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 2 

Abstract 46 

Iron is essential for many biological processes, but iron levels must be tightly 47 

regulated to avoid harmful effects of both iron deficiency and overload. Here, we 48 

perform genome-wide association studies on four iron related biomarkers (serum iron, 49 

serum ferritin, transferrin saturation, total iron binding capacity) in the Trøndelag 50 

Health Study (HUNT), the Michigan Genomics Initiative (MGI) and the SardiNIA 51 

study, followed by their meta-analysis with publicly available summary statistics, 52 

analyzing up to 257 953 individuals. We identify 127 genetic loci associated with iron 53 

traits. Among 19 novel protein-altering variants, we observe a rare missense variant 54 

(rs367731784) in HUNT, which suggests a role for DNAJC13 in transferrin recycling. 55 

We further validate the latest genetic risk scores for each biomarker in HUNT (6% 56 

variance in serum iron explained) and present linear and non-linear Mendelian 57 

randomization analyses of the traits on all-cause mortality. We find evidence of a 58 

harmful effect of increased serum iron and transferrin saturation in linear analyses that 59 

estimate population-averaged effects. However, there was weak evidence of a 60 

protective effect of increasing serum iron at the very low end of its distribution. Our 61 

findings contribute to our understanding of the genes affecting iron status and its 62 

consequences on human health. 63 

  64 
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Introduction 65 

Iron is essential for a variety of physiological processes in the human body, but excess iron is 66 

toxic. Iron overload is associated with a wide range of health problems, including liver 67 

damage, type 2 diabetes, cardiovascular disease and neurodegenerative diseases such as 68 

Alzheimer’s disease1–3, while long-term iron deficiency causes anemia, which can disrupt 69 

cognitive function and the immune system4–6. Because of the damaging effects of both 70 

deficiency and overload, iron metabolism is tightly regulated7. 71 

 72 

Iron is bound, transported and delivered around the body by the transferrin glycoprotein8, 73 

while the main intracellular iron storage, ferritin, provides a long-term reserve of iron for 74 

formation of hemoglobin and other heme proteins9–11. Serum iron, serum ferritin, transferrin 75 

saturation percentage (TSP) and the total iron binding capacity (TIBC) of transferrin are 76 

biochemical measurements that are commonly used together to assess an individual’s iron 77 

status12. 78 

 79 

Mutations in various iron metabolism genes can cause both iron deficiency and overload13–15. 80 

Genetic variants in the transferrin gene, TF, and in the homeostatic iron regulator gene, HFE, 81 

have been estimated to account for about 40% of genetic variation in transferrin levels16. A 82 

recent genome-wide association study (GWAS) meta-analysis17 of serum iron, ferritin, TSP 83 

and TIBC from Iceland, UK and Denmark reported 46 novel loci associated with at least one 84 

of these biomarkers, implicating proteins involved in iron homeostasis. Identifying additional 85 

genetic loci associated with iron status could further increase our understanding of 86 

pathomechanisms underlying dysregulated iron levels. Furthermore, genetic variants from the 87 

most recent study17 could improve existing genetic risk scores (GRS) that have been widely 88 

used to assess the causal associations of iron status on a range of outcomes using Mendelian 89 

Randomization18–23 (MR). However, the new GRSs have not yet been validated in an 90 

independent study. Further, despite the observed damaging effects of both very high and very 91 

low iron stores, no previous MR studies have investigated the shape of the associations 92 

between genetically proxied iron status biomarkers and mortality. By validating the most 93 

recent genetic risk scores and using MR in an independent study (HUNT), we provide robust 94 

and novel insights into the causal associations between iron status biomarkers and all-cause 95 

mortality, particularly regarding non-linear relationships. 96 

 97 
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To discover novel genetic variants associated with iron status, we combine three 98 

approaches: (i) genome-wide association studies of variants deeply imputed from the 99 

TOPMed reference panel24 in the Trøndelag Health Study (HUNT)25 and the Michigan 100 

Genomics Initiative (MGI), as well as variants imputed from a cohort specific 101 

reference panel in SardiNIA26 (ii) association tests with genotyped coding variants 102 

selected from low-coverage (5x) whole-genome sequencing, (iii) genome-wide meta-103 

analyses of HUNT, MGI, SardiNIA and summary statistics from deCODE, Interval 104 

and the Danish Blood Donor Study (DBDS)17. The analyses included up to 257 953 105 

individuals (57% females, 43% males) with measured iron status biomarkers. We 106 

evaluate the variance explained by previously published variants for serum iron, serum 107 

ferritin, TSP and TIBC in HUNT. Furthermore, we use the genetic variants for the 108 

iron status biomarkers to estimate the average causal effect of a population shift in the 109 

biomarker distributions on all-cause mortality (the population-averaged effect), and 110 

for the first time, investigate the shape of the causal relationships using non-linear 111 

Mendelian Randomization. 112 

 113 

Results 114 

Discovery of genetic loci associated with iron status 115 

We identified 127 genetic loci (82 novel for at least one trait) associated (p-value < 5×10-8) 116 

with the four iron traits, serum iron, serum ferritin, TIBC and TSP, (Supplemental Table 1, 117 

Supplemental Figures 1-4) in genome-wide association meta-analyses of the iron status 118 

biomarkers in 6 cohorts: HUNT, MGI, SardiNIA, deCODE, Interval and DBDS 119 

(Supplemental Table 2). Among the 77 unique index variants (the variants with the lowest p-120 

value) in novel loci that had been imputed in more than one study, 60 had consistent 121 

directions of effects across all the analyzed studies. We also identified three novel missense 122 

variants associated with at least one iron trait among the variants selected for targeted 123 

genotyping in HUNT (Supplemental Table 3). 124 

 125 

Genes in several associated loci coded for proteins with established functions in iron 126 

homeostasis (TF [transferrin]) SLC25A37 [mitoferrin-1], SLC25A28 [mitoferrin-2], SLC11A2 127 

