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Abstract 

Despite recent biomedical breakthroughs and large genomic studies growing momentum, the 

Middle Eastern population, home to over 4000 million people, is under-represented in the human 

genome variation databases. Here we describe insights from phase 1 of the Qatar Genome 

Program which whole genome sequenced 6,045 individuals from Qatar. We identified more than 

88 million variants of which 24 million are novel and 23 million are singletons. Consistent with 

the high consanguinity and founder effects in the region, we found that several rare deleterious 

variants were more common in the Qatari population while others seem to provide protection 

against diseases and have shaped the genetic architecture of adaptive phenotypes. Insights into 

the genetic structure of the Qatari population revealed five non-admixed subgroups. Based on 

sequence data, we obtained and the heritability and genetic marker associations for 45 clinical 

traits. These results highlight the value of our data as a resource to advance genetic studies in the 

Arab and neighbouring Middle Eastern populations and will significantly boost the current 

efforts to improve our understanding of global patterns of human variations, human history and 

genetic contributions to health and diseases in diverse populations. 

Keywords: Population Genomics, Large-Scale Sequencing Project, Diversity, Qatar, Middle 

East 

 

Introduction  

Several countries worldwide have initiated large-scale population genomics projects representing 

various regions from Africa, Europe, North and South America, South Asia and Australia 
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(Gudbjartsson, Helgason, et al., 2015; Gudbjartsson, Sulem, et al., 2015; Gurdasani et al., 2019; 

Manolio et al., 2019; Naslavsky et al., 2020; Stark et al., 2019; Turro et al., 2020; Wu et al., 

2019b). In addition to this groundbreaking work, there are also ongoing large collaborative 

efforts to increase diversity in human genetics, including the All of Us Research Program 

(Collins & Varmus, 2015), the Human Health and Heredity in Africa (H3Africa) Initiative (C. 

Rotimi et al., 2014) and the TOPMed Program (Taliun et al., 2021). Such studies provided 

valuable new insight into human disease, population structure and history of migration 

(Boomsma et al., 2014; Chiang et al., 2018; Francioli et al., 2014; Gurdasani et al., 2019; Okada 

et al., 2018; Scott et al., 2016a; Wu et al., 2019a). Despite this notable focus on diversity, there is 

still considerable effort needed to cover the broad diversity of world ancestries to ensure that 

discoveries does not conserve historical disparities and to uncover the various diseases etiologies 

that remain uncharacterized to date (Bentley et al., 2017; Landry et al., 2018; Mills & Rahal, 

2019).  The Middle-East regions are still underrepresented in the public databases (Abou Tayoun 

& Rehm, 2020). For instance, the latest version of gnomAD database (3.1) contains data from 

only 158 Middle-eastern genomes (Karczewski et al., 2020). The Qatar Genome Program (QGP) 

is a population genome project based in Qatar aiming to sequence the genomes of local 

population for the purpose of supporting genomic medicine in the country and the region. As part 

of phase 1, it has sequenced the whole genomes of 6,045 subjects whose specimens were 

collected and biobanked by the Qatar Biobank (QBB) (Al Thani et al., 2019b) Figure 1a).   

Qatar occupies a relatively small surface area of 11,521 km2 on the western coast of the Arabian 

Gulf. Qatar shares its southern border with Saudi Arabia and a maritime border with Bahrain, 

UAE, and Iran (Figure 1b) and has a population of approximately 2.8 million. The country is 

located at a historic intersection of ancient and recent migration and admixture (Arauna et al., 
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2017; Hellenthal et al., 2014). Similar to other countries in the region, it is known for its unique 

population structure that is characterized by a high consanguinity rate and increased prevalence 

of rare genetic diseases (Al-Gazali et al., 2006; Anwar et al., 2014; Hunter-Zinck et al., 2010; 

Rodriguez-Flores et al., 2014, 2016; Scott et al., 2016a). Recent genetic studies identified 

indigenous Arabs as the direct descendants of the first Eurasian populations established by early 

migrations out of Africa (Bentley et al., 2017) (Figure 1c). Moreover, sizable proportions of the 

population have more recent Persian and African ancestry (Harkness & Khaled, 2014). QBB 

includes comprehensive phenotyping, providing excellent synergy for discovery when combined 

with the WGS data, that also enable accurate estimate of allele frequencies for rare and common 

variants, and well-defined polygenic risk scores for many disease traits. All such features of the 

local population potentiate discoveries, not only related to millions of people in the immediate 

neighboring region, but also inform genetic studies in other parts of the world. 

