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Abstract

Molecular data and analysis outputs are being inte-
grated into malaria surveillance efforts to provide valu-
able programmatic insights for national malaria control
programs (NMCPs). A plethora of studies from diverse
geographies have demonstrated that malaria parasite ge-
netic data can be an important tool for drug resistance
monitoring, species identification, outbreak analysis, and
transmission characterization. Despite many successful
research efforts, there are still important knowledge gaps
hindering practical translation of each of these use cases
for NMCPs. Here, we leverage epidemiological modeling
and time-series data of 2035 genetic sequences collected
in Thiès, Senegal from 2006-2018 to provide a quantita-
tive and setting-specific assessment of the levels, trends,
and connectivity of malaria transmission. We also iden-
tify the genetic features that are the most informative
for inferring transmission in Thiès, such as the fraction
of the population with multiple infections and the per-
sistence of parasite lineages across multiple transmission
seasons. The model fitting and uncertainty quantifica-
tion framework also reveals a significant decrease in the
level of malaria transmission around 2013. This differ-
ence coincides with a large-scale drought and bed net
campaign by the NMCP and USAID and is indepen-
dently corroborated by geo-spatial models of incidence
in Thiès. We find that genetically identical samples are
more likely to be geographically clustered even at the
neighborhood scale; and moreover, these lineages prop-
agate non-randomly around the city. Our approach and
results provide quantitative guidance for the interpreta-

tion of malaria parasite genetic data from Thiès, Sene-
gal and indicates the value of increased malaria genomic
surveillance for NMCPs.

Introduction

Malaria parasite genetic data is poised to be an im-
portant tool for national malaria control programs
(NMCPs) to better characterize transmission, optimize
surveillance programs, design intervention efforts, and
ultimately decrease global disease burden. Over the
past two decades, research investigations have provided
substantial evidence around the programmatic value
of genetic data for monitoring the spread of parasites
that have genetic markers associated with drug resis-
tance [1, 2, 3] and diagnostic failure [4]. Integration
of molecular sampling and data collection into NMCP
strategies has already started [5, 6] and is concurrently
being considered for incorporation into formal guidance
for routine malaria surveillance by the World Health Or-
ganization (WHO) [7, 8]. Despite the clear value that
molecular data has for these use-cases, there are still
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substantial gaps in understanding and characterizing the
link between parasite genetic data and malaria trans-
mission, and therefore the implications for malaria con-
trol strategies. Here, we leverage mathematical mod-
eling and genetic data collected in Thiès, Senegal from
2006-2018 to infer the levels, trends, and connectivity of
malaria, quantify the usefulness of genetic features and
their links to transmission, and highlight the need for
additional studies.

Malaria parasite molecular data have been utilized for
a wide set of research and programmatic questions be-
yond drug and diagnostic resistance detection. Molec-
ular data enables the identification of different malaria
species [9, 10] providing especially helpful information
in regions where malaria infections were either absent
or considered completely imported [11]. An extensive
library of parasite genetic samples can also help re-
searchers and programmatic investigators during an out-
break to help determine the geographic origin, rate of im-
portation, and subsequent level of local transmission [12,
13, 11]. More broadly, genetic similarity between sam-
ples has been used to identify the parasite connectiv-
ity between human populations [14, 15, 16, 17, 18, 19],
which may provide a pragmatic and cost-effective tool to
inform control programs as they plan local elimination
efforts [20]. In addition, malaria parasite genetic data
has also been linked to helping assess transmission levels
and trends [21] using approaches from population genet-
ics [20] and epidemiological modeling [22, 23, 24, 25, 26].

