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Abstract: The rising prevalence of multi-drug resistant organisms (MDROs), such as 
Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci 
(VRE), and Carbapenem-resistant Enterobacteriaceae (CRE), is an increasing concern in 
healthcare settings. Leveraging electronic healthcare record data, we developed a data-
driven framework to predict MRSA, VRE, and CRE colonization upon intensive care unit 
admission (ICU), and identify the associated socio-demographic and clinical factors 
using logistic regression (LR), random forest (RF), and XGBoost algorithms. We 
performed threshold optimization for converting predicted probabilities into binary 
predictions and identified the cut-off maximizing the sum of sensitivity and specificity. 
We achieved the following sensitivity and specificity values with the best performing 
models: 80% and 66% for VRE with LR, 73% and 77% for CRE with XGBoost, 76% 
and 59% for MRSA with RF, and 82% and 83% for MDRO (i.e., VRE or CRE or 
MRSA) with RF. Further, we identified several predictors of MDRO colonization, 
including long-term care facility exposure, current diagnosis of skin/subcutaneous tissue 
or infectious/parasitic disease, and recent isolation precaution procedures before ICU 
admission. Our data-driven modeling framework can be used as a clinical decision 
support tool for timely predictions, identification of high-risk patients, and selective and 
timely use of infection control measures in ICUs. 
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1. Introduction 
 
The increasing prevalence of multidrug resistant organisms (MDROs), bacteria that are 
resistant to one or more classes of antibiotics, is an increasingly concerning issue in the 
community, and in particular, healthcare settings where admitted patients are especially 
susceptible to developing an infection (Centers for Disease Control and Prevention 
(CDC) 2013) (Spellberg et al. 2008) (Boucher et al. 2009). These organisms pose a 
significant threat to patient safety in the form of healthcare-associated infections (Haque 
et al. 2018), which are associated with considerable morbidity, mortality, and healthcare 
costs (Klevens, Edwards, and Richards 2007), and have the potential to spread within the 
community (Molton et al. 2013) (Bassetti, Nicco, and Mikulska 2009). 
 
Two MDROs that are the most prevalent causes of HAIs are Methicillin—resistant 
Staphylococcus aureus (MRSA) and vancomycin—resistant Enterococcus (VRE) (Calfee 
2012) (Harris et al. 2013), which are currently classified as serious threats by the U.S. 
Centers for Disease Control and Prevention (CDC) (Centers for Disease Control and 
Prevention (CDC) 2018). MRSA is reported to cause 80,461 infections and 11,285 deaths 
per year, and VRE causes 20,000 infections and 11,300 deaths per year (Centers for 
Disease Control and Prevention (CDC) 2013), with both MDROs being associated with 
poor treatment outcomes following infections (Cosgrove et al. 2003) (DiazGranados et al. 
2005), longer length of hospitalization, and higher healthcare costs (Song et al. 2003) 
(Cosgrove et al. 2005) (Maragakis, Perencevich, and Cosgrove 2008). 
 
In recent years, Carbapenem-resistant Enterobacteriaceae (CRE)—an MDRO class that 
is highly resistant to carbapenems and other antibiotics reserved for treatment of severe 
infections—have reached concerning levels in healthcare facilities in the U.S. (Centers 
for Disease Control and Prevention (CDC) 2015), and around the world (World Health 
Organization 2017). This trend has prompted the CDC to classify CRE as an urgent threat 
to public health, its highest risk category (Centers for Disease Control and Prevention 
(CDC) 2013). CRE is less prevalent than MRSA and VRE, causing 9,000 infections and 
600 deaths per year (Centers for Disease Control and Prevention (CDC) 2013), but is an 
immediate public health threat because infections caused by CRE (e.g., pneumonia, 
urinary tract infections, bloodstream infections and wound infections (Tischendorf, de 
Avila, and Safdar 2016)) are very difficult to treat (Jacob et al. 2013) and  have been 
associated with poor treatment outcomes (Morrill et al. 2015) (Borer et al. 2009; 
Papadimitriou-Olivgeris et al. 2013; Schwaber et al. 2008), and high costs (Bartsch et al. 
2017).  
 
Colonized patients carry an MDRO at a detectable level, meaning that a cultured swab 
sample would test positive but the patient would not show clinical indications of illness 
caused by an MDRO. Harboring MDROs, these patients are at a risk for subsequent 
infection, as a significant fraction of MDRO colonization will eventually cause clinically 
apparent infections that are difficult to treat (Coello et al. 1997) (Diekmann, Heesterbeek, 
and Britton 2012). They also pose a threat to other patients, as healthcare workers who 
interact with these patients can become contaminated with the organism and transmit it to 
other patients. As a result, it is important to rapidly identify and then monitor colonized 
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patients so that the colonization rate is kept under control in hospitals, and the risk of 
transmission and subsequent infection is minimized (Furuno et al. 2004). 
 