Materials and Methods 

Qatar Biobank subject recruitment 

The Qatar Biobank (QBB) is a longitudinal population-based cohort study examining a 

population sample of permanent Qatari residents (Qatari nationals, other Arabs and non-Arabs)  

with follow up every 5 years (Al Thani et al., 2019b) To achieve a representative sample of the 

permanent population that resides in Qatar, the inclusion criteria of the QBB are: 1. To be Qatari 

nationals or resident in Qatar for at least 15 years and 2. To be 18 years or older. QBB is 

inclusive and language specification and tribes name or origin are not part of the inclusion 

criteria. The participants are recruited from the general public via either social media and the 

QBB website or through personal recommendations of family and friends. 
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 The study covers extensive baseline sociodemographic data, clinical and behavioral phenotypic 

data, biological samples (i.e. blood, urine, saliva, DNA, RNA, viable cells and others), as well as 

clinical biomarkers and Omics data (i.e. genomics, transcriptomics, proteomics, metabolomics 

etc.) (Al Thani et al., 2019b). Currently the QBB has reached 44.7 % of the target population 

(60,000) and more than 2 million biological samples. For this study, data from 6,045 Qatari 

nationals participants were available from QBB population cohort. The percentage female was 

56.74% and the  mean age was 40 years (SD 12.7 years). 

Ethics Statement 

All QBB participants signed an Informed Consent Form prior to their participation; QBB study 

protocol ethical approval was obtained from the Hamad Medical Corporation Ethics Committee 

in 2011 and continued with QBB Institutional Review Board (IRB) from 2017 onwards and it is 

renewed on an annual basis (IRB protocol number, QF-QGP-RES-PUB-002). 

Qatar Biobank sample collection 

Physical and clinical measurements were collected by the QBB, in addition to biological samples 

(approximately 60ml of blood, 5ml of saliva, and 10ml of urine). Participants were instructed for 

8 hours fasting before the visit, but due to different visit shifts samples were mostly spot 

specimens. Blood samples were analysed to assess 66 different biomarkers associated with 

disease risk factors. Haematology and blood chemistry biomarkers were analysed at Hamad 

General Hospital laboratories. EDTA blood samples were separated by centrifugation into 

plasma, buffy coat (leucocytes) and erythrocytes. All collected samples were aliquoted and 

stored in 3 different locations (Al Thani et al., 2019a). 

DNA isolation and Quality Control 
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Prior to DNA isolation, each buffy coat sample was registered into the Laboratory Information 

Management System (LIMS) and assigned with three identifiers: i. the aliquot code, ii.a subject-

specific personal number, and iii. a sample-specific serial number. Samples were received in 2D-

coded FluidX tubes (Brooks Life Sciences). Upon receiving, samples were scanned on a 2D 

FluidX Perception Barcode Reader to check for consistency against the sample submission form. 

The buffy coat samples were processed for DNA isolation using the automated QIASymphony 

SP instrument according to Qiagen MIDI kit protocol’s recommendations. The assessment of 

DNA quantity and quality was carried out using NanoDrop 8000 (Thermofisher, Waltham, MA, 

USA), FlexStation 3 (Molecular Devices, Sunnyvale, CA, USA) and LabChip GX (Perkin 

Elmer, Waltham, MA, USA). The absorbance at 260 and 280 nm wavelength was measured on 

Nanodrop 8000 and used to check DNA purity. A fluorescence-based quantification was 

performed on FlexStation 3 using Quant-iT PicoGreen dsDNA Assay (Thermofisher). Briefly, an 

aqueous working solution of the Quant-iT PicoGreen reagent was prepared on the day of the 

quantification experiment by making a 200-fold dilution of the concentrated DMSO solution in 

TE. TE buffer was also used for diluting DNA samples and in the assay itself. Sample 

measurement on FlexStation 3 was performed following the manufacturer’s recommendations. 

