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A B S T R A C T

Repetitive head impacts (RHI) are associated with an increased risk of developing various neurode-
generative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and most notably,
chronic traumatic encephalopathy (CTE). While the clinical presentation of AD and PD is well estab-
lished, CTE can only be diagnosed post-mortem. Therefore, a distinction can be made between the
pathologically defined CTE and RHI-related functional or structural brain changes (RHI-BC) which
may result in CTE. Unfortunately, there are currently no accepted biomarkers of CTE nor RHI-BC, a
major hurdle to achieving clinical diagnoses. Interestingly, speech has shown promise as a potential
biomarker of both AD and PD, being used to accurately classify individuals with AD and PD from
those without. Given the overlapping symptoms between CTE, RHI-BC, PD and AD, we aimed to
determine if speech could be used to identify individuals with a history of RHI from those without.
We therefore created the Verus dataset, consisting of 13 second voice recordings from 605 profes-
sional fighters (RHI group) and 605 professional athletes in non-contact sports (control group) for a
total of 1210 recordings. Using a deep learning approach, we achieved 85% accuracy in detecting
individuals with a history of RHI from those without. We then used our model trained on the Verus
dataset to fine-tune on publicly available AD and PD speech datasets and achieved new state-of-the-art
accuracies of 84.99% on the AD dataset and 89% on the PD dataset. Finding a biomarker of CTE and
RHI-BC that presents early in disease progression is critical to improve risk management and patient
outcome. Our study is the first we are aware of to investigate speech as such a candidate biomarker of
RHI-BC.

1. Introduction

Concussion is defined as a form of mild traumatic brain
injury (mTBI) that disrupts regular brain function [71]. Con-
cussion can be caused by blunt force trauma to the head or
rapid acceleration of the head, as occurs in whiplash [77].
While the acute symptoms of concussion generally resolve
within a week, long term e�ects can occur from multiple
or even a single concussion [52]. However, focusing on the
long-term risks associated exclusively with concussion may
miss key information. Athletes for example tend to underre-
port the number of concussions they have had, making anal-
yses between health outcomes and number of concussions
di�cult. Further, there is no objective threshold one can use
to di�erentiate a concussion from a subconcussive blow to
the head [52]. Finally, recent literature suggests that the be-
havioural symptoms of concussion result from physical dis-
ruption to brain function, while subconcussive impacts have
the potential to cause the long-term e�ects often attributed
to concussion [81]. Therefore, we will use the term repet-
itive head impacts (RHI) in reference to blows to the head
which may or may not have resulted in a clinically diagnosed
concussion. Correspondingly, a history of RHI is associated
with an increased risk of developing Alzheimer’s disease
(AD), Parkinson’s disease (PD), amyotrophic lateral scle-
rosis (ALS), chronic traumatic encephalopathy (CTE) and

<Corresponding author
michael@relup.io (M.G. Tauro)

ORCID(s): 0000-0002-1676-8706 (M.G. Tauro)

other disabilities [43, 34, 76, 13, 42].

CTE is a neurodegenerative disorder linked to a history
of RHI [55]. Originally documented in professional boxers,
CTE has now been identified in former professional football,
hockey, soccer and rugby players, as well as combat veterans
and others [69, 16, 61, 50]. While the symptoms of CTE are
quite heterogeneous, [55] has proposed a staged-based char-
acterisation of the disease, with increasing stages relating to
increased neurodegeneration and symptom severity. Stage
1 may be asymptomatic, with memory problems occurring
rarely. Stage 2 symptoms include severe depressive episodes
as well as behavioural changes and outbursts. Stage 3 is char-
acterized by the first signs of cognitive deficits, such as ex-
ecutive dysfunction, memory loss, attentional and concen-
tration di�culties and explosive outbursts. Stage 4 symp-
toms may include more severe cognitive deficits, including
increased deficits in memory, attention, executive function-
ing, language, as well as severe depression, suicidal tenden-
cies, paranoia, gait and visuospatial di�culties, dysarthria
and parkinsonism.