The importation of MDROs into hospitals and other healthcare settings is a major 
determinant for transmission and outbreak (Tacconelli 2006) (D'agata, Horn, and Webb 
2002) (Ziakas et al. 2013). Among hospital departments, intensive care units (ICUs) are 
the wards where the prevalence of MDROs is particularly high (Zhanel et al. 2008) 
(Hanberger et al. 2009). Further, patients admitted to ICUs are most vulnerable to 
develop infections due to these organisms (Vincent et al. 2009; Vincent 2003). 
Accordingly, ICUs have become a central point of focus for the control and prevention of 
MDRO colonization and infection within hospitals (Strich and Palmore 2017).  
 
A variety of interventions have been proposed and implemented in order to prevent the 
transmission of MDROs in ICUs. Effective and commonly utilized interventions include 
(i) hand hygiene, especially when healthcare workers contact colonized or infected 
patients (Boyce et al. 2009), (ii) contact precautions (e.g., wearing gloves and gowns) 
when caring for colonized or infected patients (Siegel, Rhinehart, Jackson, and Chiarello 
2007), and (iii) isolation or cohorting of colonized or infected patients (Landelle, Pagani, 
and Harbarth 2013). Despite their effectiveness, however, these preventive measures are 
often not applied in a timely manner due to imperfect compliance and the delay (or even 
failure) to detect patients colonized with an MDRO (Harris et al. 2013).  
 
Surveillance for MDRO colonization is an instrumental practice for detecting patients 
who may require an intervention (Humphreys 2014) (Pofahl et al. 2009; Schwaber and 
Carmeli 2013). Yet, the implementation and cost-effectiveness of universal (i.e., active) 
surveillance strategies, such as screening of all newly admitted ICU patients, has been a 
controversial topic (Edmond and Wenzel 2013). Some critics argue that the costs 
associated with universal screening, including the opportunity costs of the human and 
physical resources being utilized, are likely to outweigh the benefits of active 
surveillance (Wenzel and Edmond 2010). Accordingly, universal surveillance of all 
patients may not be feasible to implement in many healthcare facilities due to resource 
constrains (Tacconelli and Cataldo 2008) (Roth et al. 2016) (Lapointe-Shaw et al. 2017). 
Instead, targeted surveillance strategies, which offer a cost-effective compromise for 
detecting asymptomatic colonization, have been advocated by national guidelines (Muto 
et al. 2003) (Siegel, Rhinehart, Jackson, Chiarello, et al. 2007), (Weber et al. 2007) when 
a sufficiently accurate method for identifying high-risk individuals is available. 
Accordingly, rapid identification of patients who are at high risk for MDRO colonization 
is critical for timely and targeted implementation of screening and other preventive 
measures, as well as administration of appropriate treatment (e.g., avoiding the misuse of 
antibiotics).  
 
Given the aforementioned challenges, a system that facilitates timely and reliable 
identification of newly admitted patients who are likely to be colonized with an MDRO 
would be quite useful to improve patient safety and effective utilization of critical 
hospital resources (Delerue et al. 2019). By accurately identifying significant risk factors, 
this system can help define high-risk subpopulations and hence, could enable the 
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implementation of a cost-effective targeted screening program. Moreover, if highly 
predictive, it can further be used to immediately initiate clinical interventions, such as 
contact precautions, as soon as a high-risk individual is admitted to the ICU. Such a real-
time system would be particularly useful in ICUs because, currently, identification of 
colonized patients relies on clinical lab results that usually require at least 1-2 days to 
process and can delay subsequent action to prevent and control the spread of MDROs.  
 
A particular challenge for the design of a reliable prediction framework is the class 
imbalance problem that is commonly observed in clinical datasets. Clinical datasets are 
often not balanced in their class labels, where the predictors and/or prediction outcomes 
do not make up an equal portion of the data. The imbalance can be particularly large 
when the prediction outcomes are MDROs, as their prevalence is usually < 15% and can 
be as low as < 2% as observed in our data. Given that ignoring the class imbalance, 
especially when it is large, yields poor predictions, it is necessary to consider and address 
this challenge while developing a prediction framework for accurate and reliable results. 
 
In this study, we developed a data-driven framework to identify patients who are likely to 
be colonized with VRE, CRE, or MRSA upon ICU admission, leveraging two years of 
electronic health record (EHR) data from a large academic medical center. Our objective 
was to develop a modeling framework that can cope with significant class imbalance, 
commonly observed in clinical datasets, and can be used to (1) to generate timely and 
accurate predictions for newly admitted ICU patients, and (2) to identify the key socio-
demographic and clinical factors affecting the incidence of MDRO colonization. Our 
framework relied on three supervised machine learning algorithms, specifically 
regularized logistic regression, random forest, and XGBoost, which were trained on the 
EHR data and facilitate real-time predictions for newly admitted patients to the ICU. 
 
We achieved the following results for the primary MDRO colonization outcomes: 80% 
sensitivity and 66% specificity for VRE, 73% and 77% for CRE, 76% and 59% for 
MRSA, and 82% and 83% for colonization with any MDRO (i.e., VRE, CRE, or MRSA). 
Moreover, our modeling approach identified long-term care facility exposure, current 
diagnosis of skin/subcutaneous tissue conditions or infectious/parasitic disease, and 
recent isolation precaution procedures before ICU admission as key predictors. We were 
able to detect over 80% of positive MDRO cases upon ICU admission with less than a 
20% false-positive rate, which would enable timely and targeted implementation of 
preventive measures for infection control in ICUs.  
 