DNA integrity was checked on LabChip GX. The Gel-Dye solution, DNA samples and DNA 

ladder were prepared according to the manufacturer’s instructions; the run data was compared to 

the electropherogram of a typical high molecular weight ladder and assessed for quality. A 

genomic DNA (gDNA) quality score (GQS) was calculated for each sample. The GQS is derived 

from the size distribution of the gDNA and it represents the degree of degradation of a given 

sample, with a score of 5 corresponding to intact gDNA and a score of 0 corresponding to a 
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highly degraded gDNA. Figure S1 shows the GQS distribution across 50 samples assessed from 

phase I. The distribution shows GQS>3.5. 

Whole genome sequencing 

Library construction and sequencing was performed at the Sidra Clinical Genomics Laboratory 

Sequencing Facility. After extraction of genomic DNA, sample integrity was controlled 

using the Genomic DNA assay on the Perkin Elmer Caliper Labchip GXII. Concentration was 

measured using Invitrogen Quant-iT dsDNA Assay on the FlexStation 3. Around 150ng of DNA 

were used for library construction with the Illumina TruSeq DNA Nano kit. Each library was 

indexed using the Illumina TruSeq Single Indexes. Library quality and concentration was 

assessed using the DNA 1k assay on a Perkin Elmer GX2. Libraries were quantified using the 

KAPA HiFi Library quantification kit on a Roche LightCycler 480. Flow cells were loaded at 1 

sample per lane and cluster generation was performed on a cBot 1.0 or 2.0 using the HiSeq X 

Ten Reagent Kit v2.5. Flow cells were loaded at a cluster density between 1255 and 1412 

K/mm2 and sequenced on an Illumina Hiseq X instrument to a minimum average coverage of 

30x. 

Sequencing data processing methods 

The Sidra Bioinformatics Core (SBC) developed a pipeline to perform the NGS analysis for 

QGP and other internal projects (Figure S2). The core also developed a framework to automate 

the processing of the samples. Data is received from the clinical genomic lab (CGL) in Fastq1 

format. Quality control of Fastq files is performed using FastQC(v0.11.2)2, to calculate quality 

metrics and ensure that raw reads have good quality. Reads are then trimmed and aligned to 

hs37d53 reference genome using bwa.kit (v0.7.12)4 and a bam5 file is generated. Quality control 
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on mapped reads (BAM files), to evaluate the coverage of each sample, is performed using 

Picard (v1.117) [CollectWgsMetrics]6. The variant calling is performed following GATK 3.4 

best practices7: Indel realignment and base recalibration (BQSR) is performed on the initial bam 

then HaplotypeCaller run on each sample to generate an intermediate genomic gVCF (gVCF). 

Joint Genotyping is performed using all generated gVCF files at once. We first run 

GenomicsDB8 to combine the different samples by regions, then on each region, we run 

GenotypeGVCFs, apply SNP/Indel recalibration (VQSR) and then merge all regions. Annotation 

is performed using SnpEff/SnpSift9 (v4.3t). The following databases are used within 

SnpEff/SnpSift for the annotation of the multi-samples VCF file: 

• dbSNP build 151 

• ClinVar 2019-02-11 

• dbNSFP10 v2.9 

• GWAS catalog11 

• msigDBdb12 v5.0 

All variants are kept within the VCF file. Copy Number Variation analysis was performed using 

Canvas13 (v1.11.0) and structural variant analysis was performed using Manta14 (v0.29.6) and 

Delly15 (v0.7.8). Both analyses use bam file as input and were performed at the single sample 

level. Additionally, QGP VCF file was decomposed for multi allelic position and then normalize 

using vt16 (v0.5). QGP VCF file was split chromosome wise and this per chromosome VCF file 

was provided for further analysis as well. All pipeline references are in the supplemental data. 

To identify disease-causing variants in HGMD, ClinVar and OMIM, we used VCF file annotated 

with phenotype/disease information from these databases. To achieve that, we applied successive 

filtering on the variant list using different criteria (selecting only those located in known 
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HGMD/OMIM gene, variants with MAF <1% in all databases, except QGP, and the variant 

should be within or affecting the coding region; missense, nonsense, frameshift, and splice-site 

variants). Among the final list, we selected those that have been previously reported and flagged 

as disease-causing “DM/DM?” in HGMD or “Pathogenic/Likely_pathogenic” in ClinVar. 