[divalent metal-transporter 1] and SLC40A1 [ferroportin-1], HFE [homeostatic iron 128 

regulator], TFRC [transferrin receptor], TFR2 [transferrin receptor 2], HAMP [hepcidin], 129 

ERFE [erythroferrone], HMOX1 [heme oxygenase], IREB2 [iron responsive element binding 130 
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protein 2], EPAS1 [endothelial PAS Domain Protein 1] and TMPRSS6 [transmembrane serine 131 

protease 6])7,27–29 Four of these loci (SLC25A28, HMOX1, IREB2, EPAS1) had not been 132 

reported for iron status biomarkers in GWAS studies before, providing additional confidence 133 

in the GWAS we report. With two exceptions (HAMP, TFR2), these genes were the nearest 134 

gene to the index variant in the locus. 135 

 136 

Protein-altering variants in meta-analysis loci 137 
 138 
We identified 32 protein-altering single nucleotide polymorphisms (SNPs) in the meta-139 

analysis, which were either index variants or variants in strong linkage disequilibrium (LD) 140 

(R2>0.8 or D’=1.0) with an index variant (Supplemental Table 1). In addition to SNPs known 141 

to be related to diseases such as hemochromatosis, atransferrinemia and iron deficiency 142 

anemia15,30–34, and variants that had previously been reported for at least one of the iron 143 

traits17,35, we identified 11 protein-altering variants in novel iron status loci (Supplemental 144 

Table 4): rs9427398 (FCGR2A), rs2437150 (SPRTN), rs1047891 (CPS1), rs41274050 145 

(A1CF), rs1935 (JMJD1C), rs3742049 (COQ5), rs4149056 (SLCO1B1), rs2070863 146 

(SERPINF2), rs883541 (WIPI1), rs1800961 (HNF4A) and rs738409 (PNPLA3).). In known 147 

iron status loci, we further identified eight protein-altering variants not previously reported 148 

for any iron traits: rs367731784 (DNAJC13), rs3812594 (SEC16A), rs34376913 (C9orf163), 149 

rs445520 (SLC11A2), rs28929474 (SERPINA1), rs737700 (C16orf71), rs77542162 (ABCA6) 150 

and rs34654230 (RCN3). 151 

 152 

Custom genotyped variants in HUNT: Protein-altering variants in iron status 153 

loci 154 

Among the targeted candidate variants in HUNT identified by sequencing and clinical 155 

studies, we identified three additional, novel protein-altering variants (Supplemental Table 3) 156 

that were not included in the meta-analyses, and which were associated with iron status 157 

biomarkers. These were located in NRM (rs374815811), HLA-DRB5 (rs701884) and TFR2 158 

(chr7:100629337:A:T, GRCh38). 159 

 160 

Heritability and genetic correlation of iron status markers 161 

We estimated the respective narrow-sense SNP heritability (variance explained, Vg/Vp ± 162 

1SE) of serum iron (0.15± 0.01), TIBC (0.43 ± 0.01) and TSP (0.21±0.01) in HUNT using 163 

genome-wide complex trait analysis (GCTA)36. We found pair-wise genetic correlations 164 
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between 11% and 75% (Supplemental Table 5) for the four iron status biomarkers using LD 165 

Score Regression (LDSC)37 with the meta-analysis summary statistics. The TSP phenotype 166 

was derived from the serum iron and TIBC measurements, giving rise to the two strongest 167 

genetic correlations. The weakest correlation (iron vs TIBC) did not reach nominal 168 

significance (p-value=0.35). 169 

 170 

Functional mapping 171 

We used Bayesian colocalization analysis to identify 94 unique pairs of GWAS loci and cis-172 

expression quantitative trait locus (cis-eQTL) signals that showed sufficient overlap in at 173 

least one tissue to be consistent with a shared causal variant for the gene expression and the 174 

iron status biomarker (Supplemental Table 6). We found associations in a range of tissues 175 

which highlighted genes with established roles in iron metabolism (TF [posterior probability 176 

of a common causal variant, PP4=0.96], TMPRSS6 [PP4=0.82], ERFE [PP4=0.97-0.98], 177 

IREB2 [PP4=0.80], SLC40A1 [PP4=0.79-0.96])13,27. Additionally, our results confirmed 178 

previously reported genes (DUOX2 [PP4=0.76], HBS1L [PP4=0.98], IL6R [PP4=0.81-0.82], 179 

SLC25A37 [PP4=0.85], ABO [PP4=0.97], RNF43 [PP4=0.99])17,35, and identified novel genes 180 

interacting with previously reported genes, for example DUOXA238. Several iron status loci 181 

were also colocalized with cis-eQTL signals for genes in the major histocompatibility 182 

complex (MHC) other than HFE39, as well as with transcription regulators40–42, additional 183 

transporter proteins43,44 and transferases45,46. 184 

 185 

Using Data-driven Expression Prioritized Integration for Complex Traits (DEPICT)47 we 186 

found an enriched (false discovery rate [FDR] <0.05) expression of ferritin associated genes 187 

in the urogenital system, digestive system, and the hemic and immune system (Supplemental 188 

Table 7). Serum iron, TSP and TIBC associated genes were not enriched in any tissue types 189 

at FDR<0.05, however the strongest enrichment for genes in all three traits were found in 190 

liver tissue, and particularly in hepatocytes (TSP, TIBC). The top ten genes per trait when 191 

prioritized based on similarity between the associated (p-value < 5×10-8) loci, included 192 

known iron regulatory genes (TFR2, HAMP, TFRC, SLC40A1), genes in which we had 193 

identified protein-altering variants (IL6R, F5, GCKR, DUOX2, SERPINA1, ABCA6, 194 

