 2 and Supplementary Figure 1). Detail analysis indicated that 
elevated values of Age, neutrophils, C-reactive protein, creatinine, lactate dehydrogenase, serum sodium, serum 
potassium, glucose and D-dimer, and reduced values of platelets, eosinophils and monocytes were positively 
correlated with in-hospital death, respectively (Supplementary Table 3).  
Next, we benchmarked the performance of CODOP, using the same training dataset, against the predictor 
developed by Zhang et. al.19, against the predictor COPE18, and against Age (as the univariable feature with 
more predictive power; Supplementary Table 4). The two prognostic models were selected based on the 
availability of the model’s details and their use of blood-based features. CODOP showed a superior 
discriminative ability in predicting in-hospital mortality (area under the receiver operating curves or AUROC: 
0·889, 95% CI 0·885-0·894; Figure 2A) reaching 0·84% and 0·78% sensitivity and specificity, respectively 
(Supplementary Table 5). In addition, CODOP has better calibration for all the different risk groups as reflected 
by a lower RMSE value (Figure 2B and Supplementary Table 6). A detailed inspection of the calibration curves 
shows that the predictor published by Zhang et al. underestimated the probability of death for low-risk patients 
and overestimates the probability of death for high-risk patients. On the other side, while COPE underestimates 
the probability of death for all risk groups, Age showed a clear overestimation (Figure 2B). 
 
CODOP testing with independent and external cohorts. 
The size, demographic diversity (in terms of age, gender, ethnicity and comorbidities; see Table 1 of Rojo et. al. 
7), and geographical spread of the training dataset, suggest the generalizability of the predictions made by 
CODOP. To challenge this, we investigated the discriminative ability and calibration of CODOP in three 
independent test cohorts.		
On the one side, we used two time-sliced cohorts with COVID-19 patients hospitalized during the second and 
third COVID-19 waves that occurred in Spain between July 7th and December 6th 2020 (Test 1; 3 118 patients) 
and between December 7th 2020 and March 31st 2021 (Test 2; 566 patients). Notably, ROC and calibration 
curves show that the performance metrics are preserved in these two cohorts (Supplementary Figure 2, 
Supplementary Table 5 and Supplementary Table 6). Furthermore, the generalizability of CODOP was also 
demonstrated on a separate test cohort (External Test 3) consisting of 2 021 COVID-19 patients hospitalized in 
the Mount Sinai Health System in New York City between March 21st and April 28th, 2020.8 These results 
strongly suggest that CODOP is not influenced by the inherent changes occurring during the pandemic (e.g. the 
appearance of different virus variants, the used of more tailored clinical interventions, etc.). Of note, the 
percentage of deaths among these test cohorts is similar (Supplementary Table 7), ruling out an artefactual 
influence due to the time-sliced nature of these cohorts. Finally, CODOP overperformed both of the 
benchmarked predictors and Age in the three test cohorts (Supplementary Figure 2, Supplementary Table 5, and 
Supplementary Table 6), suggesting that it captures key biomarkers involved in the physiological deterioration 
of COVID-19 hospitalized patients. 
 
Estimation of fixed prediction horizons and dynamic risk-stratification.  
Many patients of the different cohorts had multiple blood samples taken during their hospitalization. We 
compare the discriminative ability of CODOP at a fixed time before the clinical resolution using the training 
cohort. On average, CODOP predicted the outcome of all patients nine days in advance with an average 
sensitivity (at a fixed specificity of 75%) and AUROC values higher than 90% (Figure 3A and Supplementary 
Table 8, respectively). In comparison, CODOP maintained a stable sensitivity along the nine days horizon time 
significantly outperforming (P<0.01, paired two-sided T-test) the other benchmarked predictors. 
Next, we demonstrated that CODOP enables a continuous stratification of patients into a high-risk group over 
the course of the hospitalization, as patients with a higher CODOP score assigned were more likely to die over 
time (Figure 3B). We obtained similar stratification results when using the three test cohorts (Supplementary 
Figure 3). Hence, CODOP represents an early and dynamic warning tool in the clinical status of COVID-19 
patients. 
 