Data Quality Control  

QGP phase I study included 6,218 samples. We applicate downstream quality control on the 

multi-sample VCF using the PLINK v2.0 tool (Chang et al., 2015). After quality control, 8 

samples were removed for excess heterozygosity, 1 for low-call rates (less than 95%), 65 for 

gender mismatch, 87 for population outliers (individuals with more than four standard deviation 

(±4 SD) away from the mean of the first two multidimensional scaling component), and 10 for 

identical matching. After these exclusions (N= 171), a final set of 6,045 subjects was obtained 

for which whole-genome sequencing was performed at a median depth of 32X (Thareja et al. (in 

press).  

Statistical analyses  

We compared the allele counts of QGP samples to allele counts present in gnomAD exome 

samples for HGMD DM variants. A Fisher’s exact test was used to calculate variations that were 

significantly overrepresented in the QGP samples (due to founder effect) and corrected for 

multiple testing using the Bonferroni method.  

Hail genomic processing tool 

Data preprocessing and analysis was performed using Hail 0.2. allele count, allele number, allele 

frequency, homozygous count calculation for each subpopulation was performed simultaneously 

using python scripts written using hail framework. Quality analysis for variant calls and 
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individual sample were performed using variant_qc and sample_qc functions respectively. 

Sample level statistics for each sample was generated using the Hail.  

QGP variant browser  

QGP variant browser provides a mechanism for the researchers to be able to search, filter and 

browse the QGP genomic variants data. This web-based browser supports fast database query 

response time for searching through more than 88 million records with search and filter 

functionality on the QGP gene variants and its attributes (e.g. allele frequency, homozygosity 

etc.). 

  

Results  

Genetic variability of the Qatari population  

We have identified a total of 88,191,239 variants, which includes 74,991,446 SNVs (74,040,559 

bi-allelic SNVs) with 939,405 multi-allelic sites and 13,199,792 INDELS (8,389,562 bi-allelic 

INDELS) with 2,018,185 multi-allelic sites/microsatellites (Figure 2a-c and Figure S3). 

Importantly, twenty-eight percent (28%) of the total variants (24,620,313) were novel and not 

previously reported in dbSNP build 151 or other population databases (gnomAD, 1000 

Genomes, and Greater Middle East (GME)) (Figure 2b; Figure S4a-b and 5). Each individual 

genome presented a median of 3.4 million SNVs and 63,755 novel variants. We estimated the 

transition to transversion (ti/tv) ratio of 2.05 and heterozygotes to non-ref homozygote 

(Het/Hom) ratio of 1.85, which is consistent with previous WGS studies (Auton et al., 2015). We 

found 23 million variants present as singletons which are less when compared to the number of 

variants falling under the minor allele frequency (MAF) spectrum of <0.1% (2-12 alleles) which 
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should be around 34 million variants (Figure2c and Table S1). While considering the novel 

variants, singletons (45%) being slightly higher than the variants that fall in the category of 2-12 

alleles (42%) and only 13% of the novel variants exceed the MAF > 0.1%. Half of the singletons 

present in QGP were already reported in dbSNP and, each individual carried a median of 1,336 

singletons (Figure 2d and Figure S6).  

 To evaluate the impact and scale of disease-causing variants in our population, we 

annotated the variant list with disease/phenotype information from HGMD, ClinVar and OMIM 

databases. In total, we found 4,254 disease-causing mutations (DM), which includes 3,970 SNVs 

and 284 INDELS (Figure S7a). These variants are located across 1,672 genes that are linked to 

phenotypes with different modes of inheritance (678 follow autosomal recessive (AR); 315 

autosomal dominant (AD); 526 both AR and AD; and 50 X-linked inheritance) (Figure 2e). The 

vast majority (97%) of these DM variants are rare with MAF <1%, and among them 30% 

observed as singletons (Figure S7b). Each individual in the QGP dataset carries a median of 21 

DM variants (range of 8-37) (Figure 2f and Figure S7c), slightly less than what have been 

previously reported (25 DMs/individual in the UK10k (Xue et al., 2012) and 29 DMs/individual 

in the Uganda genome studies (Gurdasani et al., 2019)). Each individual also carries in the 

homozygous state a median of 5 DM variants (range of 1-11) compared to 3 homozygous 