Mathematical modeling has been a valuable tool to in-
vestigate the links between transmission characteristics
and features extracted from the malaria parasite genetic
data. Early efforts by Daniels et al. [22] demonstrated
that a parsimonious, malaria genomic model could be
calibrated to genetic data and detect changes in trans-
mission; that work provided further evidence toward the
hypothesis that genetic features such as the proportion
of the population with multiple infections and the per-
sistence of clones in a population can be linked to trans-
mission [27, 28]. Subsequent modeling efforts have added
details of parasite life cycles and genomic evolution, in-
cluding processes such as meiotic recombination and su-
perinfection [29, 23, 24, 26, 25]. These efforts have ex-
plored the qualitative relationships between genetic fea-
tures, their relationship to transmission, the impact of
sampling, and compared their findings to malaria ge-
nomic datasets [23, 24]. Here, we present an agent based
generalization of the malaria epidemiological genomic
model from [22] allowing for better strain tracking, more
realistic meiotic recombination processes, and genomic
reservoir initialization. We directly fit the model to ge-
netic samples collected from 2006 to 2018 allowing for a
quantitative assessment of the levels and trends of trans-
mission over time and specific investigation of the most
informative genetic features for Thiès.

We also leverage probabilistic movement models to

investigate parasite connectivity within Thiès. Fea-
tures derived from genetic data, such as identity-by-
descent for whole genome sequencing and identity-by-
state for single-nucleotide polymorphism (SNP) panels,
along with associated metadata have helped identify par-
asite connectivity across tens and hundreds of kilome-
ters [14, 15, 16]. Innovative efforts have also integrated
complementary data from mobile-phone data and travel
surveys with malaria parasite genetics [17]. In this work,
we demonstrate that malaria parasite genetic data can
identify connectivity at a small geographic scale; we uti-
lize spatial models of human movement that have been
shown, for various pathogens, to be effective for charac-
terizing genetic linkages [30, 31]. The modeling investi-
gation in this article leads to a better understanding of
the levels, trends, and connectivity of malaria in Thiès,
Senegal, and can inform decision-making for interven-
tions in local settings.

1 Results

We analyzed 2035 samples comprising 13 years of ge-
nomic data from Plasmodium falciparum infections in
Thiès, Senegal. We genotyped 686 samples for 24 un-
linked SNPs (a molecular barcode) from 2014 to 2018
in combination with 1349 previously published bar-
codes [22, 27]. Figure 1.A illustrates the number of sam-
ples collected each year and the proportion of samples
with multiple genomes (polygenomic infections). Among
samples with a single genome (monogenomic infections),
173 distinct barcodes appeared more than once. Fig-
ure 1.B shows the persistence of monogenomic infec-
tions by displaying the most frequently observed lin-
eages. Some barcodes from 2014-2018 were continua-
tions of lineages from 2006-2013 (26 samples); also, we
observed lineages in the new dataset that were not pre-
viously observed from 2006-2013 (69 samples).

1.1 Inferred levels of malaria transmission highlight a
decrease in transmission from 2012 to 2014

Transmission levels were inferred from an agent-based
genetic model using approximate Bayesian computation
(ABC) to calibrate R0 (Fig. 1.C). The estimated trans-
mission decreased substantially from 2006 to 2008 and
eventually rebounded to higher levels in 2012. Fig-
ure 1.D shows the mean and posterior distribution of
the reproductive number fit; see Supplement Table S1
for a more detailed description of the kernel density
estimates of R0. The joint posterior distribution over
R0 parameters indicates that the levels of transmission
have likely changed from 2006 to 2018 (we estimate that
P (∆R0 < 2.5) < 10−5 where ∆R0 is the total absolute
change in R0 over a simulation). A similar result was
found by Daniels et al. [22] from 2006 to 2013 (Supple-
ment Figure S4). Figure 1.E provides a visual compari-
son of a portion of the summary statistics derived from
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Figure 1: Overview of the malaria genomic model. A. Number of clinical infections (samples) used in this study,
counted in two-month bins. The number of polygenomic samples are darker shaded. Samples for which only the year
is known are shown in gray. B. Many barcodes form lineages, and some persist for multiple years (lineages with at
least 5 observations are shown above). The longest lineage is observed from 2007 to 2014. C. Conceptual schematic
of the dynamical malaria transmission model and passive sampling model (gray), generating summary statistics from
the model (blue) and data (red), and the comparison framework using approximate Bayesian computation (ABC)
and kernel density estimators (magenta). D. The posterior distribution from incremental mixture importance
sampling calibration results for the input parameter R0, specifying the reproductive number for each year. The
mean values and 95% credible intervals are shown as horizontal ticks, and the uncertainty is visualized by the length
of the violin plot. E. An illustration to represent summary statistics for ABC, computed for both the data (red,
left), a stochastic replicate of the best-fit model (blue, middle), and a stochastic replicate of a null model with no
variation in R0 (blue, right).

genetic data between the clinical data (left, red), a single
simulation generated with the best fit model, and a sin-
gle simulation generated from a flat transmission level of
2.2. The relative decrease in transmission between 2006
and 2010 is approximately 30%. The decrease occurred
over a two year period followed by a three year stable
level of transmission with a gradual rebound to higher
levels of transmission around 2012.