The remainder of this article is organized as follows: In Section 2, we present our data 
and describe our methodology. In particular, in Section 2.1, we introduce our data and 
describe the clinical and socio-demographic predictors included in our models. Then, in 
Section 2.2, we introduce the predictive models and then describe the techniques we 
utilize to improve prediction accuracy and address class imbalance for our application. In 
Section 3, we present our prediction results and report the key predictors for MDRO 
colonization in our data set. In Section 4, we summarize our results, discuss the policy 
implications of our approach and findings, propose directions for future research, and 
conclude our study. 
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2. Materials and Methods 
 
In this section, we first describe our data source, in Section 2.1, and present the variables 
and prediction outcomes in our dataset. Then, in Section 2.2, we introduce our modeling 
framework and describe our methods. In particular, first, we introduce the prediction 
models we used, and then, discuss our model specification (training) and performance 
evaluation (testing) stages, describing how we performed hyperparameter tuning, 
stratified cross-validation, threshold optimization, and finally, out-of-sample evaluations. 
 
2.1 Data Description 
 
In this study, we used electronic healthcare record (EHR) data from the University of 
Maryland Medical Center (UMMC), an academic teaching hospital located in Baltimore, 
Maryland. Our dataset contained records for 3,958 patients admitted to a surgical or 
medical ICU in 2017 or 2018. In total, we observed 4,670 individual admissions. Our 
dataset included the following variables: (1) hospital admission source and type, (2) age, 
(3) sex, (4) race and ethnicity, (5) region/state of residency, (6) total time admitted during 
prior ICU and hospital inpatient stays within the previous year, (7) prior antibiotic 
prescription, (8) diagnoses for prior hospital and/or ICU stays within the previous year, 
(9) diagnoses for current hospital stay that are present before ICU admission, (10) 
surgical and medical procedures conducted during prior hospital and/or ICU stays within 
the previous year, and (11) recent procedures conducted for current hospital stay prior to 
ICU admission. We treated all predictors utilized in the models as categorical. 
Descriptive statistics regarding these variables and their categories can be found in 
Appendix A.  
 
AIn the dataset, all prior and current diagnoses were coded using the International 
Statistical Classification of Diseases and Related Health Problems (ICD)-10 codification. 
We used the Agency for Healthcare Research and Quality’s Clinical Classifications 
Software (CCS) to further categorize the prior and current diagnoses that were present on 
admission (PoA). The CCS is a diagnosis and procedure categorization catalog 
(https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp), mapping the ICD-10 
diagnosis codes into 18 categories: (1) Infectious and parasitic diseases, (2) Neoplasms, 
(3) Endocrine, nutritional, and metabolic diseases and immunity disorders, (4) Diseases 
of the blood and blood-forming organs, (5) Mental illness, (6) Diseases of the nervous 
system and sense organs, (7) Diseases of the circulatory system, (8) Diseases of the 
respiratory system, (9) Diseases of the digestive system, (10) Diseases of the 
genitourinary system, (11) Complications of pregnancy, childbirth, and the puerperium, 
(12) Diseases of the skin and subcutaneous tissue, (13) Diseases of the musculoskeletal 
system and connective tissue, (14) Congenital anomalies, (15) Certain conditions 
originating in the perinatal period, (16) Injury and poisoning, (17) Symptoms, signs, and 
ill-defined conditions and factors influencing health status, and (18) Residual or 
unclassified codes. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.20.21263595doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263595
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized 

with Multidrug-Resistant Organisms 

 

  6 

We labeled a procedure as recent if it was performed during the current hospital stay. We 
recorded all recent procedures performed in the hospital inpatient settings prior to the 
current ICU admission with respect to the ICD-10 Procedure Coding System (PCS), for 
which each character has a categorical indication. Using the first character of the ICD-10 
PCS codes, we classify the recent procedures into eight categories as follows: (i) Medical 
and Surgical (“0”), (ii) Placement (“2”), (iii) Administration (“3”), (iv) Measurement and 
Monitoring (“4”), (v) Extracorporeal or Systemic Procedures (“5” and “6”), (vi) Other 
Procedures (“8”), (vii) Imaging (“B”), and (viii) Other/Miscellaneous (“1”,  “7”,  “9”, 
“C”, “D”, “F”, “G”, and “X”). Further, using the first two characters of the ICD-10 PCS 
codes, we also map the recent procedures into 44 categories (See Appendix A). In our 
analysis, we include both the single- and double-character based categorizations so that 
our algorithms can learn which specifications are most important for predicting our 
MDRO outcomes. We classified prior hospital procedures having the ICD-10 PCS codes 
in a similar manner as the recent procedures.  
 