SLCO1B1), genes we found in the colocalization analysis (DUOXA2, IL1RN, SLC25A37), as 195 

well as genes predicted to have iron ion binding and heme binding properties in gene 196 

ontology analyses (CYP3A43, CYP3A5)48 (Supplemental Table 8). Finally, we used DEPICT 197 
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 7 

and found gene sets enriched with iron status associated genes (Supplemental Table 9). Most 198 

of the top ten gene sets at FDR<0.05 were from iron and TSP associated loci: Several were 199 

related to the liver (including abnormal liver physiology and gene sets related to metabolic 200 

processes), but also to inflammation (acute-phase response, decreased leukocyte cell 201 

number), coagulation (coagulation factor protein-protein interaction networks) and 202 

neurodevelopment (abnormal myelination). Most of the top ten gene sets enriched with 203 

ferritin and TIBC associated loci did not reach FDR<0.05, but included decreased circulating 204 

iron levels, decreased spleen iron level, gene sets related to red blood cells (decreased 205 

hemoglobin, decreased hematocrit, erythrocyte homeostasis and differentiation), as well as 206 

liver fibrosis and liver inflammation. 207 

 208 

We identified the 1% top ranked genes per trait based on both physical distance to the 209 

associated genetic variants and functional similarity to other associated genes (Supplemental 210 

Tables 10-13) using Polygenic Priority Scores (PoPS)49. The prioritized genes included the 211 

main known iron regulatory genes, several genes that were nearest to the meta-analysis index 212 

variants and novel genes in which we identified protein-altering variants (WIPI1, SERPINF2, 213 

HNF4A), further supporting a role for these genes in iron biology. 214 

 215 

Phenome-wide association study (PheWAS) of biomarker loci 216 

In total, 69 of the meta-analysis index variants were significantly associated (p-value < 217 

2.4×10-7) with at least one additional phenotype (‘phecode’50), blood biomarker or continuous 218 

trait in UK Biobank, and 97 phenotypes were significantly associated with at least one variant 219 

(Supplemental Table 14). The associations spanned numerous biological domains, but most 220 

associations were within the endocrine/metabolic (288 variant-trait associations), digestive 221 

(139 variant-trait associations) and genitourinary (46 variant-trait associations) domains. The 222 

strongest associations (p-values < 1×10-300) were within the hematopoietic, digestive and 223 

endocrine/metabolic domains: The HFE variants rs1800562, rs144861591 and rs79220007 224 

were associated with disorders of mineral metabolism, and in particular with disorders of iron 225 

metabolism, the SLCO1B1 variant rs2900478 was associated with bilirubin, the 226 

ASGR2;ASGR1 variant rs186021206 was associated with alkaline phosphatase, and the 227 

GCKR variants rs1260326 and rs11336847 were associated with triglycerides. Overall, all the 228 

GRSs for the four iron status biomarkers were associated with disorders of mineral 229 

metabolism, in particular iron metabolism (Figure 1, Supplemental Table 15). Several GRSs 230 
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were associated with anemias (iron, ferritin, TSP) and with coagulation defects (ferritin, 231 

TSP). Finally, the GRS for TIBC was also associated with liver cirrhosis without mention of 232 

alcohol, and the GRS for ferritin was associated with chronic non-alcoholic liver disease, and 233 

with phlebitis and thrombophlebitis. 234 

 235 

 236 
Figure 1: GRS-PheWAS: Phenome-wide associations between the GRS for each biomarker (serum iron [A], serum ferritin 237 
[B], total iron binding capacity [C] and transferrin saturation percentage [D]) and 1 688 phecodes, blood biomarkers and 238 
continuous traits in the UK Biobank. Triangles pointing upwards indicate a positive association between the phenotype and 239 
the GRS (where a higher GRS score represents higher level of the iron status biomarker) and vice versa. Associations with 240 
p-values < 10-322 are plotted at 10-322. The Bonferroni corrected p-value cut-off (2.4×10-7) is given as a red dotted line. 241 

 242 

Linear Mendelian Randomization 243 

The linear MR (ratio of coefficients method) indicated an increased mortality risk with 244 

increased serum iron and TSP, with the point estimates suggesting that an increase of 1 245 

standard deviation (SD) in both serum iron (1 SD = 6.3µmol/L) and TSP (1 SD = 11.3 246 

percentage points) would lead to an increased risk of mortality of 7% (Table 1). The 247 

estimates for ferritin and TIBC were not statistically significant, however the point estimates 248 

for a 1 standard deviation increase in serum ferritin (1 SD = 46µg/L) and TIBC (1 SD = 9.2 249 
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 9 

µmol/L) were a 4% increase and 3% decrease in mortality, respectively (Table 1). The 250 

estimate for ferritin was also very imprecise. 251 

 252 

Table 1: Linear Mendelian randomization ratio of coefficient estimates: Hazard ratios with 95% confidence intervals for all-253 
cause mortality are given per 1 standard deviation increase in the biomarker. The sample size is given as N.  254 

Biomarker N Hazard ratio (95% CI) P-value 

Serum iron  56 654 1.07 (1.01 to 1.14) 0.03 

Serum ferritin* 2 335 1.04 (0.26 to 4.22) 0.95 

TSP 56 651  1.07 (1.02 to 1.12) 0.01 

TIBC 56 654 0.97 (0.93 to 1.01) 0.13 

Confidence interval (CI), Transferrin saturation percentage (TSP), Total iron binding capacity (TIBC) 255 

*Non-pregnant women, 20-55 years old 256 

 257 

Non-linear Mendelian Randomization 258 

To investigate a potential non-linear causal association between iron status and all-cause 259 

mortality, we used the GRSs as instruments for serum iron (F-statistic=3618, R2=0.06), TIBC 260 