DMs/individual in the Uganda genome and 3–24 homozygous variants in the 1000 Genome 

project (Auton et al., 2015; Gurdasani et al., 2019). Our data shows that approximately 900 

protein-coding genes have at least 1 DM mutation and 26 genes present 15 or more DM 

mutations (Figure S7d). When QGP data is classified according to ClinVar information (version 

February 11th 2019), we found that 1,449 variants are classified as “pathogenic” or “likely 

pathogenic” (Figure S7e). Further classification considering both HGMD and ClinVar, revealed 
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that 1,011 variants were marked as DM and “pathogenic or likely pathogenic” (Figure 2g), with 

160 variants unique to the Qatari population. Interestingly, only a subset of 14 variants, among 

the 1,011 variants, are shared between the QGP samples and data from Greater Middle East 

(GME) Variome Project (Scott et al., 2016b) (Table 1). There are also 36 variants which confer 

protection against several diseases including malaria, obesity, and heart disease (Table S2).  

We found some rare pathogenic variants present in Qatari population with high minor allele 

frequencies due to the founder effect. Some of the examples include variant in the MPL gene 

[MIM: 604498] (rs750046020), previously associated with thrombocytosis, occurs at a MAF of 

0.009, and similarly, variants in the genes CBS [MIM:236200] (rs398123151) and KRT5 [MIM: 

148040](rs267607448) associated with homocystinuria and Epidermolysis Bullosa, respectively, 

are observed at a MAF of 0.007”.  

Genetic Ancestry and Diversity of the Qatari population  

To capture the genetic diversity of the Qatari population and understand its relationship with the 

world’s populations in both modern and ancient times, we identified five major ancestries: 

General Arabs (QGP_GAR, 38%), Peninsular Arabs (QGP_PAR, 17%), Arabs of Western 

Eurasia and Persia (QGP_WEP, 22%), South Asians (QGP_SAS, 1%), Africans (QGP_AFR, 

3%) and Admixed (QGP_ADM, 19%) (Razali et al., in press) (Figure S8). We also characterized 

a group of Peninsular Arabs forming a unique cluster within known descendants originating from 

the historical homeland of ancient Arab tribes. Analysis of Mitochondrial DNA (mtDNA) and 

Chromosome Y (Chr Y) in the dataset has enriched the poorly characterized landscape of 

haplogroups in Arab and Middle East populations in general. Notably, J1a2b a Chr Y haplogroup 

seen previously in Yemen, has been observed in 1,419 males, which is the largest set of 

individuals ever sequenced within this haplogroup. We discovered 103 novel Y-Chr SNPs in 
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these individuals, which aided the expansion of this haplogroup to 29 novel sub-haplogroups. 

Using this unique dataset, we built a panel for genotype imputation for Arabs and Middle Eastern 

ancestries which shows an improved imputation score for rare and common allele frequencies 

variants (Razali et al., in press). 

 We next characterized the spectrum of genetic variability based on the fine-scale 

population structure observed in the Qatari population. This analysis highlighted that 70% of the 

novel variants are cluster-specific, 5% are found in all sub-clusters, and the remaining 25% are 

shared between one or more sub-clusters (Figure S9a). Similarly, we found that about half 

(2,139) of the DM variants are cluster-specific and only 68 out of 4,254 DM variants were 

present in all sub-clusters (Figure S9b). Furthermore, individuals in the QGP_AFR sub-cluster 

have the highest heterozygotes to non-ref homozygote (Het/Hom) ratio, whereas the ratio was 

found to be lowest for the QGP_PAR cluster. This reflects the high homozygosity and high 

consanguinity present within the individuals of this cluster (Figure S9c). Similarly, the median 

number of singletons is lower for PAR cluster compared to other sub-clusters reflects the closely 

related individual present in this cluster (Table 2).  