Prior outpatient procedures were recorded using the Current Procedural Terminology 
(CPT) system (https://www.ama-assn.org/amaone/cpt-current-procedural-terminology), 
which we classified into 6 categories: (i) Evaluation and Management, (ii) Anesthesia 
(iii) Medicine (iv) Radiology (v) Pathology and Laboratory, and (vi) Surgery. The CPT 
codes for surgery include 18 sub-types, enabling us to construct a more detailed 
categorization with 23 classes. We used both the 6-class and 23-class CPT codes for our 
analysis.  
 
The prediction outcomes were colonization with VRE, CRE, or MRSA upon ICU 
admission, both separately and as an aggregate (union) outcome. Conducting active 
surveillance in the ICUs, UMMC screened newly admitted patients for colonization with 
these organisms upon admission and periodically during their stay. At UMMC, active 
surveillance involves taking routine peri-rectal cultures for VRE and nasal cultures for 
MRSA on all patients admitted to an ICU at the time of admission, weekly and upon 
discharge. CRE detection was also primarily done via perirectal swabs and also included 
clinical cultures (e.g., blood, urine, wound cultures). We identified the positive (i.e., 
colonized) and negative (i.e., uncolonized) results based on the laboratory tests conducted 
within two days (i.e., both before and after) of ICU admissions. We limited the time 
window for the screening results within two days (Paling, Wolkewitz, Bode, et al. 2017; 
Paling, Wolkewitz, Depuydt, et al. 2017) in an attempt to avoid inclusion of acquisition 
cases, for which initially susceptible patients acquire an MDRO during their ICU stay. In 
our data set, 13.03% of patients admitted to the ICU tested positive for VRE, 1.45% for 
CRE, 7.47% for MRSA, and 17.59% for any MDRO.  
 
2.2 Prediction Models, Model Training and Validation, and Threshold Optimization 
 
A variety of techniques have been utilized to analyze complex disease dynamics and 
quantify its parameters (e.g., the estimation of transmission rate), identify risk factors, 
and estimate the impact of infection control strategies (van Kleef et al. 2013). These 
approaches include prediction modeling, computational simulation, and analytic-formula 
based models such as decision trees (Goodman et al. 2016), artificial neural network 
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(Chang et al. 2011), agent-based simulation for a hospital ward (Barnes, Golden, and 
Wasil 2010b; Codella et al. 2015) or healthcare system (Lee et al. 2013), dynamic patient 
and healthcare worker networks (Barnes, Golden, and Wasil 2010a; Cusumano-Towner 
et al. 2013; Ueno and Masuda 2008), compartmental systems dynamics models (based on 
ordinary differential equations) (D'Agata et al. 2012; de Cellès et al. 2013), (approximate) 
Bayesian (computation) techniques (Cooper et al. 2008), and Markov chain based 
approaches (Kastner and Shachtman 1982 ; Bootsma et al. 2007). Among these 
techniques, data-driven prediction models, such as the ones we use in this study, are 
particularly valuable tools for generating real-time predictions, identifying the significant 
risk factors, and quantifying their impact on the outcomes under study (Wiens and 
Shenoy 2017). In addition to these modeling-based approaches, there is also rich clinical 
literature studying MDRO colonization. See Appendix B for a summary of the clinical 
studies that assessed the risk factors associated with MDRO colonization, and developed 
simple clinical prediction rules based on the identified predictors.  
 
We utilized three supervised machine learning (ML) algorithms to predict colonized 
patients upon ICU admission and to identify significant clinical and socio-demographic 
factors associated with our outcomes of interest: (1) logistic regression (Reed and 
Berkson 1929) (Berkson 1944), (2) random forest (Breiman 2001), and (3) XGBoost 
(Chen and Guestrin 2016). To perform regularization and feature selection for our 
logistic regression models, we used least absolute shrinkage and selection operator 
(LASSO), which was originally developed for linear regression (Tibshirani 1996) and 
then applied to other algorithms including logistic regression (Roth 2004).  
 
For each model, we split the data into an 80% subset for training and cross-validation and 
a 20% subset for out-of-sample evaluation. We used a 10-fold stratified cross validation 
scheme for both the tuning of hyperparameters for the algorithm and the optimization of 
the threshold for classification of the predictions (see Figure 1). We selected the 10-fold 
due to the relatively small sample size of our data, in an effort to preserve as much data 
as possible for model training. We selected the stratified scheme to account for the class 
imbalance in our data, which preserves a similar proportion of the positive outcome for 
each fold as the complete data set.  

 
We defined a grid search for a core set of hyperparameters for each algorithm (see 
Appendix D), and used the area under the receiver operating characteristic curve (AUC) 
as the objective function to maximize (out-of-sample) model performance. We selected 
the hyperparameters achieving the highest mean AUC across the 10 folds for model 
training.   

 
After choosing the hyperparameters, the next step of the model specification was to 
identify the ideal cut-off value (i.e., threshold optimization) for converting predicting 
probabilities into binary predictions. As an initial output, the ML algorithms generates 
predicted probabilities for the training instances, indicating how likely each patient to be 
colonized with an MDRO. These predicted probabilities are then translated into binary 
prediction outcomes using a threshold value. Specifically, observations for which the 
predicted probabilities are greater than this threshold, τ, are classified as positive (i.e., 
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colonized), otherwise, the patient is assigned to the negative (i.e., susceptible) class. 
Given the class imbalance observed in our dataset, the default threshold value of 0.5 was 
unlikely to be effective for our study (see Figure 2). Consequently, we performed an 
optimization (Sheng and Ling 2006) to search for the best threshold that classifies the 
predicted probabilities while maximizing the Youden Index (i.e., sensitivity + specificity 
- 1) for out-of-sample predictions (Youden 1950).  
 