(F-statistic=8373, R2=0.129), TSP (F-statistic=6811, R2=0.107) and ferritin (F-261 

statistic=37.81, R2=0.015) in a non-linear Mendelian randomization analysis and estimated 262 

the shape of the associations between the genetically predicted traits and all-cause mortality 263 

(Figure 2). The median follow-up time was 23.6 years. After performing a statistical test for 264 

whether the best-fitting non-linear model of degree 1 fitted the data better than a linear model 265 

(p-values: 0.60, 0.05, 0.23 and 1 for iron, ferritin, TIBC and TSP respectively), generally, we 266 

did not find strong statistical evidence supporting a non-linear relationship over a linear one 267 

for the associations between any of the genetically proxied iron traits and all-cause mortality. 268 

However, the point estimates for serum iron do follow a J-shape, with a negative slope at 269 

very low levels of serum iron and a constant positive slope above 10 µmol/L. The point 270 

estimates were however imprecise at the tails of the distribution. The other analyses indicate 271 

a lower risk at higher TIBC and lower TSP and ferritin levels, with a weak indication (p-272 

value=0.05) of a non-linear effect for ferritin. Post-hoc sensitivity analyses using genetic 273 

instruments that were consistent with systemic iron status (increased iron, ferritin, and TSP, 274 

and decreased TIBC) rather than just representing a single biomarker, gave similar results 275 

(Supplemental Figure 5). 276 

 277 
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278 
Figure 2: Non- linear Mendelian randomization: Dose-response curves (black) between iron traits and all-cause mortality 279 
in HUNT (gray lines give 95% confidence interval). The x-axis gives A: serum iron levels (µmol/L), B: serum ferritin (µg/L), 280 
C: transferrin saturation (%) and D: total iron binding capacity (TIBC) (µmol/L). The y-axis gives the hazard ratios for all-281 
cause mortality with respect to the reference values (red dot), which represent the established target values (iron, TIBC, 282 
TSP)51 or median value (ferritin) for the traits. The curve gradients represent the localized average causal effect at each 283 
point.  284 
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Discussion 285 

We performed the largest GWAS meta-analysis to-date of iron status biomarkers and 286 

identified 127 genetic loci (82 novel) associated with iron status, including 19 novel protein-287 

altering variants. Although 82 loci were classified as novel for at least one of the tested iron 288 

traits, some had known associations with other tested traits or with related traits such as 289 

hemoglobin levels and red blood cell count and volume52. Because iron traits are biologically 290 

linked, we might expect to find the same loci associated with several of the tested traits, as 291 

seen for loci with established roles in iron metabolism (e.g. HFE, TF and TMPRSS6) and 292 

others. We confirmed the genetic similarity between iron status biomarkers by observing a 293 

genetic correlation of 75% between serum iron and TSP. However, most of the loci were 294 

specifically associated with a single trait, which was in line with the low genetic correlation 295 

between other pairs of biomarkers.  296 

 297 

Overall, our findings are consistent with established knowledge about iron homeostasis and 298 

the role of iron in various biological processes: The PheWAS analyses linked the meta-299 

analysis loci to many different traits and phenotypes, particularly within the hematopoietic, 300 

digestive, endocrine/metabolic and genitourinary domains. Further, in four novel loci, the 301 

genes nearest to the index variant encoded proteins with established roles in iron regulation: 302 

1) the mitochondrial iron transporter mitoferrin-2 (SLC25A28), 2) heme oxygenase 1 303 

(HMOX1), which catalyzes heme degradation, 3) the iron-responsive element binding 2 304 

(IREB2), and 4) PAS1, which regulates erythropoiesis according to cellular iron availability28. 305 

Further, the novel protein-altering variants were found in genes associated with various 306 

biological traits and functions, which potentially highlight the many biological processes both 307 

involved in and dependent on iron and iron regulation. These included, but were not limited 308 

to, genes involved in or associated with: 1) Iron gut absorption, regulation and transport 309 

(TFR2, SLC11A2, DNAJC13)8,54,53, where we found a rare (minor allele frequency 310 

(MAF)=0.0009) protein-altering variant with moderate effect size in DNAJC13, a gene 311 

suggested to be involved in transferrin recycling53. This variant was only imputed in HUNT, 312 

where it was more than 100 times more common than in other non-Finnish Europeans 313 

(https://gnomad.broadinstitute.org/variant/rs367731784)55 ; 2) Concentrations of hemoglobin 314 

(SPRTN, FCGR2A, CPS1, PNPLA3, ABCA6)49,56–58, which holds more than two thirds of the 315 

body’s iron1, and bilirubin (SLCO1B1)59, which together with iron are products of heme 316 

degradation; 3) Liver-related traits (ABCA6, HNF4A, PNPLA3)60,61; 4) Iron-dependent 317 
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(putative) tumor suppression (JMJD1C)62; 5) Iron accumulation in the brain (WIP1, 318 

associated via its homolog WIPI463) and 6) Coagulation and immune response (SERPINA1, 319 

SERPINF2)64. A previous study also identified a different protein-altering SNP in the serine 320 

protease inhibitor SERPINA117. The transmembrane serine protease 6 (encoded by 321 

TMPRSS6) is a negative regulator of hepcidin65, a key hormone regulator of iron 322 

homeostasis13. Given the role of the transmembrane serine protease 6 in iron regulation, both 323 

the serine protease inhibitors could potentially affect iron regulation via this gene.  324 

 325 

Using DEPICT, we detected an enriched expression of genes in iron status loci in the liver. 326 