Multinational evaluation of an online CODOP predictor.  
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During the COVID-19 pandemic, the availability of resources in hospitals around the world experiences 
significant fluctuations following successive infection waves. Thus, a clinically useful prediction tool needs to 
reckon with these dynamic scenarios for effectively assisting undertriage and overtriage decisions. 
We developed and validated two subtypes of our predictor, CODOP-Ovt (from overtriage) and CODOP-Unt 
(from undertriage), intending to optimize the triage of patients at high risk of death upon arrival to the hospital 
and after their first blood analysis. CODOP-Ovt maximizes the negative predictive value or the detection of 
high-risk patients (high sensitivity) and it is meant for scenarios where overtriage is possible because hospital 
resources are not the main limitation. On the other side, CODOP-Unt maximizes the positive predictive value by 
trying to avoid the inclusion of false high-risk patients (high specificity) and it might be preferred in pandemic 
conditions when hospital resources are limited and undertriage needs to be considered. 
Using the initial training cohort, CODOP-Ovt identified >95% of the patients that finally died in hospital at nine 
days before clinical resolution (Supplementary Figure 4A). As expected, this increase in sensitivity is 
concomitant with reduced specificity (60-70%; Supplementary Figure 4B). Notably, these metrics are within the 
range of recommended under- and overtriage levels ranging from 5-10% and 25-50%, respectively.21 The 
opposite results were obtained with CODOP-Unt, where more than 95% of the patients that survived were 
correctly predicted as low-risk (Supplementary Figure 4B) while 40-50% of the patients that died in hospital 
were not detected in advance (Supplementary Figure 4A). Confusion matrixes show similar overall performance 
for both CODOP subtypes in all test cohorts (Supplementary Tables 9-12).  
Following, we constructed and evaluated an easy-to-use web-based application 
(https://gomezvarelalab.em.mpg.de/codop/) that offers the possibility to choose between CODOP-Ovt and 
CODOP-Unt. The web application includes a detailed description of the CODOP project and instructions on 
how to use the prediction tool. The web application has been tested using different devices, web browsers and 
operative systems (Supplementary Table 13). In all cases, predictions were calculated in less than 2 seconds for 
datasets up to 2 000 patients (data not shown). Further, the Data Protection Office of the Max Planck Society 
assisted in assuring the legal fit of the web application to the General Data Protection Regulation (GDPR). 
To make a stringent external evaluation of this application with datasets collected from very different patient 
cohorts, we established a multinational collaboration with five hospitals from three Latin American countries 
(Figure 4A), which at the time of this evaluation were under a new surge of COVID-19 infections and 
admissions coinciding with the beginning of the Autumn-Winter season in the Southern Hemisphere. All these 
hospitals provided the values for the 12 features used by CODOP and measured in patients at the time of 
hospitalization between March 7th 2020 to June 7th 2021. Following, these data were uploaded to the two 
CODOP online subtypes and we obtained the mortality predictions that were compared to the real patient 
outcome (for which the online predictor was blinded). 
Importantly, AUROC values, horizon, calibration, and risk-stratification curves for CODOP-Ovt demonstrate 
the generalizability of the predictor (Supplementary Figure 5, Supplementary Table 5 and 6). A detailed analysis 
of the results indicates that if these were a prospective study, CODOP-Ovt would have identified the majority of 
the patients that finally died during hospitalization albeit wrongly classifying as high-risk a significant number 
of patients that finally survived (73-100% sensitivity and 48-70% specificity, respectively; Figure 4B and 
Supplementary Table 14). On the other side, the use of CODOP-Unt would have correctly triaged the vast 
majority of the survivors despite missing a significant number of patients that finally died (84-100% specificity 
and 14-50% sensitivity, respectively; Figure 4B and Supplementary Table 14). These results strongly suggest 
that the online version of CODOP could represent a useful clinical tool in the triage decision protocols. 
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Discussion 
The differential access and the low rates of COVID-19 vaccinations, the emergence of more contagious viral 
variants, and the waning of the immune protection project a longer period of health systems under severe strains 
leading to a bigger number of COVID-19 related deaths, particularly in resource-limited countries. A 
conflagration-like scenario will likely be the final set of the pandemic for many nations.22 As a result of an 
altruistic multicontinental effort, we developed and evaluated CODOP, a machine-learning-based online tool 
able to assist in triage decisions in hospitalized COVID-19 patients. CODOP uses 12 clinical parameters easy to 
collect in most hospitals. Its predictive performance among very different cohorts of patients strongly suggests 
its generalizability and supports its potential for improving patient care during this pandemic. 
CODOP satisfies the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 
Diagnosis principles23 (TRIPOD; Supplementary Table 15), follows the recently proposed MINimum 
Information for Medical AI Reporting24 (MINIMAR; Supplementary Table 16 and 17), and it has been 
successfully checked for the risk of bias and applicability using the Prediction model study Risk of Bias 
Assessment Tool25 (PROBAST; Supplementary Table 18). 