We performed the threshold optimization out-of-sample using the same 10-fold stratified 
cross validation scheme used for the hyperparameter tuning. We determined the optimal 
threshold for each fold using the in-sample predicted probabilities from the 90% subset of 
training data, and then evaluated the performance (i.e., Youden's index) of this threshold 
over the 10% subset of out-of-sample data. We repeated this process for each fold, and 
selected the mean of these 10 optimal thresholds as our optimized value. We used a 
bounded numerical search algorithm to solve the optimization problem (Nocedal and 
Wright 2006), using a lower bound of zero and varying the upper bound for each 
algorithm to ensure an effective threshold is found. It is noteworthy to emphasize that the 
upper bound values we considered for each specific outcome were different because the 
prevalence of the colonized (i.e., positive) instances among VRE, CRE, MRSA, and 
MDRO were different and directly affected the outcome of the threshold optimization 
procedure. 
 
Model specification was completed when we determined the hyperparameters, chose the 
threshold value (for each model), and re-trained the models on the full (80%) training set. 
Next, we evaluated the performance of the trained models on the (20%) test sets, 
reporting the AUC, sensitivity, and specificity values obtained. For each MDRO, we 
conducted a systematic numerical experiment with a range of upper bound values for 
threshold optimization, and obtained predictions with varying sensitivity and specificity 
values for VRE, CRE, MRSA, and MDRO (the aggregate prediction outcome). We 
provide these results in Section 4 for each outcome (e.g., VRE) and algorithm (e..g, 
XGBoost), and separately, discuss the best performing models for each MDRO.  
 
We also use our modeling framework to identify the key socio-demographic and clinical 
factors for predicting colonization with VRE, CRE, and MRSA separately and in 
aggregate. For the LR models, we use odds ratios (ORs), which quantify the associated 
increase (for values greater than 1) or decrease (for values less than 1) in the likelihood of 
colonization. For the tree-based models (i.e., RF and XGBoost), we use feature 
importance (FI), which quantifies the relative frequency that each factor is used to 
construct the ensemble. Using these two metrics (i.e., OR and FI), we order the identified 
predictors for each MDRO and report the top five key predictors that are highly ranked 
across all of the best performing ML models, calculated by the average ranking across the 
best models.  
 
3. Results 
 
We separately predict VRE, CRE, and MRSA colonization upon ICU admission. In 
addition, combining these three antibiotic-resistant bacteria, we also predict colonization 
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with any of these MDROs (i.e., VRE, CRE, or MRSA) upon ICU admission without 
specifying the particular organism. As a result, we generate predictions for four cases 
(namely, VRE, CRE, MRSA, and MDRO) using logistic regression (with LASSO 
regularization, LR), random forest (RF), and XGBoost algorithms.  In Table 1, we 
summarize the model results for these four outcomes for different upper bound values for 
the threshold optimization. 
 
After considering all of the models that we trained for each outcome, we selected the 
ones with the highest (out-of-sample) Youden index, which we summarize in Table 2. 
For VRE, the best performing model generated a Youden index of 0.46, achieved via the 
LR model. By comparison, the RF and XGBoost models generated Youden index values 
of 0.41 and 0.39, respectively. For CRE, the XGBoost algorithm generate the highest 
Youden index (0.50), followed by LR (0.45) and RF (0.42). The performance for MRSA 
is noticeably lower than the other outcomes, for which RF achieved the highest Youden 
index (0.34). Finally, the prediction models for the aggregate MDRO outcome produced 
the highest Youden index values when compared to the individual MDRO outcomes, 
with the RF model (0.65) outperforming the XGBoost (0.57) and LR models (0.30). We 
note here that the tree-based models performed significantly better than the linear LR 
model for this aggregated outcome, which is likely due to the former’s natural ability to 
capture interactions. In an effort to provide support for this hypothesis, we also show the 
performance of a single classification tree (Breiman et al. 1984) (0.54), which also 
performs significantly better than the LR model for this particular outcome. On the other 
hand, for separate VRE, CRE, and MRSA predictions, the single tree models are always 
dominated by (at least one of) the other algorithms, and hence, not presented in Table 1. 
 
For each model presented in Table 2, the difference between the (out-of-sample) AUC for 
the (cross-validated) training and testing sets are typically small, suggesting well-trained 
models. The LR and RF models for CRE demonstrate larger gaps, suggesting that these 
models might be slightly less robust than others; however, this volatility is likely 
explained by the extremely low prevalence of positive cases on which to train the models. 
The best predictions for VRE colonization upon ICU admission are generated by the LR 
model, which achieves 80% sensitivity and 66% specificity. For CRE, XGBoost produces 
the best model, having 73% sensitivity and 77% specificity. For MRSA, the RF model 
performs best, yielding 76% sensitivity and 59% specificity. Finally, the most effective 
model for the aggregate MDRO outcome is the random forest model, which is capable of 
detecting 82% of colonized patients with 83% specificity.  
 