CTE is pathologically characterized, with diagnoses only
possible post-mortem [54]. Indeed, the clinical presenta-
tion of CTE is not universally agreed upon, nor is the num-
ber or severity of RHI needed to precipitate CTE [82, 43,
30]. Therefore, in this paper a distinction is made between
CTE, and RHI-related functional or structural brain changes
(RHI-BC). Unfortunately, there are no accepted biomarkers
of CTE or RHI-BC [9]. As CTE is a degenerative disor-
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der, early detection through the use of biomarkers could be
critical in improving patient outcome and slowing disease
progression.

The use of speech as a biomarker of neurodegenerative
disorders has recently come under investigation with promis-
ing results [68]. Using voice recordings, [59] achieved 90%
accuracy in classifying those with Parkinson’s disease (PD)
from those without. [85] achieved 91.6% accuracy in clas-
sifying those with in classifying ALS patients with bulbar-
onset from those without. While the previous two studies
relied solely on the acoustic features of speech, [29] used a
combination of acoustic, semantic, lexical, as well as other
linguistic features to achieve 81.9% accuracy in classifying
those with Alzheimer’s disease (AD) from those without.
This warrants the investigation of speech as a biomarker of
RHI-BC. In fact, not only does exposure to RHI increase
the risk of developing PD, AD and ALS, but CTE also has
overlapping symptoms with each of the aforementioned neu-
rodegenerative disorders [55, 32]. Further, speech problems
have long been considered a symptom of CTE. Indeed, [51]
commented that many boxers examined had "hesitancy of
speech", "indistinct", slow, and "thick, mu�ed, and hard
to understand" speech, along with other issues. [23] de-
scribed case reports of 11 boxers, with 6 listed as having mo-
tor speech problems. More recently, [46] characterised the
speech of 102 active and retired professional fighters in com-
parison to 27 healthy controls. Professional fighters were re-
ported to have a significantly slower articulation rate, with
88% of fighters having a slower articulation rate than the
mean of the control group. Fighters also exhibited increased
interruptions in speech, such as pauses, stuttering, and other
dysfluencies. The authors noted that the speech character-
istics of the fighters are also observed in several types of
dysarthria, PD and parkinsonism. Yet, as speech problems
are associated with RHI, and speech has been used to suc-
cessfully detect neurodegenerative disorders that present sim-
ilarly to CTE, speech might also serve as a biomarker of
RHI-BC.

The investigation of speech as a biomarker of various
diseases has historically been influenced by other popular
speech classification tasks such as speaker recognition [68].
Traditionally, the best results in speaker recognition were
achieved using some form or combination of a Gaussian Mix-
ture Model (GMM) [31]. More specifically, a GMM-Universal
Background Model (UBM) was used by [3] to predict PD
severity in a longitudinal study. Yet the current trend has
now shifted to the use of deep neural networks (DNN) [6].
Indeed, many recent performance advancements in speaker
recognition and verification tasks are achieved through the
use of x-vectors and other similar embedding approaches
[73, 10]. x-vectors are fixed-length embedding vectors of
variable length voice recordings. x-vectors have been used
to achieve state of the art accuracy in detecting gender, lan-
guage and PD. They have also recently been used to de-
tect AD [59, 72, 66, 63]. Notably, x-vectors result in text-
independent speaker identification, meaning x-vectors cap-

ture the acoustic properties of speech, but not the individ-
ual words or meaning. This was considered advantageous
as motor-speech disorders occur earlier than language im-
pairments in PD and ALS, thus we reasoned this could be the
case in individuals exposed to RHI [36, 41, 83]. Thus, as our
speaker recognition model, we decided to use the x-vector
scheme with an Emphasized Channel Attention, Propaga-
tion and Aggregation-Time Delay Neural Network (ECAPA-
TDNN) architecture. The ECAPA-TDNN model was de-
veloped by [27] and improved upon the previous TDNN-x-
vector architecture to achieve state of the art performance in
speaker recognition tasks.