The use of such an early warning system like CODOP could potentially represent an important help in clinical 
decision-making including the prioritization of care and resource allocation. The novelty of the COVID-19 
disease and its toll on the health systems has led to dozens of triage policies, many of them based on some form 
of Sequential Organ Failure Assessment (SOFA) scores.26 In addition, several machine learning-based 
prediction tools have been developed during this pandemic. However, independent validation studies have 
dismissed the clinical utility of all these models3, 4 and have indicated common pitfalls to be avoided such as 
small sample size, use of variables not easily measurable in most hospitals, lack of external evaluation datasets 
gathered in geographically different cohorts, etc. To avoid this “dataset shift” problem and aim to increase the 
generalization of CODOP, we set to satisfy the so-called stability property.5 For this we used an initial training 
and test cohorts encompassing 21 607 patients from more than 110 hospitals spread over Spain and the USA and 
gathered during three pandemic waves. Both the size, heterogeneity of the patient population (in terms of age 
range, ethnicity, comorbidities, etc.), and the myriad of clinical and analytical procedures performed during the 
pandemic, ensures a significant number of perturbations (shifts) in how the data were generated. This strategy 
seems to be supported by the stable performance of our predictor on the external online evaluation performed 
with five patient cohorts from three Latin American countries. We expect that future participation of more 
institutions from regions non-represented in our study (Africa, Asia) will improve the reproducibility and overall 
clinical utility of CODOP supporting subgroup-specific predictions (e. g., based on underlying comorbidities or 
ethnical background). 
In addition to the characteristics of our cohorts, we hypothesized that the higher performance achieved by 
CODOP when compared to published mortality risk scores is due to the use of a group of biochemical 
parameters representing the main biological pathways involved in the pathogenesis of SARS-CoV-2. A very 
common clinical manifestation in critical COVID-19 patients is composed of a deregulated immune response 
and a robust inflammatory reaction (known as “hypercytokinemia” or “cytokine storm”), which ultimately leads 
to tissue injury.27 Recent reports show a downregulated type-I interferon response leading to an increase of 
neutrophils in severe COVID-19 patients.28. These findings go in line with our data showing alterations in 
several myeloid cells (eosinophils, monocytes) including an upregulation in the number of neutrophils 
(Supplementary Table 3). Myeloid cells are crucial for mounting a successful immune response against viruses 
and for the existence of hypercytokinemia.29 The increased level of CRP and LDH in our dataset and their 
predictive value could represent easy-to-measure hallmarks of the exacerbated inflammatory response 
associated with a high risk of COVID-19-related death. These and other model features linked to 
thromboembolic complications (i. e., D-dimer and Platelets) and organ failure (i. e., Creatinine), could represent 
a warning signature easy to evaluate at early stages of the infection, even before failure in major functions can 
be monitored. 
The quality, availability, and consistency of biomedical data make reproducibility very challenging for machine 
learning tools applied to health30 (MLH). The reproducibility of MLH is of critical importance as predictions 
can affect human health care. Careful analysis indicates that CODOP fulfils the main performance criteria 
reached in other machine learning subfields when analysing the three main reproducibility principles. In 
comparison to previous studies, CODOP excels in the “Conceptual Reproducibility or Replicability” due to the 
use of geographically spread cohorts.30 
The overall performance of CODOP has inherent limitations, some of them generalizable to any MLH. On the 
one side, the use of training and test datasets with a high degree of perturbations (see above) adds several 
sources of variability31: pre-analytical due to differences in blood sampling, analytical due to different 
laboratory protocols, intra- and inter-individual, and inter-hospital and geographical differences in clinical 
practices. As an additional factor, the high diversity of COVID-19 encompassing more than 60 disease 
subtypes6 sets a limitation in terms of the discriminability ability and the overall clinical utility of any MHL. In 
contrast to other predictors and to facilitate its use, CODOP does not take into account the level of care received 
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by each patient (e.g., ICU versus basic care), which influences the outcome of the patient and perturbs the 
discrimination ability of CODOP (as predictions are made with the data from blood analyses at hospital 
admission). A clear example is a slightly lower performance of CODOP-Ovt (sensitivity of 73%) in the case of 
the “Hospital Vélez Sarsfield¨ from Buenos Aires (named as Argentina (b) in Figure 4B), where all patients 
analysed by CODOP were finally treated in the ICU. On the other hand, CODOP-Unt would have correctly 
suggested triaging 84% of these patients already on the day of admission, therefore offering a significant clinical 
utility. Finally, the clinical utility of MHL has to take into account the changing pressure supported by hospitals 
during the successive pandemic waves. Our data support the strategy of using either CODOP-Unt or CODOP-
Ovt as an effective first-line triage tool in the overall clinical decision procedure.
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Figures 

