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Abstract

While cases of uveal melanoma are relatively rare overall, it remains the most common
intraocular cancer in adults and has a 10-year fatality rate of approximately 50% in
metastatic patients with no effective treatment options. Mutations in BAP1, a tumor
suppressor gene, have been previously found to be associated with the onset of
metastasis in uveal melanoma patients. In this study, I utilize a weakly supervised deep
learning-based pipeline in order to analyze whole slide images (WSIs) of uveal
melanoma patients in conjunction with slide-level labels regarding the presence of BAP1
mutations. I demonstrate that there is a strong relationship between BAP1 mutations
and physical tumor development in uveal melanoma and that my model is able to
predict such relationships with an optimized mean test AUC of 0.86. My findings
demonstrate that deep learning models are able to accurately predict patient-specific
genotypic characteristics in uveal melanoma. Once integrated into and adapted to
existing non-invasive ocular scanner technologies, my model would assist healthcare
professionals in understanding the specific genetic profiles of their patients and provide
more personalized treatment options in a safe, efficient manner, thus resulting in
improved treatment outcomes.

Introduction 1

Uveal melanoma is a type of eye cancer involving the uveal tract, or middle layer, of the 2

eye. The uvea consists of three parts: the iris, the ciliary body, and the choroid. 3

Collectively, these structures are responsible for a variety of ocular functions, including 4

controlling the amount of light that enters the eye and providing nutrition to the retina. 5

Uveal melanoma is caused by tumors forming in melanocytes, which are responsible for 6

producing melanin for eye pigmentation, and although cancer can originate from 7

melanocytes in any of the three regions of the uveal tract, most cases involve the 8

choroid [1]. For instance, in a study analyzing the tumor characteristics of 8,033 9

patients, 90% of cases had tumors that originated in the choroid [2]. Throughout this 10

section, I will discuss my own analysis of a uveal melanoma patient dataset obtained 11

from The Cancer Genome Atlas, and I will explore a more in-depth review of this 12

dataset later in this report. Within this dataset, I discovered that 83.7% out of the 80 13

total patients had tumors that originated in the choroid as depicted in Fig 1, affirming 14

that my data was not significantly skewed regarding the tumor region of origin using 15

the results of the earlier study as a baseline for comparison. 16

Uveal melanoma is the most prevalent eye-related disease [1]. However, incidence 17

rates for the disease are relatively low and as a result, there is a lack of studies 18
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Fig 1. Breakdown of cancer stage for uveal melanoma patients in the
80-patient TCGA-UVM dataset. Most patients had intermediate-stage cancer,
with 40.0% of patients with Stage IIB cancer and 33.8% of patients with Stage IIIA
cancer. Patients with stage IIC cancer were least common, at just 3.8%.

regarding uveal melanoma. In the United States, for instance, an analysis of the 19

National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 20

program database reveals that from 1973 to 2008, the age-adjusted overall mean 21

incidence of uveal melanoma remained constant at around 5.1 new cases per million 22

people [3]. Throughout this period, survival rates did not improve even as more 23

conservative treatments were employed, demonstrating the lack of effective treatments 24

available to uveal melanoma patients. Interestingly, incidence rates have been found to 25

be associated with a patient’s geographic location; an analysis of data obtained from the 26

European Cancer Registry indicates that a north-to-south decreasing gradient in uveal 27

melanoma diagnoses is present [4]. This disparity is due to a protective effect imparted 28

by ocular pigmentation on people living in lower latitudes due to their relatively high 29

level of exposure to ultraviolet light as compared to those living in higher latitudes [4]. 30