The prevalence of CTE within populations exposed to
RHI is unknown, with estimates ranging from 5-99% [18, 11,
57]. As the incidence rate and clinical presentation of CTE
remain ambiguous, we aimed to determine if state of the
art speech classification algorithms based on modern deep
learning techniques could di�erentiate individuals with RHI
exposure from those without. To do so, we created the Verus
corpus, composed of 1210 individuals, corresponding to one
13 second voice recording each. Of these 1210 individu-
als, 605 were retired and active professional fighters and 605
were retired and active professional athletes in non-contact
sports. The fighters were composed of boxers, mixed martial
artists (MMA), kickboxers and Muay Thai fighters. These
fighters were considered the group with RHI exposure, or
the RHI group. The athletes in non-contact sports, consid-
ered the control group, were composed of soccer, basketball
and baseball players as well as golfers, swimmers and track
and field athletes. The two groups (RHI and control) were
matched for age, ethnicity and gender. The dataset will be
further characterized in the methods section.

At various stages of CTE, clinical symptoms may present
similarly to other neurodegenerative disorders such as AD,
PD and ALS [86]. However, it is unclear to what degree sim-
ilarities exist between these disorders along the dimension of
speech. Concordantly, we were interested in determining if
our model trained on the Verus dataset could be re-purposed
to detect AD and PD at or above the current state-of-the-art
accuracy on certain AD and PD corpora. Successful transfer
learning from the Verus dataset to the aforementioned neu-
rodegenerative disorders would suggest that our model was
identifying vocal features in the Verus dataset that are re-
lated to brain damage. This would in turn support the utility
of speech as a biomarker of RHI-BC.

2. Proposed Approach

While deep learning approaches can produce state-of-
the-art results in speaker recognition and related tasks, they
may require significantly more data to be trained on com-
pared to non-deep learning algorithms. Unfortunately, in the
field of medicine, domain-specific data is often di�cult to
obtain, and algorithms must be trained on datasets of sub-
optimal size. Therefore, standard practice is to pretrain a
deep learning model on a domain non-specific task before
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Figure 1: Depiction of the training process used in this study. a) An ECAPA-TDNN model is trained to classify speaker
identities with the Voxceleb1+2 dataset. b) The pretrained ECAPA-TDNN model from “a)” is fine-tuned on the Verus dataset
to differentiate the RHI from control group. c) Finally, the pre-trained ECAPA-TDNN model from “b)” is fine-tuned on either
the DementiaBank or Gita dataset in order to detect AD or PD, respectively.

fine-tuning on the task of interest [47, 70]. This allows for
the learning of lower-level features which may be domain-
unspecific in nature [8]. Building on this standard, we adopted
a multi-step transfer learning approach, where we first pre-
trained our ECAPA-TDNN model on a large, domain non-
specific dataset and then subsequently fine-tuned on smaller,
domain-specific datasets. This approach outlined below can
also be visualized in Figure 1.

Stage 1 of our approach entailed training a speaker recog-
nition model. In Stage 2, we used the ECAPA-TDNN model
that was pretrained for speaker recognition and fine-tuned
it to classify individuals with a history of RHI from those
without. In Stage 3, we utilized the ECAPA-TDNN model
from Stage 2 and fine-tuned it to perform either AD or PD
detection. Using this multi-step transfer learning approach,
we start with the broad task of speaker recognition and then
successively transfer to the more specific tasks of RHI detec-
tion followed by AD and PD detection. This order of opera-
tions utilized the larger datasets first, with the intention that
the smaller datasets will be used primarily to learn domain-
specific features. As some symptoms described in people
with a history of RHI present similarly to both PD and AD,
it is possible that some of the RHI-specific features learned
in Stage 2 will be preserved in Stage 3 [8]. This proposed
progression of feature learning is shown in Figure 2.