In addition to generating predictions, we also use our modeling framework to identify the 
key predictors for separate and aggregate VRE, CRE, and MRSA colonization. In Table 
3, we summarize the top five predictors for the models reported in Table 2, and provide 
their ranking in the corresponding models as indicated by OR and FI. See Appendix C for 
the OR and FI values of the factors presented in Table 3.  
 
Among the recent ICD-10 procedures that were performed during the current hospital 
stay before ICU admission, procedures categorized as “Other Procedures” in the ICD-10 
PCS are among the top five predictors for VRE, CRE, MRSA, and MDRO. In our 
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dataset, a significant proportion of these procedures are “8E0ZXY6”, an ICD-10 code 
designated for isolation precautions. The patients having a history of a prior colonization 
or infection for a given MDRO (or are at risk for another indication) are flagged with this 
code upon admission to the hospital so that they are closely monitored (and if needed, 
isolated) during their hospital stay. Our results presented in Table 3 show that these 
patients are at a higher risk for being colonized with an MDRO at ICU admission 
regardless of the specific indication for which the close monitoring and isolation 
precautions are put in place.  
 
Another key predictor for VRE, CRE, MRSA, and MDRO colonization is the CCS-based 
diagnosis category “skin and subcutaneous tissue disease” that is PoA (Table 3). The 
diagnoses that fall under this CCS category are determined for the current hospital 
admission and include rash, cellulitis, cutaneous abscess, pressure ulcer, non-pressure 
chronic ulcer, and other skin conditions. Our finding resonates with the clinical literature 
and practice as skin and soft tissue infections are amongst the most common bacterial 
infections, are mostly treated with antibiotics that might cause antimicrobial resistance 
(Eckmann and Dryden 2010). Further, skin and soft tissue infections are the most 
frequently reported clinical manifestations of community-acquired MRSA (Fridkin et al. 
2005). 
 
For MDRO and in particular MRSA, the CCS-based current diagnosis category 
“infectious and parasitic diseases” is one of the critical factors that increase the risk of 
colonization. This category includes diseases such as chronic viral hepatitis C, 
bacteremia, human immunodeficiency virus (HIV), and sepsis. Patients with these 
diseases might be at higher risk for MDRO, and in particular MRSA, colonization due to 
a compromised immune system. 
 
For VRE and CRE, having a prior long-term care facility (LTCF) stay is one of the key 
predictors for colonization upon ICU admission. This association between VRE or CRE 
colonization and a previous LTCF stay has been reported by other studies (Prabaker et al. 
2012; Tacconelli et al. 2004) (also see Appendix B). High rates of MDRO colonization, 
debilitating diseases, and the receipt of multiple antibiotics among LTCF residents are 
likely to be the primary causes of this association both for VRE and CRE colonization 
(Elizaga, Weinstein, and Hayden 2002) . 
 
Other key predictors for VRE were recent procedures “administration circulatory” (ICD-
10-PCS '30'), such as transfusion, and “medical and surgical anatomical regions, general” 
('0W'), such as drainage, insertion, removal, and transplantation procedures. For CRE, a 
prior ICU stay longer than 20 days and a total number of diagnoses PoA (i.e., current 
diagnoses) greater than 30 were two critical factors increasing the risk of colonization. 
For MRSA, the current diagnosis for “injury and poisoning”, mostly consisting of 
procedural injuries such as accidental puncture or dural laceration during a procedure, is 
associated with an increased colonization risk. On the contrary, the recent procedure code 
for “administration” (i.e., ICD-10 PCS codes with first character “3”) was found to lower 
the risk of colonization. Finally, female sex and the “mental illness” category for current 
diagnosis, including diagnosis for cocaine abuse, opioid abuse, poisoning by heroin and 
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psychological disorders, were two other key factors associated with an increased risk for 
MDRO colonization. Patients in this category (i.e., the “mental illness”) are at higher risk 
for using injections and causing damage to their skin, which might explain the increased 
risk for MDRO colonization. 
 
 
 
 
4. Discussions, Future Work, and Conclusion 
 
Leveraging a rich EHR data set and supervised ML algorithms, we developed an accurate 
and interpretable framework for predicting VRE, CRE, and MRSA colonization upon 
ICU admission. We achieved the following sensitivity and specificity values for VRE, 
CRE, and MRSA colonization: 80% and 66% for VRE with LR, 73% and 77% for CRE 
with XGBoost, and 76% and 59% for MRSA with RF. Further, we predicted MDRO (i.e., 
VRE, CRE, or MRSA) colonization as an aggregate outcome with 82% sensitivity and 
83% specificity for MDRO using RF.  
 