Past studies have found that the elderly have higher incidence rates of uveal 31

melanoma, with peak occurrences at around 70 years of age [3]. This conclusion is 32

supported by my own analysis of the TCGA-UVM cohort, as patients in the 70-79 age 33

bracket comprise 22% of the total number of cases in the dataset, which is the highest 34

percentage among all the age groups. A graph of this distribution resembles a skewed 35

normal curve, with about 60% of the caseload belonging to the 50-79 age group (as 36

shown in Fig 2). Previous population-based studies have also shown that generally, 37

males tend to have higher incidence rates than females [4, 5]. This trend is also 38

supported by my analysis of the TCGA dataset, as 56.2% of the uveal melanoma cases 39

were of men, while only 43.8% belonged to women (Fig 3. Race also has a strong 40

relationship with incidence rates: in a study of 8100 uveal melanoma patients, 98% of 41

them were Caucasian [6]. While researchers are unclear as to exactly why this is, 42

potential explanations include the impact of darker skin pigmentation and other 43

cultural, environmental, and socioeconomic factors prevalent in non-Caucasians as well 44

as implicit bias against non-Caucasians. 45

There are multiple phenotypic characteristics that have been found to be risk factors 46
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Fig 2. Age distribution for the studied patients in the 80-patient
TCGA-UVM dataset. Over 50% of the uveal melanoma patients were between 50
and 79 years of age. The graph resembles a negatively skewed normal curve, with the
center of the distribution shifted to the right from the center of the graph (at the label
corresponding to 50-59 years of age).

Fig 3. Breakdown of patient gender in the 80-patient TCGA-UVM dataset.
There was a slightly higher percentage of males as compared to females in the patient
dataset: 56.2% of patients in the dataset were male, while 43.8% were female.
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for uveal melanoma. These characteristics include fair/light skin tone, freckles, blond 47

hair, light eye color, and an inability to tan, all features that are more commonly found 48

in Caucasian individuals [7]. As such, it is evident that Caucasians generally have a 49

higher risk of experiencing uveal melanoma than non-Caucasians are, supporting the 50

previously mentioned trend of a large majority of uveal melanoma patients being 51

Caucasian. 52

Additionally, there are also some genotypic characteristics that are associated with 53

the development and progression of uveal melanoma. One gene that has been identified 54

as playing a role in the progression of uveal melanoma is the BAP1 (BRCA1-associated 55

protein 1) gene. Located at Chromosome 3p21.1, BAP1 is a tumor suppressor gene that 56

encodes a nuclear ubiquitin carboxy-terminal hydrolase, a type of deubiquitinating 57

enzyme [8]. This allows the gene to regulate multiple cell division-related processes, 58

including DNA damage repair, cell cycle control, and programmed cell death. Previous 59

clinical studies have found that mutations in the BAP1 gene are accurate predictors of 60

uveal melanoma metastasis in patients [9]. For example, a study found that patients 61

who had a concurrent BAP1 mutation that led to a negative BAP1 gene expression 62

were 7.7 times more likely to develop uveal melanoma metastases than patients who did 63

not have the mutation [10]. As such, due to its significance in the progression of uveal 64

melanoma, I will be analyzing the BAP1 gene and its relationship to tumor development 65

as depicted in whole slide images (WSIs) of uveal melanoma patients in this project. 66

Materials and methods 67

Data 68

The data for this project was obtained from The Cancer Genome Atlas (TCGA), a 69

program developed by the National Cancer Institute and the National Human Genome 70

Research Institute that offers a wide array of clinical and biomedical data for 33 types 71

of cancer free of charge to the general public. For this project, I utilized 80 diagnostic 72

histology slides of uveal melanoma patients and genetic mutation data for each patient 73

from the TCGA Genomic Data Commons Portal, which I used to train my model. 74

Within the TCGA-UVM cohort, 25 out of the 80 total patients were found to have 75

mutations in the BAP1 gene, exhibiting a skew towards non-mutation cases. 76

Model 77

To analyze the slides of uveal melanoma patients obtained from the TCGA program, I 78

leveraged CLAM, a weakly-supervised deep learning-based pipeline for analysis of whole 79

slide images. CLAM uses attention-based learning and clustering in order to identify 80