The feature extraction, training and evaluation of the model
were mediated through a modified SpeechBrain recipe. Speech-
Brain is an opensource toolkit that provides end-to-end meth-
ods for various audio processing tasks [67]. The recipe adapted
for our project converts raw audio sampled at 16 kHz into
short-time Fourier transformed (STFT) filter banks (FBANKS)
and augments the data with noise using the Room Impulse
Response and Noise (RIRS) Database, while also randomly
dropping a specified number of frequencies [45]. FBANKS
are widely used features in speech and speaker recognition,
especially when using deep learning approaches [24]. The
SpeechBrain recipe employs the ECAPA-TDNN model as
the embedding extractor. Fundamentally, the ECAPA-TDNN
converts variable length utterances into fixed-length embed-
dings (here termed BC-vectors) which can then be used to
characterize speech, as shown in Figure 3. The comparison
of BC-vectors determines which speaker (or group) an utter-
ance belongs to. The ECAPA-TDNN model di�ers from pre-
vious TDNN models in the inclusion of ResNet-like layers,
termed SE-Res2Blocks, that are interjected with skip con-
nections within the TDNN layers. This allows for greater
"... emphasis on channel attention, propagation and aggre-
gation", which has led to state-of-the-art accuracy in speaker
recognition tasks [27, 25]. Once the BC-vectors are extracted,
they are output to a classifier which computes the cosine sim-
ilarity with additive angular margin (AAM) loss [26].
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Figure 2: Depiction of the proposed feature learning resulting from the multi-step transfer learning approach. a) Stage 1 results
in the learning of low-level features pertinent to speaker recognition. b) Stage 2 involves the transfer of the low-level features
from Stage 1 and the learning of RHI-related features. c) Stage 3 involves the transfer of features from Stage 1 and 2 as well as
the learning of AD or PD-specific features.
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3. Materials

3.1. VoxCeleb Datasets

The VoxCeleb datasets, termed VoxCeleb 1 and Vox-
Celeb 2 are speech corpora composed of over 2000 hours
of speech from over 7000 speakers, downloaded from pub-
licly available videos on YouTube [60]. These datasets are
commonly used to benchmark state-of-the-art performance
in speaker recognition tasks [19].

3.2. Verus Dataset

The Verus dataset is composed of 1210, 13-second record-
ings, each corresponding to a distinct individual. The record-
ings were downloaded from publicly available interviews on
YouTube and edited using the Audacity application [5]. Each
recording is composed of 13 seconds of uninterrupted spon-
taneous speech. The corpus can be further divided into the
RHI and control group, each having 605 recordings. The
RHI group is composed of active or retired professional box-
ers, MMA, Kickboxers and Muay Thai fighters. To be con-
sidered a professional, they must have currently or previ-
ously competed in a professionally sanctioned league, such
as the UFC, Glory, One Championship, Bellator, or other
similar leagues. Their a�liation to these leagues was veri-
fied by consulting boxrec.com for boxers, glorykickboxing.com
for kickboxers, sherdog.com for MMA, and onefc.com for
Muay Thai fighters. Professional fighters were selected for
the RHI group as data indicate they su�er significantly more
RHI and concussions than players of contact sports like foot-
ball or hockey [84, 65, 17]. The control group is composed
of 605 recordings of active or retired professional athletes
from non-contact sports such as basketball, baseball, soc-
cer, golf, tennis, cricket, track and field and rowing. Profes-
sional athletes were chosen as the control group as a means
to control for di�erences that might exist between profes-
sional fighters and non-athletes, such as di�erences in edu-
cation, socioeconomic status or hormone levels [2, 33]. The
RHI and control groups were controlled for age, gender and
race/ethnicity. We also calculated the mean fundamental fre-
quency (F0) and mean energy of all the recordings of fighters
and athletes, as displayed in Table 3 . The F0 is commonly
used as a proxy of the average pitch of a recording [37]. We
computed the F0 through Librosa’s use of the YIN algorithm
[53]. The mean energy is used to indicate the average inten-
sity or loudness of a recording [44]. The mean energy was
also computed using Librosa. These metrics were calculated
to ensure that simple, uninformative di�erences such as pitch
or loudness did not exist between the two groups. Tables
1 and 2 provide a more thorough description of the demo-
graphic data pertaining to the Verus dataset while Table 3
contains the F0 and mean energy scores. This dataset was
used to train the RHI-detection model in Stage 2. Before
training, the Verus dataset was split into training and valida-
tion sets using stratified k-10 cross validation (CV). The final
accuracy will be the average accuracy across the 10 valida-
tion folds, with each fold composed of a distinct subset of
the data [78]. This CV approach was also applied to the De-
mentiaBank and Gita datasets described below.