Our results indicate that predicting MDRO colonization in aggregate, rather than 
separately predicting VRE, CRE, and MRSA, achieved the highest prediction accuracy in 
terms of both AUC and Youden’s index. On the one hand, predicting a specific MDRO 
would be preferable, as it would enable more customized interventions such as tailored 
antibiotic therapy. On the other hand, accurately predicting MDRO colonization without 
specifying whether it is VRE, CRE, or MRSA is still quite important for clinical practice 
as key interventions for these MDROs are similar such as contact precautions and 
enhanced environmental cleaning. Accordingly, many infection control measures can be 
implemented rapidly upon ICU admission for the patients who are suspected to be 
colonized, and treatment strategies and more advanced interventions can be tailored later 
as more information becomes available. 
 
In addition to producing timely predictions for newly admitted ICU patients, our ML-
based modeling framework can also be utilized to identify the key predictors for VRE, 
CRE, and MRSA colonization upon ICU admission. We identified several important 
predictors of MDRO colonization, including long-term care facility exposure, a current 
diagnosis of skin/subcutaneous tissue or infectious/parasitic disease, and a recent ICD-10 
procedure “Other Procedures”, including isolation precaution procedures, as the key 
predictors for MDRO colonization upon ICU admission. These predictors can help 
identify ICU patients at high-risk for MDRO colonization and hence, facilitate timely 
implementation of infection control measures such as selective use of contact 
precautions, targeted surveillance, and tailored antibiotic therapy.  
 
The primary limitation of our study is that we do not utilize any data on patient medical 
history outside of UMMC. For example, we do not take into account any antibiotics 
consumption outside of UMMC or during outpatient visits. Similarly, we do not have 
information about patients who could have been admitted elsewhere, thus censoring any 
information about whether they received or underwent additional treatments and 
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procedures in other healthcare facilities. As we utilize administrative data for procedures 
and diagnoses, which are primarily used for billing, we do not have full access to exact 
clinical conditions and we do not know the exact reason why a specific procedure was 
performed or diagnosis was established. Our discussions with clinicians shed some light 
into these uncertainties but we could not determine the exact details for each individual 
patient other than what the data conveys. Finally, our data is derived from a single source 
and we are only able to observe the performance of our modeling framework on an out-
of-sample subset from the same facility.   
 
It is noteworthy to emphasize that our study, which focused on predicting MDRO 
colonization for newly admitted ICU patients, would not prevent the importation of VRE, 
CRE, and MRSA into the ICU setting. However, by producing reliable predictions and 
identifying key risk factors for colonization, our approach could enable early detection of 
colonized patients and facilitate timely and targeted implementation of preventive 
measures on asymptomatic MDRO carriers. This approach could help reduce 
transmission of these so-called ”superbugs” in ICUs, which we plan to further analyze via 
a comprehensive simulation model in future efforts, and would particularly be useful for 
healthcare settings where active surveillance is not performed.  
 
Traditionally, many prediction rules, developed as a decision support tool for clinicians, 
are designed to be very simple, relying on only a small number of variables, for 
practicality. Yet, with the increasing availability of electronic healthcare record (EHR) 
data and the expansion of modern database and software systems, the use of data-driven 
prediction models and other analytical and computational methods for the identification, 
control, and prevention of MDROs and other HAIs has been increasing (van Kleef et al. 
2013). As a result, a growing number of healthcare facilities are capable of generating 
more complex prediction models in an automated fashion. Accordingly, taking advantage 
of the advances in computational and data recording technologies, many healthcare 
organizations can use our data-driven prediction framework to produce real-time 
predictions and identify the high-risk patients for MDRO colonization.  
 
There are three research directions that we plan to pursue in near future: First, we will 
study the acquisition outcomes, where we focus on the ICU patients who were initially 
colonization-free but acquired VRE, CRE, or MRSA colonization during their ICU stay. 
Second, we will develop a comprehensive agent-based simulation model to analyze 
MDRO colonization and infection in ICUs and assess the impact of commonly utilized 
prevention and control measures on MDRO transmission. Finally, we plan to acquire 
more data from another major healthcare facility and conduct a similar study by 
leveraging this additional dataset. This will not only enable us to enlarge the size our 
dataset, leading to more accurate predictions, but will also give us an opportunity to 
assess the generalizability of our findings and help us develop more robust predictions. 
 
To summarize, in this study, we proposed a data-centric modeling framework to predict 
VRE, CRE, and MRSA colonization upon ICU admission and identify the associated risk 
factors. We achieved the highest prediction accuracy, measured by Youden’s index, when 
we predicted VRE, CRE, and MRSA colonization combined as an aggregate outcome. 
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Capable of coping with significant class imbalance, a feature commonly observed in 
clinical datasets, our framework can be used as a clinical decision support tool to provide 
accurate on-time predictions especially if it is regularly updated and trained off-line as 
additional (i.e., more recent) data become available. It can further be used to identify the 
key risk factors and define high-risk populations, for which targeted interventions can be 
implemented rapidly to reduce transmission of MDROs in ICUs. 
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Figure 1. Threshold Optimization Formulation 

 
 