This is in line with the important role of the liver in iron metabolism and storage66, including 327 

hepcidin production. Consistent with previous studies, our analysis prioritized genes 328 

encoding known hepcidin regulators such as HFE, TMPRSS6, TF, TFRC, TFR2, ERFE and 329 

IL6R67–70. Mutations in several of these genes have been demonstrated to cause diseases of 330 

iron deficiency or overload1,15,33,71. The associations with other genes related to inflammation, 331 

both in the DEPICT and colocalization analyses, could possibly be related to the hepcidin 332 

response to inflammation. The genes and gene sets prioritized by DEPICT pointed to several 333 

different biological processes, which might reflect the numerous roles of iron in the body. A 334 

limitation with using a similarity-based method for gene set and gene prioritization for iron 335 

traits was that the software excluded the MHC region from the analysis, thereby also 336 

excluding one of the most central genes in iron homeostasis, the HFE gene. 337 

 338 

Colocalization analysis further linked the GWAS loci both to the liver and to iron overload: 339 

iron status loci overlapped with cis-eQTLs for several of the hepcidin regulators, and genes 340 

involved in other liver functions such as lipid and fatty acid metabolism (ORMDL1, 341 

FADS1)72,73. The latter was also found in previous studies35 and is in line with the results 342 

from the PheWAS analysis. The colocalization of iron status loci and cis-eQTLs were 343 

however found in several tissues, and not primarily in liver. A limitation to the analysis was 344 

however that there were different sample sizes for each tissue, where liver had a relatively 345 

small sample size and subsequently lower power than other tissues. 346 

 347 

Because iron plays an essential role in so many biological processes, several Mendelian 348 

randomization studies have explored the causal effect of iron status on a range of diseases18–349 
23. Despite the known harmful effects of both iron deficiency and overload, no previous MR 350 

studies have investigated the shape of the exposure-outcome relationship. We therefore 351 
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assessed the causal effect of iron status biomarkers on all-cause mortality and investigated the 352 

shape of these associations. We demonstrated that the GRSs based on the previous study 353 

were good instruments for iron, TSP and TIBC in the independent HUNT study (variance 354 

explained 6% (iron), 11% (TSP), 13% (TIBC), 1.6% (ferritin)). Using these, we found 355 

evidence of a harmful effect of increased serum iron and TSP (derived from serum iron and 356 

TIBC) in linear analyses that estimated population-averaged effects. The point estimates of 357 

TIBC and ferritin were also suggestive of a harmful effect of increased iron status, although 358 

the estimates were not statistically significant, and the ferritin estimate was very imprecise 359 

due to the small sample size. In non-linear models, we did not find strong statistical evidence 360 

supporting non-linear relationships over linear ones. However, there was weak evidence of a 361 

protective effect of increasing serum iron at the very low end of its distribution, at serum iron 362 

levels below the normal range of 10-34 µmol/L51. The results were supported by post-hoc 363 

sensitivity analyses using only genetic variants consistent with systemic iron status. 364 

 365 

The study had several clear limitations. First, in our GWAS analyses we did not adjust for 366 

additional factors that could affect the biomarker concentrations, such as iron 367 

supplementation, inflammatory status, alcohol consumption and menopausal status (except 368 

for ferritin, where the full sample was pre-menopausal). These factors could therefore have 369 

influenced the effect estimates, particularly for rare variants. Second, we would need a larger 370 

sample size to confirm a non-linear shape of the exposure-outcome relationship at the 371 

extremes of the biomarker distributions. The analysis of ferritin was particularly limited by 372 

the small sample (N=2334) consisting of only relatively young, non-pregnant females, giving 373 

a low number of strata and few deaths. Third, the association of the GRSs with all-cause 374 

mortality could be attenuated because HUNT participants with suspected iron deficiency 375 

anemia or phenotypic hemochromatosis were later contacted by the primary health care 376 

services and offered treatment, and they could therefore have obtained a healthier iron status 377 

than they would otherwise have had, causing the analysis to be less precise. Finally, although 378 

the four biomarkers are commonly used to assess people’s iron status, neither of them is a 379 

very good individual predictor of iron stores, and the findings should therefore be interpreted 380 

with caution. 381 

 382 

In summary, we have increased the number of iron status associated loci through a 383 

large GWAS meta-analysis and validated the latest genetic risk scores for four iron 384 

status biomarkers. We find evidence of a harmful population-averaged effect of 385 
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genetically proxied serum iron and TSP, and weak evidence of a protective effect of 386 

increasing serum iron in individuals at the very low end of its distribution. Our 387 

findings contribute to our understanding of the genes affecting iron status and its 388 

consequences on human health. 389 

 390 

Methods 391 

Cohort descriptions 392 

Distributions of the age and sex of the HUNT, MGI and SardiNIA participants included in 393 

the current study are reported in Supplemental Table 2. 394 

 395 
HUNT 396 

The HUNT Study is a longitudinal population-based health study conducted in the county of 397 

Trøndelag, Norway since 198425. About 123 000 individuals (aged ≥20 years) have 398 

participated in at least one of four surveys, and more than 70 000 of these participants have 399 

been genotyped using one of three Illumina HumanCoreExome arrays: 12 v.1.0, 12 v.1.1 and 400 

24 with custom content (UM HUNT Biobank v1.0). Sample and variant quality control (QC) 401 

was performed using standard practices and has been reported in detail elsewhere74. All 402 

variants were imputed from the TOPMed reference panel (freeze 5)24 using Minimac4 v1.0 403 

(https://genome.sph.umich.edu/wiki/Minimac4). The reference panel is composed of 53 831 404 

multi-ethnic samples and 410 323 831 SNP and indel variants at high depth (mean read depth 405 

38.2X). Variants with a minor allele count (MAC) > 10 or imputation R2 
≥0.3 were included 406 

in analysis. A subset of individuals was genotyped with additional custom content variants.  407 