Furthermore, runs of homozygosity (ROH) analysis of the QGP done by Razali et al 2021 

(Razali et al., in Press), identified per population ROH boundary for short, medium and long 

ROH. We observed that Peninsular Arabs (PAR) have the lowest median for short ROH after 

African-based populations. In addition, PAR has the highest median for long ROH, indicating 

recent consanguinity events. When we analyzed the relationship between genes and the ROH 

regions, we observed that there are more OMIM genes in ROH regions compared to non-OMIM 

genes regardless of the ROH classes. PAR was shown to have significantly more OMIM genes 

compared to the other QGP and 1KG populations. 
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Burden of Pathogenic Variation   

We then focused on the burden of pathogenic variants of recessively inherited disorders in the 

Qatari population. We found the most common recessive alleles are those linked to structural 

deformities and developmental disorders, consistent with the fact that such recessive traits 

prevail in societies where endogamy and consanguinity is practiced (Table S3). However, some 

of these identified alleles are too common to be classified as pathogenic variants (rs201818754, 

rs373804633, rs199768740, and rs80358230) as their frequencies in PAR subpopulation 

exceeding 4%, far more than the associated disease prevalence. 

A notable example of an autosomal recessive disorder is Woodhouse-Sakati syndrome [WSS 

(MIM:241080)], a disease characterized by hypogonadism and hair thinning that often 

progresses to alopecia totalis. Of the less than 100 individuals reported globally with the disease, 

30 are from Middle Eastern families (Bohlega & Alkuraya, 1993). WSS is caused by biallelic 

pathogenic variants in the [DCAF17 (MIM: 612515)] (previously known as C2orf37) gene. We 

identified NM_025000.4 (DCAF17): c.436delC (p.Ala147fs) as the sole pathogenic variant of 

this gene in 88 individuals, in heterozygous state (MAF = 0.007) (Supplementary data). 

Although all heterozygous individuals were found to be clinically asymptomatic, the alternate 

allele in these individuals is associated with the decreased levels of Insulin (Pvalue = 2.9E-02; β 

= -0.225; Figure S10) which could explain diabetes mellitus being one of the characteristic 

clinical phenotypes in WSS. We also found that c.436delC is enriched (fisher exact test 

P=7.57E-34; OR=18.45) in one of the founder populations, QGP_PAR subcluster, this is 

consistent with a previous report that identified DCAF17:c.436delC (rs797045038) as a founder 

variant in the Qatari population (Ben-Omran et al., 2011). This variant has also been reported in 

the Kingdom of Saudi Arabia (Alazami et al., 2008), which has a large number of tribes sharing 
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common and similar carrier frequency with Qatar’s native population. Hamad Medical 

Corporation (HMC) is hosting the national molecular diagnostic laboratories of Qatar, and has 

identified to date 34 WSS patients and 64 heterozygous carriers. Data from both QGP and HMC 

laboratories indicates that the carrier frequency for WSS in the Qatari population is approx. 1 in 

42 individuals (2.5%) with MAF of 1.25%, which is the highest reported in the world. 

Remarkably, the carrier frequency of c.436delC (p.Ala147fs) is 7x higher in Qatar than in the 

same tribe living in neighboring Saudi Arabia and has not yet been reported in population 

frequency databases, such as gnomAD and 1000 genomes or the 100K Genomes Project that 

includes patients with rare genetic diseases (Turnbull et al., 2018). 

Insights into the genetics of quantitative traits  

To gain insights into the genetic architecture of health and disease-related quantitative traits, we 

performed the first genome wide association studies of a list of 45 quantitative traits in 6,045 

individuals from the Qatari population (Thareja et al., 2021). Several important findings of this 

comprehensive study include replication of multiple associations reported in Caucasian and 

Asian GWASs; uncovering differences in allele frequencies and LD patterns for replicated loci; 

and discovery of novel genetic associations mostly with variants common in the QGP but rare in 

other populations. These findings argue for larger GWAS studies from the region to accurately 

derive polygenic risk scores optimized for Middle Eastern populations for improved application 

in precision medicine.  

Discussion  

Here we characterized a broad spectrum of genetic variation in the Qatari population, in total 

over 88 million variants (1.86 % of novel variants per individual genome and 24.6 M novel 

variants in the whole dataset). This large-scale study allowed us to identify five non-admixed 
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subgroups in QGP (n=6,045) compared to three in the previous study Fakhro et al. 2016 