 
Figure 2. Threshold Value for Converting Predicted Probabilities to Binary Predictions 
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                   Table 1. Performance Summary for VRE, CRE, MRSA, and MDRO Colonization 
Note: In each sub-table, we summarize the out-of-sample AUC for the training set, along 
with the out-of-sample AUC, sensitivity, and specificity for the test set. For each 
outcome, we include results for different upper bounds for the threshold optimization. 
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Table 2. Performance Summary of the Models with the Highest Youden’s Index  

 

Factors Features Log.Reg. XGBoost Rand.Forest

Long-term
Care
Facility
Stay Yes 1 3 1

Recent
1-Digit
ICD10
Procedure Other
Procedures 2 1 2

Current
Diagnosis
CCS
Class Skin
and
subcutaneous
tissue 3 2 3

Recent
2-Digit
ICD10
Procedure Medical/Surgical
Anatomical 6 5 8

Recent
2-Digit
ICD10
Procedure Administration
Circulatory 8 4 6

Factors Features Log.Reg. XGBoost Rand.Forest

Current
Diagnosis
CCS
Class Skin
and
subcutaneous
tissue 2 2 1

Recent
1-Digit
ICD10
Procedure Other
Procedures 3 3 2

Prior
ICU
Stay >
20
Days 4 6 5

Long-term
Care
Facility
Stay Yes 5 6 6

Number
of
Current
Diagnosis
PoA >
30
and
≤
50 6 8 3

Factors Features Log.Reg. XGBoost Rand.Forest

Recent
1-Digit
ICD10
Procedure Other
Procedures 1 2 1

Current
Diagnosis
CCS
Class Skin
and
subcutaneous
tissue 2 9 2

Current
Diagnosis
CCS
Class Injury
and
poisoning 7 1 8

Current
Diagnosis
CCS
Class Infectious
and
parasitic 9 8 5

Recent
1-Digit
ICD10
Procedure Administration -3 3 14

Factors Features Log.Reg. XGBoost Rand.Forest Dec.Tree

Recent
1-Digit
ICD10
Procedure Other
Procedures 7 1 1 2

Current
Diagnosis
CCS
Class Skin
and
subcutaneous
tissue 16 2 2 14

Current
Diagnosis
CCS
Class Mental
illness 35 6 3 12

Current
Diagnosis
CCS
Class Infectious
and
parasitic 57 12 4 16

Sex Female 89 3 5 9

TopFiveCommonPredictorsforMDROColonizationuponICUAdmission

CREColonizationuponICUAdmission RelativeRanking

TopFiveCommonPredictorsforCREColonizationuponICUAdmission

VREColonizationuponICUAdmission RelativeRanking

TopFiveCommonPredictorsforVREColonizationuponICUAdmission

MRSAColonizationuponICUAdmission RelativeRanking

TopFiveCommonPredictorsforMRSAColonizationuponICUAdmission

MDROColonizationuponICUAdmission RelativeRanking

Table 3. Top Five Common Predictors for VRE, CRE, MRSA, and MDRO Colonization 
Note: The “-” sign indicates ranking among the factors that decrease the risk (OR < 1). 

Log.�Reg. XGBoost Rand.�Forest Log.�Reg. XGBoost Rand.�Forest

Training�AUC 0.76 0.77 0.77 Training�AUC 0.65 0.66 0.66

Testing�AUC 0.80 0.77 0.77 Testing�AUC 0.66 0.66 0.70

Testing�Sensitivity 0.80 0.73 0.75 Testing�Sensitivity 0.70 0.67 0.76

Testing�Specificity 0.66 0.65 0.66 Testing�Specificity 0.55 0.60 0.59

Youden�Index 0.46 0.39 0.41 Youden�Index 0.24 0.27 0.34

Threshold�Opt.�Bound 0.15 0.15 0.20 Threshold�Opt.�Bound 0.20 0.10 0.30

Log.�Reg. XGBoost Rand.�Forest Log.�Reg. XGBoost Rand.�Forest Dec.�Tree

Training�AUC 0.70 0.76 0.79 Training�AUC 0.72 0.86 0.87 0.76

Testing�AUC 0.78 0.72 0.72 Testing�AUC 0.70 0.87 0.89 0.81

Testing�Sensitivity 0.73 0.73 0.64 Testing�Sensitivity 0.56 0.75 0.82 0.89

Testing�Specificity 0.73 0.77 0.79 Testing�Specificity 0.75 0.82 0.83 0.65

Youden�Index 0.45 0.50 0.42 Youden�Index 0.30 0.57 0.65 0.54

Threshold�Opt.�Bound 0.025 0.015 0.05 Threshold�Opt.�Bound 0.50 0.30 0.40 0.30

�Models�with�The�

Best�Youden�Index

CRE�(53/3661�=�1.45%) �Models�with�The�

Best�Youden�Index

�Models�with�The�

Best�Youden�Index

VRE�(503/3860�=�13.03%) �Models�with�The�

Best�Youden�Index

MRSA�(332/4446�=�7.47%)

MDRO�(792/4503�=�17.59%)
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Figure 1. Threshold Optimization Formulation 
 
Figure 2. Threshold Value for Converting Predicted Probabilities to Binary Predictions 
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