The estimated transmission level sharply decreased
from 2012 to 2014. From the marginal joint posterior,
the probability that R0 decreased from 2012 to 2014 is
0.92, and the probability that it decreased by at least
10% is 0.70. The inferred change in transmission is also
directly apparent by evaluating the summary statistics
of genetic data; similar trends can be seen visually in
Figure 1.E. Note that the proportion of unique barcodes
versus repeats also undergoes a rebound from 2010 to

2012 and drops in 2014. The inferred transmission levels
and trends are consistent for different calibration meth-
ods; we find qualitative agreement when varying the un-
derlying assumptions of the mechanistic model, the sam-
pling of infections in the model, and the likelihood for
the ABC model fitting procedure; see Supplement §1 for
more details.

1.2 Proportion of polygenomic barcodes, unique bar-
codes, and number of repeated strains are the most
informative summary statistics for inferring mod-
eled transmission levels

Among 58 summary statistics we analyzed (Supplement
§ 3.A), the yearly population fraction of samples that
are polygenomic (fP,y) are the most informative sum-
mary statistics for fitting the malaria genomic model to
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barcode data from Thiès, Senegal (Supplement § 3.C).
Other statistics that are informative include the yearly
proportion of barcodes that are unique (fU,y) and the
number of barcode strains that are repeated twice (n2,y).
This result is consistent whether evaluating the corre-
lation between model parameter estimates and associ-
ated summary statistics or a feature-selection regres-
sion (Methods and Supplement § 3.C). For example, the
Spearman correlation between fP,y and R0,y within the
same year can be up to 0.93. This is consistent with
dimensional reduction via the least absolute shrinkage
and selection operator (LASSO), which converges upon
fP,y as the most predictive statistic of any given year
y (Supplement §3.C and Tables S2, S3). Furthermore,
both approaches indicate that these informative genetic
summary statistics are also correlated with the previous
and following year’s transmission levels, suggesting their
potential for detecting past trends or inferring those of
subsequent seasons.

Additionally, the collection days associated with the
sampled infections provide an opportunity to construct
within-season summary statistics based on polygenomic
samples. However, we do not find a consistent empirical
trend for the within-season polygenomic fraction (Sup-
plement Figure S9). Owing to comparatively low sam-
ple numbers and the variability of start and end times
of sample collection each season, we observe large un-
certainty intervals at the beginning and end of seasonal
trends (Supplement §3.A.1). The average seasonal be-
havior aggregated over all years indicates a declining
trend for the Thiès data, whereas simulations indicate
the opposite trend (Supplement Figure S10). Neverthe-
less, the polygenomic fraction is an informative sum-
mary statistic on yearly timescales, and future studies
with more systematic sampling across seasons may re-
veal more granular temporal genetic indicators of trans-
mission properties.

1.3 Identical barcodes are locally clustered within
Thiès

The distribution of pairwise distances between identical
barcodes within a single year (3000 pairs) shows a ma-
jority occurring within 3 km of each other (Figure 2.A).
The clonal pairwise distance distribution is statistically
different from the distribution of distances between all
non-clones within a year (t-test p-value < 3.6 × 10−6,
with 374714 non-clonal pairs) and a null distribution de-
rived from all 20352 pairs (t-test p-value < 3.4 × 10−6).
Using only pairs from the same year, a bootstrapping
analysis of the distances between randomized sets of
clones, non-clones, and randomly permuted sample ori-
gins representing a null distribution, also confirms the
clonal distribution to be significantly different from non-
clones. We find that both the means and medians of
the pairwise distances from the bootstrapping analysis
are significantly smaller than those for the null model

Figure 2: A. Distribution of pairwise distances in data,
between clones from the same year (orange) and between
non-clones from the same year (blue). The distribution
for all pairs across all years (green) is provided for com-
parison. B. Distributions of mean and median pairwise
distances from randomized subsamples of data, for clones
from the same year (orange) and non-clones from the
same year (blue). The non-clonal distributions are cen-
tered around the mean and median distance for all data
(dashed line) and closely resembles a null distribution
from permuted samples (green).