Control RHI

N Total 605 605

N Male 555 (92%) 555 (92%)

N Female 50 (8%) 50 (8%)

N Black 209 (34%) 208 (34%)

N White 228 (38%) 226 (37%)

N Latin 72 (12%) 70 (12%)

N Oceania 60* (10%) 56* (9%)

Mean Age 35.6 36.34

Age STD 14.21 10.22

Table 1

Demographic data of the Verus dataset. * Denotes overlap
between "Oceania" and "White". STD = standard deviation,
N = number of subjects.

3.3. RHI Control Dataset

The RHI control dataset consists of 10, 13 second voice
recordings. The recordings were downloaded from publicly
available interviews on YouTube and edited using the Au-
dacity application [5]. The dataset is divided into a "RHI"
and "control" group. The RHI group consists of 5 individ-
uals who have a history of either CTE, probable CTE, or
RHI-BC. The control group consists of three chess players
and two golfers. The relevant medical history of the RHI
group is shown in Table 2.

3.4. DementiaBank Dataset

The DementiaBank dataset was created by [7] as a means
to better characterize the behavioural neurological factors
that can aide in diagnosing AD. The section of this dataset
used in our study was the "Cookie Theft" description task,
where a subject was asked to describe a scene shown as a
picture. We included recordings of participants who were
listed as either "probable AD" or "possible AD", resulting
in 259 recordings from 167 speakers. We also included 236
recordings from 97 healthy controls. Each recording was
edited to include 13 seconds of uninterrupted spontaneous
speech, using Audacity [5]. In total, 60 recordings did not
contain 13 seconds of uninterrupted speech and were there-
fore edited to include the maximum amount of uninterrupted
speech under 13 seconds.

3.5. Gita Dataset

The Gita dataset is a speech corpus consisting of 50 sub-
jects with PD and 50 healthy controls matched for age and
gender [62]. The corpus included in this study is that of a
monologue, where participants were asked to describe their
daily routines. We included 100, 13 second recordings of
uninterrupted spontaneous speech of each individual listed
in the study. This resulted in 50 recordings of subjects with
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RHI Group Profession RHI-Related History

Terry Norris Boxer Boxing license not
renewed in year 2000
due to changes in
speech and suspicion
of suffering from "de-
mentia pugilistica"
[64].

James Te Huna MMA Retired from the UFC
due to brain imaging
showing multiple
"lesions" and having
memory problems
[75].

Stephan Bonnar MMA Retired from MMA af-
ter an MRI showed a
cavum septum pellu-
cidum [80].

Chris Benoit Professional Wrestler Diagnosed with CTE
[38].

Micky Ward Boxer Complains of chronic
headaches and nausea
[20].

Table 2

RHI group of the RHI Control dataset and their corresponding RHI-related history.

PD and 50 recordings of healthy controls. Each recording
was edited using Audacity [5].