 
 
 
Figure 1. Flowchart depicting the different patient cohorts used in this study and the steps followed during the 
development, test, and independent evaluation of CODOP. 

Data Sources Pre-processing
Linear Lasso

Development and Test
Model

and Benchmark External Evaluations
Performance

metrics

Training
(15,902 patients

from Spain; 1st wave)

Test 1
(3,118 patients

from Spain; 2nd wave)

Test 2
(566 patients

from Spain; 3rd wave)

External Test 3
(2,021 patients
from New York)

Online External
(418 patients

from 3 Latin America 
countries)

Standardization of 
laboratory tests units

Imputation

10-fold cross-
validation

Feature
Selection

Zhang et. al.

Univariate

External Test 3 
(from New York)

Online external
(5 hospitals

from 3
Latin American 

countries

Calibration

AUROC, accuracy, 
sensitivity

and specificity

Horizon and
Kaplan-Meyer

analyses

COPE

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.09.20.21263794doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263794
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 
Figure 2. Discriminatory ability (using area under the receiver operating curves or AUROC; A) and calibration 
curves (B) for CODOP, COPE, Zhang et al., and Age in the training dataset.
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Figure 3. Horizon analysis (A) and survival analysis (B) in the training dataset. In the horizon plot x-axis 
represents the number of days at the hospital before clinical resolution, the bar plot is for the number of samples 
(the green colour is for survival and red for death), and lines are for sensitivity when the specificity was fixed at 
75% in the training cohort (the black line is CODOP, the red line is COPE, the green line is Zhang et al., and the 
blue line is Age).
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Figure 4. The geographical location of the external cohorts from 6 different Latin American hospitals used 
during the online evaluations (A) and performance of web calculators CODOP-Ovt and CODOP-Unt in these 
external cohorts (number of patients from each institution are indicated in parenthesis; B). 
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