(Figure 2.B, and Supplement Fig. S12). The distribu-
tion of distances between non-clones is centered around
2.5 km, the average distance for all samples, and closely
resembles the null distribution. A similar finding occurs
for distributions using all pairwise distances regardless
of the year of collection (Supplement, Fig. S13). We
also observe that the distribution of distances between
clones suggests more detailed dynamics for individual
strains. For example, barcode TACCCCGGTCCAC-
CAATAAGACTG appears 60 times over an eight-year
period; it is first observed in the Cité Ousmane Ngom
neighborhood and qualitatively spreads to more parts of
the city (Supplement Fig. S15). Section 1.4 provides
a more dynamic interpretation of the appearance and
spread of clonal strains.
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Figure 3: (A) For each set of repeated clones, we extract pairwise distances and times between observations.
Here, the strain TACCCGGGATCGCACACTAAATTG appears four times at the locations shown on the map and
the points on the timeline (in fuchsia). The colored lines indicate the pairwise distances and times elapsed. (B)
Principal component analysis is used to estimate the correlation between time and distance traveled. The colors
of the square data points correspond to the colors of the lines in panel A. The vector ~u with the larger singular
value (black arrow) indicates the direction of greatest variance in parameter space. We let the correlation vector
be the average over ~u for strains with strong correlations (see Supplement § 4B for details). (C) The slope of the
correlation vector estimated from Thiès data (black line), compared to the distribution of slopes from a discrete
propagation model (light blue), a continuous propagation model (dark blue), and a null model (purple).

1.4 A subset of persistent strains propagates non-
randomly through the city

The geographic distance between identical barcodes is
also correlated with when the samples were collected
(Figure 3). For example, Figure 3.A illustrates the
appearance of a barcode four times across Thiès dur-
ing 2013 along with the first principal component cor-
responding to the direction with the largest variation
in space and time (characterized by a slope s ≈ 0.008
km/day, Figure 3.B). There is substantial variation
across clonal groups, driven by a small number of lin-
eages with some having little to no correlation in space
and time (Supplement Figures S16, S17). However,
there are 27 persistent strains that exhibit a strong
correlation in space and time with an average princi-
pal component for these clonal groups corresponding
to s ≈ 0.021 (km/day) with a standard deviation of
σs ≈ .003 (km/day). We also compare this observed
correlation among persistent barcodes to that of simula-
tions from three spatial dynamic models: two propaga-
tion models parameterized with strong local connectivity
(one continuous and one discrete) and a null model where
barcodes appear randomly in time and space (Fig. 3.C,
Supplement §4B). The empirical correlation slope is sta-
tistically different from the null model (p-value < 10−3

for permutation null, p-value < 10−4 for uniform null);
moreover, both propagation models are different from
the null (Supplement §4B). These spatiotemporal cor-

relations imply a pattern of local connectivity between
clones. Whether this is a signal of a specific transmis-
sion mechanism or a consequence of ecological properties
remains to be investigated.

2 Discussion

We have extended the scope of previous analyses and
modeling efforts of malaria transmission and parasite
genetics. The malaria genomic epidemiology model is
significantly improved from an earlier version [22]; for
example, the model now allows for individual-level strain
tracking and resolution of multiple infections by individ-
ual (Methods and Supplement §2). These innovations
enable a more comprehensive investigation into the link
between malaria transmission and genetic signals such
as complex infections and persistence of specific lineages
in a population. We calibrate this model to a complete
set of 2035 barcodes across 13 years (§1) to infer trans-
mission levels and trends for Thiès, Senegal from 2006 to
2018. While the inferred transmission levels are consis-
tent with earlier model-based estimates [22] (Supplement
Figure S3), our new estimates leverage the full available
genetic data across 13 years, such as long-term persis-
tence and emergence of new lineages. Our results pro-
vide additional evidence that a relatively small number
of genetic samples each year can generate insights into
the local levels and trends of malaria transmission, thus
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augmenting current malaria surveillance efforts.