4. Results and Discussion

4.1. RHI Detection

The average accuracy over 10 folds of the Verus dataset
was 85%. The accuracy of each fold, as well as the average
accuracy and standard deviation are shown in Table 4. The
youngest age of individuals correctly classified to the RHI
group was 21, all four of which were boxers. This is the
first time we are aware of that speech has been used to accu-
rately di�erentiate individuals with a history of significant
RHI from those without. Speech problems have long been
associated with RHI, yet how they relate to RHI-BC or CTE
severity has not been su�ciently explored. Literature per-
taining to boxers indicates that motor speech disorders occur
relatively frequently [51, 23, 46]. However, the prevalence
of motor speech disorders in the clinical description of CTE
as depicted by [55] is less clear. Dysarthria is sometimes
listed as a symptom of CTE, while language impairments
are commonly listed as symptoms of advanced stages of CTE
[58, 4]. Motor speech disorders di�er from language impair-
ments in both their symptoms and underlying pathophysiol-
ogy. Motor speech disorders (such as dysarthria) are char-
acterized by di�culties in producing or pronouncing words
or sounds [28]. Language impairments refer to di�culty in
understanding or creating language, which may occur with-
out any di�culties in the mechanical production of sounds
[12]. Motor speech disorders are generally caused by dam-
age to regions in the brain responsible for the motor control

and coordination of the muscles used to create speech. Re-
garding professional fighters, brain damage has been found
in the form of cerebellar scarring, depigmentation of the sub-
stantia nigra, pyramidal and extrapyramidal dysfunction and
cerebral atrophy [17, 21, 58]. Cerebellar scarring can lead
to ataxic dysarthria, a condition which presents with irreg-
ular rate of speech and stress patterns, scanning speech and
improper articulation [74]. Extrapyramidal dysfunction and
depigmentation of the substantia nigra can result in parkin-
sonism, a condition where speech may be a�ected by changes
in speed, decreased volume and pitch variability, pronun-
ciation abnormalities and decreased intelligibility [88, 35].
Indeed, parkinsonism, ataxic dysarthria and other forms of
dysarthria have all been documented in professional fighters,
while parkinsonism is also listed as a symptom of advanced
CTE [55, 17, 21, 58]. However, language impairments can
be caused by damage to cortical regions of the brain [12].
Their occurrence in the later stages of CTE is likely due
to the pathological progression of CTE, where cortical re-
gions tend to be a�ected later in the disease [1]. Further,
[9] found that although significant di�erences in regional
brain volumes existed between professional fighters and con-
trols, cognitive tests were largely indistinguishable. These
data seem to indicate that higher order processes like lan-
guage and cognition are not obviously a�ected in the early
stages of CTE or RHI-BC. This has been indicated in other
neurodegenerative disorders [36, 41, 83]. However, motor
speech disorders, which are caused by damage to subcorti-
cal or hindbrain regions, might manifest significantly earlier.
This would be consistent with our finding that four boxers
at just 21 years of age were correctly classified to the RHI
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Control RHI

Sport Baseball Basketball Golf Soccer Boxing MMA

N Total 187 186 46 104 283 307

N Black 28 (15%) 147 (80%) 1 (3%) 24 (23%) 126 (48%) 72 (25%)

N White 114 (61%) 22 (12%) 38 (83%) 56* (54%) 80* (31%) 151* (53%)

N Latin 40 (21%) 10 (5%) 3 (7%) 12 (12%) 27 (10%) 36 (13%)

N OCE (Oceania) 5 (2.6%) 1 (0.5%) 3* (7%) 33* (32%) 51* (20%) 5* (2%)

Table 3

Demographic data within the control and RHI groups of the Verus dataset. * Denotes
overlap between "Oceania" and "White". STD = standard deviation, N = number of
subjects.

Control RHI

Mean F0 266.20 273.29

F0 STD 109.82 115.04

Mean Energy 0.00792 0.00780

Energy STD 0.00458 0.00471

Table 4

Average F0 and mean energy scores calculated using the Verus
dataset. STD = standard deviation.

group.