 408 

MGI 409 

The Michigan Genomics Initiative (MGI) is a repository of genetic data and electronic 410 

medical records from Michigan Medicine. Approximately 80 000 participants (aged 411 

≥18 years) have predominantly been enrolled prior to surgical procedures with over 59 000 412 

individuals genotyped using Illumina Infinium CoreExome-24. Following genotyping, 413 

sample-level QC was performed to remove sex-mismatches, duplicates, samples with call 414 

rate < 99%, or with estimated contamination > 2.5%. Variants with GenTrain score < 0.15, 415 

Cluster Separation scores < 0.3, Hardy-Weinberg Equilibrium p-value among unrelated 416 

European individuals < 1x10-4, or with evidence of batch effects (p-value < 1x10-3, Fisher’s 417 

exact test) were excluded. Imputation was performed using the TOPMed Imputation Server 418 
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(v1.2.7). Variants with MAF > 0.05% and imputation quality R2
≥0.3 were included in 419 

analysis. 420 

 421 

SardiNIA 422 

The SardiNIA study is a longitudinal population-based health study including 6 602 423 

individuals from the Lanusei valley on Sardinia. The participants have been genotyped on 424 

four different Illumina Infinium arrays, OmniExpress, Cardio-Metabochip75, Immunochip76 425 

and Exome Chip), and then imputed from a SardiNIA specific sequencing panel (~4x 426 

coverage) of 3 839 individuals, using Minimac377. Markers with imputation quality R2 > 0.3 427 

(or > 0.6 in variants with MAF < 1%) were retained, resulting in a total of ~19 million 428 

genetic variants. Samples, genotyping, sequencing and variant calling have previously been 429 

described elsewhere78. 430 

 431 

Iron Status Biomarkers 432 

Distributions of the biomarker levels in the HUNT, MGI and SardiNIA participants included 433 

in the current study are reported in Supplemental Table 2. 434 

 435 
HUNT 436 

Non-fasting serum samples were drawn in 1995-1997 (HUNT2). Serum iron concentration 437 

(µmol/L) was determined using a FerroZine method using a Hitachi 911 Autoanalyzer 438 

(reagents from Boehringer, Germany). The serum transferrin concentration (µmol/L) was 439 

analyzed by an immunoturbidimetric method using the Hitachi 911 Autoanalyzer (reagents 440 

from DAKO A/S, Denmark), and calculated for a molecular weight of 79 570 Da. TIBC was 441 

calculated as 2 x the serum transferrin concentration. The TSP was calculated as 100 x [serum 442 

iron concentration/TIBC]. Serum ferritin was measured from serum samples using an Abbott 443 

AxSYM analyzer (reagents from Abbott Laboratories, USA). In total, 56 667 HUNT 444 

participants had measurements of serum iron and TIBC, 56 664 had measurements of TSP, 445 

while ferritin was only measured in 2 334 women (fertile, non-pregnant, aged 20-55 years). 446 

 447 

SardiNIA 448 

Serum iron (µmol/L) and serum transferrin concentrations (µmol/L) were measured in fasting 449 

blood-samples from individuals with genotype and imputation data from the SardiNIA 450 

cohort. TIBC was calculated as 2 x the serum transferrin concentration. In total, 5 930 and 451 
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5 926 genotyped SardiNIA participants had measurements on serum iron and TIBC 452 

respectively. 453 

 454 

MGI 455 

Serum iron concentration was measured using the Ferrozine Colorimetric assay, and serum 456 

ferritin was measured using a Chemiluminescent Immunoassay. Serum transferrin 457 

concentrations were measured using an Immunoturbidimetric assay, and TIBC was calculated 458 

as 2 x the serum transferrin concentration. The TSP was calculated as 100 x [serum iron 459 

concentration/TIBC]. For individuals with multiple measurements, the initial measurement 460 

was used in the analyses. In total, 10 403, 9 480, 10 399 and 10 381 participants from MGI 461 

had measurements of serum iron, serum ferritin, TIBC and TSP respectively. 462 

 463 

Association analyses 464 

Association analyses of all iron traits (iron, ferritin, TIBC, TSP) in HUNT were performed 465 

using a linear mixed model regression under an additive genetic model for each variant  as 466 

implemented in BOLT-LMM v2.3.479, which also controls for relatedness between the 467 

samples. Association analyses of all iron traits in MGI were performed using a linear 468 

regression model in unrelated individuals using rvtests80. In both HUNT and MGI, we 469 

applied rank-based inverse normal transformation on the iron variables after adjusting for age 470 

and sex using linear regression, and included age, sex, genotyping batch and the first 10 471 

principal components (PCs) of ancestry as covariates. Association analyses of serum iron and 472 

TIBC in SardiNIA was performed using age, age2 and sex-adjusted inverse-normalized 473 

residuals of TIBC or iron as input to the Efficient Mixed Model Association eXpedited 474 

(EMMAX)81 single variant test as implemented in EPACTS 475 

(https://github.com/statgen/EPACTS).  476 

 477 

Additionally, we performed association analyses of serum iron, TIBC and TSP in HUNT with 478 

361 965 additional custom content variants genotyped in 44 248 (serum iron, TIBC) or 44 479 

246 individuals (TSP) using BOLT-LMM v2.3.479, including the same covariates and rank-480 

based normal transformation of the variables as was done in the main analyses. 481 

 482 
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Meta-analyses 483 

We performed fixed-effect inverse-variance weighted meta-analysis of summary statistics for 484 

iron (sample size N=236 612), ferritin (N=257 953), TIBC (N=208 422) and TSP (N=198 485 

516) using METAL82. Serum iron and TIBC were meta-analyzed in all studies (HUNT, MGI, 486 