In more detail, the fitting procedure and concurrent
uncertainty quantification also enable insight into the
genetic features most informative for inferring the lev-
els and trends of transmission within Thiès. In our re-
gion specific calibration, the polygenomic fraction, the
proportion of unique barcodes, and number of repeated
barcodes are the most informative (§1.2). Three inde-
pendent methodologies leveraging correlations between
genetic features and model parameter fits confirm this
result (§1.2 and Supplement §3). This result is con-
sistent with other qualitative malaria parasite genetic
modeling efforts [24] and their model output compari-
son to larger, aggregate datasets, such as pf3k [23]. More
broadly, our setting-specific data, model, and inference
procedure constitutes a modeling framework to investi-
gate genetic features derived from the data (Fig. 1 and
§1.2) and how they are affected by transmission intensity
(Supplement §3.C) and variability across stochastic re-
alizations of the model (Supplement §3.C); in addition,
these genetic features may be linked to consecutive years
suggesting their potential as leading or lagging indica-
tors of transmission (Fig. S2, §S3). Most importantly,
though, this Senegal-specific modeling approach can be
leveraged to help distill complex genetic data into a key
and minimal set of genetic transmission indicators for
NMCPs to track and interpret alongside standard clini-
cal indicators.

The new modeling framework may also provide a
programmatic interpretation of genetic data relative to
transmission and the impact of interventions within
Thiès, Senegal. We find a statistically significant de-
cline and rebound of transmission from 2006-2013 sim-
ilar to Daniels et al. [22], which is correlated with de-
ployment of large-scale malaria interventions over the
same period [32]. The inference also identifies a dis-
tinctly lower level of transmission in 2013 and 2014 com-
pared to 2012 (Figure 1.E); the posterior distributions,
generated by the Bayesian model fitting procedure, in-
dicate the differences are indeed significant (§1.1). The
reduced transmission levels in 2013 and 2014 are also ob-
served in recent model-based estimates of malaria preva-
lence by the Malaria Atlas Project (MAP) for all of
Africa [33], which were primarily informed by house-
hold survey data and environmental data. In addition,
this pattern is confirmed by preliminary efforts by MAP
to generate a Senegalese-specific incidence map based
on both routine surveillance and household survey data.
The timing of this estimated decrease in transmission is
correlated with the roll out of free and subsidized long-
lasting insecticide-treated bed nets nationwide beginning
in 2013 and continuing into 2014 by the Senegal NMCP,
supported by USAID through the President’s Malaria
Initiative [34]. These associations with the model-based
inference support previous assertions that genetic data
can reveal changes in transmission [22], however, an in-

depth understanding of the causal relationship between
climate, interventions, transmission, and genetic signals
will require an expansion of the current modeling effort
and systematically linking clinical, programmatic, envi-
ronmental, and genetic data by region. Nevertheless,
these results suggest that genetic features can reflect de-
creases in transmission and could provide an evaluation
and monitoring tool for programmatic interventions.

Modeling has also shown that malaria genomic data
can help reveal the local connectivity of populations at
the geographic scale of Thiès, Senegal. We found identi-
cal barcodes are more likely to be geographically local-
ized than non-clones (§1.3) and that persistent lineages
can propagate across Thiès with non-random patterns
of movement (§1.4). The spatial kernels identified by
these statistical models highlight the underlying local
scale of connectivity and movement of lineages within
and across years. In comparison, other analyses efforts
have focused on population connectivity across longer
geographic distances [14, 15, 17]. This work further high-
lights that combining genetic data and high-resolution
metadata (such as GPS and time stamps) with spatial
epidemiological modeling has the potential to provide
valuable and unique insights into the characteristics and
locality of transmission patterns. More practically, these
insights could enable better targeting of local interven-
tions by identifying the relative contribution and scale of
local transmission versus importation in addition to pro-
viding evidence for the role specific neighborhoods play
in transmission.