(n=1,005) (Fakhro et al., 2016). We found a larger number of DM variants carried per individual 

which could be explained by incomplete penetrance, or the individual might carry them in a 

heterozygous state (Francioli et al., 2014; Xue et al., 2012). We described the distribution of 

genetic variation across the sub-clusters and found the majority of the novel variants to be 

cluster-specific. This data support records of high consanguinity and founder effect but also 

identify a previously unstudied component of the Middle Eastern population. Based on these 

sequencing results of 6,045 individuals we have recently reported a total of 60 pathogenic and 

likely pathogenic in 25 ACMG genes in 141 unique individuals (Elfatih et al., 2021) and several 

other efforts are currently under way to build the catalogues of predicted loss-of-function 

variants and mendelian disorders mutations and to characterize the pharmacogenomic and the 

cancer landscapes of the Qatari population. Furthermore, using a combination of whole genomes 

and exome sequence data and clinical reports, we developed a microarray with Qatari-specific 

pathogenic variants that could be used to rapidly, accurately and at low cost, screen the Qatari 

population for pathogenic variants of newborns, premarital couples and patients presenting to the 

clinic (Rodriguez-Flores, in press). 

Previous genetic studies in the Middle East region have assessed the genomic variations linked to 

health and diseases mostly limited to whole exome sequencing on relatively small sample size 

(AlSafar et al., 2019; Fattahi et al., 2019; John et al., 2018; Monies et al., 2019; Scott et al., 

2016b). Our QGP data have a key advantage over these studies since we are performing large-

scale population sequencing using a whole genome approach. Although our work provided 

various insights into the genomic of the Middle East, we should address one limitation of our 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.19.21263548doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.19.21263548
http://creativecommons.org/licenses/by/4.0/


  
 
 

 17

approach is that we are including only Qatari nationals in the first phase. To overcome this 

limitation, we are including long term residents in our next freezes. 

In conclusion, this first phase of the QGP constitutes the largest comprehensive analysis of 

whole genomes representative of tens of millions of Arabian Peninsula and Middle East 

inhabitants. Such genetic information is largely lacking in global databases (Easteal et al., 2020). 

Our next phases will focus on specific diseases relevant to the Qatari population’s health burden 

- e.g. cancer, diabetes and rare diseases - while accelerating the ability to use the genome 

sequencing data into clinical implementation.  We anticipate our data will represent a valuable 

resource to advance genetic studies in the Arab and neighbouring Middle Eastern populations 

and will significantly boost the current efforts to improve our understanding of global patterns of 

human variations, human history and genetic contributions to health and diseases in diverse 

populations (C. N. Rotimi & Adeyemo, 2021). 
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Supplemental Information 

Supplemental information includes ten figures (S1–S10), three tables (S1–S3), information 

about DCAF17 founder mutation, and references for the pipelines.  
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Figure Titles and Legends 
 

Figure 1. Qatar Genome Program, timelines, and regional context. 

a) Three phases project timeline and current status.  b) Qatar Geographical map. Qatar is located in the 
north-eastern coast of the Arabian Peninsula with an area of 11,521 km2 sharing borders with Saudi 
Arabia from the south and maritime borders with Bahrain, UAE, and Iran. c) The Arabian Peninsula is 
believed to be the first stop in human migration out of Africa, and home for the first ancient Eurasian 
populations, whom later spread throughout Asia and Europe. 

Figure 2. Variants distribution and allele frequency spectrum of QGP data.  

a) Number of SNVs and INDELS present within the QGP data. b) Known and novel variants 
distribution of QGP data. c) QGP variants classification based on minor allele frequency (MAF). d) 
Proportion of known and novel singletons within the QGP data. e) Classification of DM variants based 
on pattern of inheritance. Inheritance patterns of genes were derived from OMIM database. f) 
Distribution of DM variants among individuals in QGP sub clusters. g) QGP variants classified as both 
DM and pathogenic/likely pathogenic. 
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Tables 

 

Table 1. Pathogenic variants unique to the Middle East region. Pathogenic variants exclusively reported in QGP and GME (Greater Middle 
East) variome project. QGP_MAF - Minor allele frequency in QGP data; GME_MAF – Minor allele frequency in GME variome project. 