SardiNIA and summary statistics from deCODE and Interval). SardiNIA did not have data on 487 

serum ferritin and TSP and was therefore excluded from these meta-analyses, while the 488 

available summary statistics for ferritin also included the DBDS study. To harmonize 489 

genomic positions from each study, we used LiftOver from UCSC83 to map the data from 490 

SardiNIA from Human Genome Build GRCh37 to GRCh38. Because standard errors were 491 

not given in the available summary statistics from deCODE, Interval and DBDS, we 492 

calculated them as the absolute value of the (effect size/qnorm(p-value/2)), where qnorm 493 

represents the inverse standard normal distribution. In HUNT, MGI and SardiNIA we 494 

performed genomic control correction of any analyses with an inflation factor λ >1 prior to 495 

meta-analysis. We considered genetic loci reaching a p-value < 5×10-8 for follow-up analyses. 496 

 497 

Definition of independent loci and locus novelty 498 

Genetic loci were defined around variants with a genome-wide significant association with a 499 

trait (p-value < 5×10-8). The locus borders were set 500 kb to each side of the highest and 500 

lowest genetic positions reaching genome-wide significance in each region. Overlapping 501 

genetic loci were merged if the index (lowest p-value) variants were in LD (R2
�0.2 and/or 502 

D’�0.8), or if one of the index variants was too rare to calculate LD with the other from our 503 

reference panel of 5000 unrelated individuals in HUNT. A locus was classified as novel for a 504 

given trait if it had not been reported previously for the trait. Previously published variants 505 

were identified through a literature search and a look-up in the GWAS catalog84. 506 

 507 

Annotation of genetic variants 508 

We used plink v1.985 with a reference panel of 5000 unrelated individuals in HUNT to 509 

identify genetic variants in strong LD (R2
�0.8) with the index variants, and annotated the 510 

functional consequences and rsIDs of the index variants and LD proxies using ANNOVAR 511 

(v.2019Oct24)86 and the UCSC human genome browser83.  512 

 513 
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Functional mapping of genetic variants 514 

We used three different bioinformatic approaches to perform functional mapping and gene 515 

prioritization of the meta-analysis summary level data: Bayesian colocalization analysis87,88, 516 

DEPICT47 and Polygenic Priority Scores89. 517 

 518 

To assess if any iron status loci were overlapping with significant cis-eQTL signals 519 

and consistent with shared causal variants for iron status markers and gene expression 520 

levels in specific tissue types, we used Bayesian colocalization analysis (‘coloc’) as 521 

implemented in the R package coloc. We used cis-eQTL data from 27 general tissue 522 

types (49 subtypes) in the individuals of European ancestry from the Genotype-Tissue 523 

Expression (GTEx) portal, data set v8 (https://www.gtexportal.org) and the GWAS 524 

meta-analysis results for each iron trait as input. For each tissue type, we analyzed all 525 

genes whose expression were associated (p-value < 5×10-8) with at least one iron 526 

status associated variant (p-value < 5×10-8), using effect sizes and standard errors for 527 

each variant-trait association as input. The coloc software estimated the variance in 528 

each trait (iron trait or gene expression level) from the sample sizes and minor allele 529 

frequencies. We set the prior probability of a genetic variant being associated with 530 

only iron traits, only gene expression or both traits to be 10-4, 10-4 and 10-6 531 

respectively. We considered posterior probabilities (PP4) above 75% to give support 532 

for a common causal variant for the iron trait and expression of the gene in the given 533 

tissue. 534 

 535 

We performed gene set enrichment, gene prioritization and tissue/cell type enrichment tests 536 

on the iron trait loci (p-value < 5×10-8) using Data-driven Expression Prioritized Integration 537 

for Complex Traits (DEPICT) (v1.1, release 194)47. Prior to the analysis we used LiftOver 538 

from the UCSC83 to convert the genomic positions of the genetic variants from GRCh38 to 539 

GRCh37. Enrichment results with an FDR < 5% were considered significant. 540 

 541 

Finally, we prioritized genes by computing Polygenic Priority Scores89 from summary-level 542 

data from each iron status biomarker. The method uses Multi-marker Analysis of GenoMic 543 

Annotation (MAGMA)90 to compute gene-level associations and gene-gene correlations from 544 

the meta-analysis p-values and sample sizes and LD information from individuals of 545 

European ancestry from the 1000 Genomes reference panel91. MAGMA is applied a second 546 
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time to perform enrichment analysis for genetic features. Genes are finally prioritized based 547 

on a combination of physical distance to associated genetic variants and functional similarity 548 

with other associated genes. We considered the 1% top ranked genes per biomarker to be 549 

prioritized genes for the respective traits. 550 

 551 

Heritability estimation 552 

We estimated the narrow-sense additive SNP heritability of serum iron, TIBC and TSP in 553 

HUNT using GCTA36. Ferritin heritability was not estimated because of the low sample size 554 

in HUNT. We created genetic relationship matrices (GRMs) based on 358 956 genotyped 555 

autosomal variants in 56 667 individuals with serum iron and TIBC data, and 56 664 556 

individuals with TSP data. We used the respective GRMs with GCTA-GREML (genomic-557 

relatedness-based restricted maximum-likelihood) to estimate the variance in each variable 558 

that was explained by the genetic variants. We used age, sex, and genotyping batch as 559 

covariates in the analyses, and we transformed the iron trait variables to normality with rank 560 

based inverse normal transformation after regression on age and sex prior to the analyses. 561 