We should emphasize some limitations of this study.
The samples were collected opportunistically since 2006
from individuals seeking care at local clinics. Genotyped
samples are not uniformly distributed across the malaria
seasons, catchment populations, nor directly tied to rou-
tine surveillance efforts. In addition to these challenges,
approximate Bayesian computation has known short-
comings [35], especially in the context of identifying a
complete set of summary statistics for model fitting. We
have attempted to mitigate the challenge of conducting
a retrospective study by using a principled model fitting
procedure (Methods) tailored for this dataset (Supple-
ment §3.D), which enables the quantification of uncer-
tainty of these estimates (Fig. 1, Supplement §3.B, 3.C).
The detailed epidemiological model provides opportuni-
ties to test and validate assumptions. For example, our
investigation revealed a mismatch between the transmis-
sion dynamics of simulations within season and those of
empirical data, highlighting the need for more consistent
sampling through the season (§1.2). Moreover, for cer-
tain analyses like the local connectivity across neighbor-
hoods, we avoid drawing conclusions from the properties
or dynamics of a single lineage, and rather obtain aggre-
gated results across all lineages. We have also used sta-
tistical bootstrapping techniques (§1.3) and have posited
multiple movement and null models (§1.4) to interrogate
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our findings.

The 24-SNP barcode also limits the genetic informa-
tion available for inferring transmission levels and local
connectivity. The barcode has been an important tool
for investigating malaria parasite genetics [27], but is
confined to characterizing identity-by-state and identi-
fying polygenomic infections without resolution of the
corresponding parasite subtypes [22]. Recent analyses
have leveraged whole genome sequencing data and ge-
netic relatedness features such as identity-by-descent and
demonstrated the value for identifying population con-
nectivity [14]. Nonetheless, the 24-SNP barcode can ac-
curately identify clones [22] and produce simple sum-
mary statistics that have proven quite powerful for ge-
nomic epidemiology.

The work in this article strengthens the evidence for
the value of malaria genomic surveillance data for NM-
CPs. Genetic features can provide a parsimonious set of
indicators to complement routine surveillance, identify
local hot-spots of transmission, and monitor the effec-
tiveness of interventions. Epidemiological modeling is
poised to be an important tool for these use cases as
well as the broader evaluation process for incorporating
genomic data into routine malaria surveillance.

Methods

2.1 Data Collection, Sampling, and Barcode Genera-
tion

Samples were collected passively from patients report-
ing to clinics, conditional upon written consent of the
subject or a guardian. Subjects were older than 12 years
and had onset of acute fever within 24 hours of reporting.
Malaria diagnoses were performed with rapid diagnostic
tests and microscopic examination. The protocol was ap-
proved by the ethical committees of the Senegal Ministry
of Health and the Harvard T.H. Chan School of Public
Health (Protocol Number 16330). There were 2035 sam-
ples genotyped for 24-SNP molecular barcodes [27] from
79 catchment areas in Thiès from 2006-2018.

2.2 Epidemiological Model

We constructed a mechanistic model for Plasmodium fal-
ciparum to infer epidemiological indicators from genetic
features (Supplement §2). Seasonal transmission dynam-
ics and outcrossing between parasite haplotypes were
simulated together within a simple agent-based frame-
work (Supplement, §2.A, §2.B, §2.C), along with indi-
vidual strain tracking. Simulations were initialized ac-
cording to the allele frequencies present in the data from
2006. We approximated the clinic-based collections with
passive sampling in the simulations (Supplement §2.D).

2.3 Approximate Bayesian Computation and the IMIS
Algorithm for Model Calibration

The model was calibrated iteratively via an Incremental
Mixture Importance Sampling (IMIS) procedure (Sup-
plement §3). A pseudo-likelihood for the approximate
Bayesian computation was constructed using a set of
58 summary statistics of features (Figure 1, panel B,
and Supplement §3.A). The pseudo-likelihood was eval-
uated using a kernel density estimator (KDE), with 100
stochastic replicates per sample (Supplement §3.B).

2.4 Genomic feature selection

We leveraged simulations to identify features that are
the most informative to predict R0 (§1.2 and Supple-
ment, §3.C). Spearman correlations and LASSO regres-
sion coefficients were calculated with summary statistics
as inputs and the R0 per year as outputs, supplemented
by an exploration of the utility of the Akaike information
criterion (Supplement Tables S2, S3).