Chrom Pos ID QGP_ MAF GME_MAF GENE HGVS_C HGVS_P Annotation HGMD CLINVAR Disease Phenotype 

2 47604159 rs606231204 0.00223251 0.000503525 EPCAM c.583dupC p.Gln195fs frameshift 

variant 

DM Pathogenic Congenital Tufting Enteropathy (CTE) 

2 73676380 rs746640196 0.000165399 0.000503525 ALMS1 c.2723C>G p.Ser908* stop gained DM Likely pathogenic Alstrom syndrome 

2 172305304 rs797045038 0.00727634 0.001007049 DCAF17 c.436delC p.Ala147fs frameshift 

variant 

DM Pathogenic Woodhouse-Sakati syndrome 

3 113119479 rs866096259 0.00330961 0.000503525 WDR52 c.1387G>T p.Glu463* stop gained DM Pathogenic Spermatogenic failure 

4 108866582 rs397514513 0.00223251 0.001510574 CYP2U1 c.947A>T p.Asp316Val missense 

variant 

DM Pathogenic Spastic paraplegia 

4 119736287 rs730882211 0.00148834 0.001007049 SEC24D c.700G>C p.Gly234Arg missense 

variant 

DM Likely pathogenic Intellectual disability/Seizures 

6 135776888 rs121434350 0.000165399 0.001009082 AHI1 c.1328T>A p.Val443Asp missense 

variant 

DM Pathogenic/Likely 

pathogenic 

Joubert syndrome 

8 145741257 . 8.27E-05 0.000503525 RECQL4 c.1149G>A p.Trp383* stop gained DM Pathogenic Rothmund-Thomson syndrome 

9 111899809 rs878853280 0.000413497 0.001007049 FRRS1L c.961C>T p.Gln321* stop gained DM Pathogenic Epileptic encephalopathy 

15 65295453 rs863224897 8.27E-05 0.000503525 MTFMT c.1116delT p.Pro373fs frameshift 

variant 

DM Likely pathogenic Moyamoya disease 

16 77369781 rs148319220 8.27E-05 0.001007049 ADAMTS18 c.1731C>G p.Cys577Trp missense 

variant 

DM Pathogenic Microcornea, myopic chorioretinal atrophy,  

and telecanthus(MMCAT) 

19 11304215 . 0.00256325 0.000504032 KANK2 c.541A>G p.Ser181Gly missense 

variant 

DM Pathogenic Nephrotic syndrome,16 

21 47805894 rs387906928 8.27E-05 0.000503525 PCNT c.3460G>T p.Glu1154* stop gained DM Pathogenic Microcephalic osteodysplastic primordial  

dwarfism type 2 (MOPD2)  

22 27012112 rs1064793935 0.000248057 0.000504541 CRYBB1 c.171delG p.Asn58fs frameshift 

variant 

DM Pathogenic Cataract 
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Table 2. Median number of variant sites per genome. Novel SNV and INDELS: Variants, which are not reported in dbSNP or gnomAD or 
1000G project. GERP (Genomic Evolutionary Rate Profiling) score: Scores >3 represent highly conserved positions. ADM- Admixed, AFR- 
Africans, GAR- general Arabs, PAR- Peninsular Arabs, SAS- South Asians, WEP- Arabs of Western Eurasia and Persia. 

Annotation QGP 

(n=6,045, 

Depth = 32.4x) 

ADM  

(n=1,180, 

Depth =32.2x) 

AFR (n=92, 

Depth=31.9x) 

GAR (n=2,311, 

Depth =32.2x) 

PAR (n=1,052, 

Depth=32.2x) 

SAS (n=38, 

Depth =31.9x) 

WEP (n=1,372, 

Depth=32.2x) 

 

SNV 3,467,270 3,596,354 3,967,082 3,466,051 3,391,850 3,492,506 3,458,604 

INDELS 1,107,288 1,128,043 1,207,016 1,105,836 1,094,173 1,113,900 1,101,075 

Singletons 1,336 9,242 17,606 2,484 408 20,056 3,193 

Novel SNV 18,453 21,311 25,993 16,419 12,022 23,814 20,788 

 

Novel INDELS 45,756 46,263 48,406 45,752 46,061 46,195 45,107 

 

Synonymous 10,657 11,094 12,285 10,643 10,372 10,768 10,635 

Missense 10,681 11,241 12,464 10,921 10,684 10,997 10,895 

Intron 1,617,713 1,659,957 1,833,502 1,618,061 1,586,985 1,632,466 1,613,603 

Intergenic 1,760,161 1,806,271 1,989,241 1,759,321 1,726,938 1,774,147 1,756,828 

Conserved: GERP>3 3,751 

 

3,859 

 

4,233 

 

3,755 

 

3,667 

 

3,788 

 

3,738 
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