4.2. RHI Control

A limitation of the relatively large Verus dataset is that
we could not gather relevant medical history of every indi-
vidual. As not every professional fighter will develop a neu-
rodegenerative disorder, and some athletes in non-contact
sports can indeed develop neurodegenerative disorders [48],
we reasoned that the accuracy of our model on the Verus
dataset might be lower than in a clinically controlled set-
ting. Thus, we created a small dataset in which the RHI
group was composed of individuals who were either diag-
nosed with CTE, suspected of having CTE, or had received
brain imaging results suggestive of trauma-induced damage.
Further, the control group was composed of three chess play-
ers (i.e. non-athletes) and 2 golfers. The relevant informa-
tion of these individuals is shown in Table 5. Our model
trained on the Verus dataset achieved 100% accuracy in pre-
dicting whether an individual belonged to the RHI or con-
trol group. While this is a small sample size, there are some
points that merit consideration. Our model accurately classi-
fied an individual who was diagnosed post-mortem as having
CTE, but was a professional wrestler, not a fighter. Further,
our model also accurately classified the three chess players as
belonging to the control group. This suggests the model can
generalize to individuals who were not either professional
fighters nor athletes. These findings also suggest that our

Verus Dataset Results

K1 Accuracy 86.89%

K2 Accuracy 87.6%

K3 Accuracy 87.6%

K4 Accuracy 85.95%

K5 Accuracy 82.64%

K6 Accuracy 85.95%

K7 Accuracy 80.17%

K8 Accuracy 79.34%

K9 Accuracy 86.78%

K10 Accuracy 87.6%

Average Accuracy 85.05%

STD 3.16

Table 5

K-Fold Cross Validation Results of the Verus Dataset. STD =
standard deviation

model may perform at over 85% accuracy when the medical
history of the subjects is already known.

4.3. Alzheimer’s Disease Detection

The average accuracy over 10 folds of the DementiaBank
dataset was 84.99%, as shown in Table 6. This is the high-
est accuracy we are aware of achieved on this dataset. [29]
achieved 81.9% accuracy using logistic regression and what
was described as a mixture of 4 latent variables, generally
corresponding to syntax/fluency, semantics, acoustics, and
other factors. In a more recent publication, [90] achieved
F1-micro and F1-macro scores of 0.799. They again used a
combination of acoustic and linguistic features, with "Con-
sensus Networks" (CN), deep neural networks that contain

MG Tauro et al. Page 7 of 11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.20.21263753doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263753
http://creativecommons.org/licenses/by-nc-nd/4.0/


Detecting a History of Repetitive Head Impacts

DementiaBank Results

K1 Accuracy 91.67%

K2 Accuracy 91.67%

K3 Accuracy 89.6%

K4 Accuracy 77.1%

K5 Accuracy 81.2%

K6 Accuracy 87.5%

K7 Accuracy 87.5%

K8 Accuracy 81.2%

K9 Accuracy 77.1%

K10 Accuracy 85.4%

Average Accuracy 84.99%

STD 5.54

Table 6

K-Fold Cross Validation Results of the DementiaBank dataset.
STD = standard deviation

a "discriminator" which functions similarly to a generative
adversarial network (GAN). Further, [89] achieved 88% ac-
curacy on a subset of the DementiaBank dataset, while [40]
achieved 91% accuracy. However, ([89] allowed for "spillover",
meaning data from the same patients were used in both the
training and validation set. Further, [40] included transcripts
from at least the "Cookie Theft" and "Recall" tasks and did
not indicate if they also included transcripts from the "Sen-
tence" and "Fluency" tasks. They also did not indicate whether
they included patients diagnosed with a disorder other than
AD in the AD group. Nonetheless, the literature indicates
that attempts at using machine learning to detect AD rely
more on linguistic than acoustic features [49]. This trend
might exist due to theoretical knowledge pertaining to AD.
Specifically, the symptoms of AD are often attributed to the
accumulation of misfolded proteins in the cerebral cortex. It
is thought that memory and cognition problems are amongst
the first symptoms in AD, with motor problems not occur-
ring until later stages when the misfolded proteins have sig-
nificantly accumulated in subcortical structures [87]. How-
ever, recent findings have shown that motor problems are
prevalent in AD and might present preclinically [15, 79, 14].
This aligns with our findings, as we achieved state-of-the-
art performance on the DementiaBank dataset using a model
which is text independent. To clarify, this means our model
was not able to utilize or learn any linguistic features, but in-
stead was able to di�erentiate subjects based on speech char-
acteristics like syllable rate, pitch and others. Our findings
provide motivation to further investigate the motor changes
evident in speech which could serve as an early biomarker
of AD.