2.5 Spatial Analysis of Local Clonal Distributions

Barcode samples were divided into two groups, clones
(identical barcodes) and non-clones. The distribution of
pairwise distances (derived from GPS coordinates of as-
sociated clinic sites) were statistically compared between
the two groups (§1.3, Supplement §4A). Bootstrapping
was also used to estimate the differences in the mean and
median of the resampled distributions (Supplement Fig.
S12, S13).

2.6 Probabilistic Movement Models for Persistent
Strains

We subset the barcodes to persistent monogenomic lin-
eages and then perform a principal component anal-
ysis on the pairwise distance and collection time be-
tween clonal samples. For each clonal group, we take
the component with the largest variance, select those
with stronger correlations, excluding statistical outliers,
and compute the average (Supplement Fig. S16). Based
on the neighborhood locations in Th̀ıes, several proba-
bilistic movement models are generated to compare to
empirical calculations. (Supplement §4B).

Acknowledgements

This publication is based on research funded in part by
the Bill & Melinda Gates Foundation (BMGF), includ-
ing modeling and analysis performed by the Institute
for Disease Modeling at BMGF. Funding for this work
at the Harvard T.H. Chan School of Public Health and
the Broad Institute was provided by a BMGF grant to
D.F.W. (OPP1156051). We would like to thank the
collection team at the SLAP clinic, including Younouss
Diedhiou, the Field Lab Coordinator, Dr. Ngayo Sy, the
Director, and all the nurses. We would also like to thank

7

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.17.21263639doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.17.21263639


the residents of Thiès who have participated in these on-
going studies since 2006. Finally, we thank Amy K. Bei,
Sidiya Mbodj, and Fatoumata Dabo for help collecting
neighborhood GPS coordinates and harmonizing village
names from Wolof for the spatial analysis used in the
model.

References

[1] N Wurtz, et al., Prevalence of molecular markers of Plasmod-
ium falciparum drug resistance in Dakar, Senegal. Malaria
Journal 11, 1–10 (2012).

[2] A Dwivedi, et al., Plasmodium falciparum parasite popula-
tion structure and gene flow associated to anti-malarial drugs
resistance in Cambodia. Malaria Journal 15, 319 (2016).

[3] E Talundzic, et al., Next-generation sequencing and bioinfor-
matics protocol for malaria drug resistance marker surveil-
lance. Antimicrobial Agents and Chemotherapy 62 (2018).

[4] WH Organization, , et al., False-negative RDT results and
implications of new reports of P. falciparum histidine-rich pro-
tein 2/3 gene deletions, (WHO), Technical report (2017).

[5] NMCP, National Malaria Strategic Plan 2014-2020, Abridged
version, (The United Republic of Tanzania, Ministry of
Health and Social Welfare), Technical report (2014).

[6] USAID, U.S. President’s Malaria Initiative Senegal Malaria
Operational Plan FY 2020, (Retrieved from (www.pmi.gov)),
Technical report (2020).

[7] MPAC Meeting, Technical consultation on the role of para-
site and anopheline genetics in malaria surveillance, (WHO),
Technical report (2019).

[8] WH Organization, World malaria report 2020: 20 years of
global progress and challenges, (World Health Organization),
Technical report (2020).

[9] M Niang, et al., A molecular survey of acute febrile illnesses
reveals Plasmodium vivax infections in Kedougou, southeast-
ern Senegal. Malaria Journal 14, 1–8 (2015).

[10] H Herdiana, et al., Malaria risk factor assessment using active
and passive surveillance data from Aceh Besar, Indonesia, a
low endemic, malaria elimination setting with Plasmodium
knowlesi, Plasmodium vivax, and Plasmodium falciparum.
Malaria Journal 15, 468 (2016).

[11] RF Daniels, et al., Genetic evidence for imported malaria and
local transmission in Richard Toll, Senegal. Malaria Journal
19, 1–8 (2020).

[12] N Obaldia III, et al., Clonal outbreak of Plasmodium falci-
parum infection in eastern Panama. The Journal of Infectious
Diseases 211, 1087–1096 (2015).
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