 562 

Genetic correlation between iron traits 563 

We used the LDSC software37 with the iron trait meta-analysis summary statistics and 564 

precomputed LD Scores for Europeans from the 1000 Genomes reference panel91, and 565 

estimated the pair-wise genetic correlations of the four iron traits. Prior to the analysis, we 566 

changed all p-values < 1×10-300 to the exact value 1×10-300 to make sure the software was 567 

able to read the smallest values and did not discard these SNPs. To ensure that only well 568 

imputed SNPs were included in the analysis and thereby avoid bias due to variable 569 

imputation quality, we filtered the input files to the HapMap3 reference panel prior to the 570 

analysis, as recommended by the software developers ( https://github.com/bulik/ldsc/ ). 571 

 572 

Phenome-wide association tests (PheWAS) 573 

We constructed GRSs for the iron status biomarkers by summing the product of the effect 574 

size and the estimated allele count (dosage) for the index variants in genome-wide significant 575 

loci (p-value < ×10-8). We used TOPMed imputed estimated allele counts and effect sizes 576 

from the meta-analysis and calculated the GRS for participants of white British ancestry in 577 

the UK Biobank. We tested the association of the GRSs (GRS-PheWAS) and the individual 578 

index variants (single variant PheWAS) with 1 688 phecodes, continuous traits and blood 579 
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biomarkers. We used a logistic or linear regression model respectively to assess the 580 

association of the single variant estimated allele counts (‘dosage’) or inverse normalized GRS 581 

and each phecode or continuous trait/biomarker. For the GRS-PheWAS we included as 582 

covariates sex and birth year for binary traits, and sex and age at measurement for continuous 583 

traits. For the single variant PheWAS we used GWAS summary statistics generated with 584 

SAIGE v.29.4.292, with sex and the first four PCs as covariates in addition to age at initial 585 

assessment for quantitative traits and birth year for binary traits. To correct for multiple 586 

testing, we used a Bonferroni corrected p-value significance cut-off of 2.4×10-7, correcting 587 

for the number of tested variants, phecodes, biomarkers and continuous traits. In total, 29 588 

variants were excluded from the single variant PheWAS and GRS-PheWAS because they 589 

were not imputed in UK Biobank (Supplemental Information, Section II) 590 

 591 

Validation of genetic risk scores in HUNT 592 

To validate the previously published results from Iceland, Denmark and UK, we created 593 

weighted GRSs for each trait based on the published index variants and effect sizes17 using 594 

the same approach as described in the previous section. We tested the predictive ability of 595 

each GRS by regressing each trait on the respective GRS in the independent cohort, HUNT 596 

(Niron=NTIBC=56 667, NTSP=56 664, Nferritin=2334) and report the trait variance explained by 597 

the GRS. In total, ten variants were excluded from the GRSs because they were not imputed 598 

in HUNT (Supplemental Information, section III). 599 

 600 

Mendelian randomization of iron status on all-cause mortality 601 

To assess the causal association of iron status on all-cause mortality, we performed linear MR 602 

analyses using the ratio of coefficients method93, using GRSs as genetic instruments for the 603 

four iron related traits. The GRSs were constructed as described above, using index variants 604 

and external effect sizes from the previous independent meta-analysis17. We used linear 605 

regression to estimate the associations between the iron related traits and the GRS, and a Cox 606 

proportional hazards regression to estimate the association of the GRS with mortality. The 607 

MR estimate was obtained as the ratio of the outcome-instrument and exposure-instrument 608 

association estimates. The standard error was estimated as the standard error of the GRS-609 

mortality association divided by the GRS-biomarker association estimate. 610 

To further assess the shape of the association, we performed a non-linear Mendelian 611 

randomization with the fractional polynomial method94,95 in HUNT, using the same GRS as 612 
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genetic instrument for the iron traits. The method has been described in detail elsewhere95–98. 613 

In brief, each iron related trait was regressed on its respective GRS, and the population was 614 

divided into 100 (iron, TIBC, TSP) or 20 (ferritin) strata based on the residual traits. The 615 

number of strata was reduced for ferritin because of the lower sample size for this biomarker. 616 

In each stratum we used linear regression to estimate the association of the GRS with the iron 617 

trait, and Cox proportional hazards regression to estimate the association of the GRS with 618 

mortality. We calculated the localized average causal effect (LACE) of the respective trait on 619 

all-cause mortality in each stratum as the ratio of the GRS-outcome and GRS-exposure 620 

associations. We performed meta-regression of the LACE against the mean of the exposure 621 

in each stratum and tested whether the best-fitting fractional polynomial of degree 1 fitted the 622 

LACE estimates better than a linear model using the fractional polynomial method94. 623 

 624 

To further validate the selection of SNPs representing each biomarker in the non-linear MR, 625 

we performed post-hoc sensitivity analyses rerunning the non-linear MR method with new 626 

instruments that had stricter criteria for SNP inclusion. Here, we restricted the GRSs to index 627 

variants from the previous study17 that were not only GWAS significant for at least one trait, 628 

but also nominally significant (p-value<0.05) for the remaining traits. Further, we excluded 629 

SNPs that had directions of effect that were not consistent with systemic iron status 630 

(increasing serum iron, ferritin and TSP, and decreasing TIBC)99. We used the remaining 14 631 

SNPs (Supplemental Information, Section IV) to construct each of the four GRSs in the 632 

analysis as described for the main analysis. 633 

 634 

Ethics 635 

All study participants have given informed consent. The analyses in HUNT has approval 636 

from the Norwegian Data Protection Authority and the Regional Ethics Committee for 637 

Medical and Health Research Ethics in Central Norway (REK Reference Number: 2014/144), 638 

the analyses in MGI are approved by the Institutional Review Board of the University of 639 

Michigan Medical School (IRB Reference Number: HUM00094409), and the analyses in UK 640 

Biobank are covered by the ethics approval for UK Biobank studies (application 24460) from 641 

the NHS National Research Ethics Service on 17th June 2011 (Ref 11/NW/0382) and 642 

extended on 10th May 2016 (Ref 16/NW/0274). 643 
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