4.4. Parkinson’s Disease Detection

The average accuracy over 10 folds of the Gita dataset
was 89% with a standard deviation of 7.3, as shown in Ta-
ble 7. The accuracy reported in [62] on this section of the
dataset was 81% with a standard deviation of 7. To deter-
mine if the di�erence between these two scores was statisti-
cally significant, we performed a two-tailed t-test assuming
unequal variance and an alpha value of 0.05. As the t-test
indicated a p-value of 0.022, we can assume our higher ac-
curacy is statistically significant from that achieved by [62].

5. Limitations

As previously stated, the current trend in speaker recog-
nition and related tasks is to use deep learning approaches
which learn features, as opposed to the previously standard
approach of engineering features to be fed to algorithms which
do not use deep neural networks [39]. This has lead to a
limitation in our study in the form of a trade-o�. Namely,
our deep learning approach results in higher accuracy at the
expense of interpretability. However, as the relationship be-
tween speech and RHI-BC has not been su�ciently char-
acterized, we reasoned feature engineering would be infe-
rior to our deep learning approach as it is not known which
features are relevant to the task. Another limitation to our
study is that the medical history of the subjects used was not
known. We have attempted to address this limitation, yet
further studies in a clinically controlled setting are needed.
Another limitation was that we did not control for bilingual-
ism. Recent data indicate that bilingualism may act as a form
of "cognitive reserve", thus delaying onset of symptoms in
neurodegenerative disorders like AD [56, 22]. It should be
noted that bilingualism appears to delay deficits in executive
functioning and has not been linked to motor-speech disor-
ders, yet it is still possible that our classification accuracies
would be higher if we excluded individuals who were bilin-
gual.

6. Conclusion

The long-term consequences of RHI are still being inves-
tigated, with indications that a history of RHI can increase
the risk of developing CTE, AD, ALS, PD and other dis-
orders [13, 34, 43, 42, 76]. Unfortunately, there are no ac-
cepted biomarkers of RHI-BC or CTE, thus tracking their
progression and mapping the level of RHI exposure to dis-
ease severity has proven di�cult [9]. In this study, we found
that a 13 second voice recording can be used to di�erenti-
ate those with a history of RHI from this without at 85%
accuracy. We then used the ECAPA-TDNN model trained
on RHI detection to achieve state-of-the-art results in de-
tecting AD and PD on the DementiaBank and Gita datasets,
respectively. Machine learning techniques have often fo-
cused heavily on language impairments when detecting AD
[29, 40, 49, 63]. Our study is the first we are aware of to focus
exclusively on acoustic, text-independent features of speech.
This might indicate that motor speech problems can serve as
a biomarker of AD. Further, our success in transfer learning
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Gita Dataset Results

K1 Accuracy 90%

K2 Accuracy 90%

K3 Accuracy 100%

K4 Accuracy 90%

K5 Accuracy 80%

K6 Accuracy 80%

K7 Accuracy 80%

K8 Accuracy 100%

K9 Accuracy 90%

K10 Accuracy 90%

Average Accuracy 89%

STD 7.37

Table 7

K-Fold Cross Validation Results of the Gita Dataset. STD =
standard deviation

is evidence that the features learned by the ECAPA-TDNN
model trained on the Verus dataset were related to speech
changes associated with brain damage. Finding a biomarker
of RHI-BC or CTE that presents early in disease progres-
sion could help with risk management and improve patient
outcome. Indeed, our model accurately classified 4 boxers
of just 21 years of age as belonging to the RHI group, sug-
gesting speech might serve as a such a biomarker. Future
research should aim to characterize the relationship between
speech disorders and progression of RHI-related neurode-
generative disorders.
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