WSI subregions of high diagnostic value with regard to slide labels [11]. This pipeline 81

consists of 3 main steps: WSI segmentation and patching, training using slide-level 82

labels, and WSI heatmap construction using regions of interest (ROIs) identified by the 83

model [11]. These attention maps are able to accurately identify the areas of highest 84

importance and relevance in disease development and progression [11]. 85

Instead of using the relatively inflexible max-pooling aggregation function, the main 86

model uses the attention-based pooling function, which is trainable and allows for 87

multi-class classification [11]. The first fully connected layer of the model serves to 88

compress fixed 1024-dimensional patch-level representations to a 512-dimensional vector. 89

Additionally, the model includes a binary clustering layer with 512 hidden units after 90

the first fully connected layer. This instance-level clustering layer assigns pseudo labels 91

to individual patches due to the lack of patch-level labels and optimizes the patches that 92

the model strongly attends to or ignores, thus ensuring that strong positive evidence for 93
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each class is separable from strong negative evidence and facilitating the ability of the 94

model to learn on class-specific features [11]. Throughout the training process, the 95

model calculates “attention scores” for each WSI patch. These attention scores 96

represent how important a particular patch is to the final slide-level classification result 97

and reflect the ability of the model to perform a weakly supervised, multiple instance 98

learning-based analysis of the data [11]. For example: for a given slide, if the overall 99

slide-level label is classified as L, patches with a high attention score will be interpreted 100

as being strong positive evidence for class L, while patches with a low attention score 101

will be interpreted as being strong negative evidence for class L. 102

Preprocessing and training 103

I began the data preprocessing stage by segmenting the tissue regions of the slides and 104

separating them into individual 256 x 256-pixel patches. A ResNet-50 CNN model 105

pre-trained on the ImageNet dataset was then used to extract features from the patches 106

in the form of 1024-dimensional feature embeddings. Training the model on these 107

features instead of the individual slide images resulted in increased efficiency, because 108

the conversion of WSIs to feature vectors vastly decreased the amount of required data 109

space and thus also decreased the amount of computational power needed to train the 110

model. Prior to training, I queried the TCGA GDC data portal for the genetic profiles 111

of each uveal melanoma patient and constructed a label CSV file consisting of binary 112

values representing the presence of BAP1 mutations in the 80 patients. This file was 113

used by the main multiple instance learning-structured model (obtained from the 114

CLAM pipeline) during training in conjunction with the WSI features that were created 115

in the preprocessing stage in order to determine correlations and generate predictions 116

based on the provided feature and label data. 117

When running the model on the feature dataset, I utilized 5-fold monte carlo 118

cross-validation, and for each fold, I allocated 80% of the dataset for training, 10% for 119

validation, and the remaining 10% for testing. These splits were generated randomly 120

and I ensured the accuracy of my results by running the model multiple times using 121

different training data splits for each iteration. 122

During this project, my primary programming language was Python (version 3.7.11), 123

and I implemented and ran all code in a Google Colaboratory notebook environment 124

using an NVIDIA Tesla P100 GPU. 125

Results 126

On the TCGA-UVM dataset with BAP1 slide-level binary labels and a learning rate of 127

0.0001, I achieved a 5-fold mean test AUROC of 0.86 (Fig 4). Based on the calculated J 128

Statistic, I implemented an optimal threshold of 0.3306 during mutation vs. 129

non-mutation classification, the results of which are shown in Table 1. This threshold 130

was used to account for the uneven nature of the mutation data since around 68% of 131

patients in the dataset did not have BAP1 mutations, creating an imbalance. 132

Based on my analysis of available studies, BAP1 mutations have been previously 133

linked to metastasis but not physical tumor development. My results demonstrate that 134

within the available data, there is a strong relationship between BAP1 mutations and 135

physical tumor development. The results also demonstrate that deep learning models 136

are able to accurately predict patient-specific genotypic characteristics in uveal 137

melanoma. As such, since BAP1 mutations serve as a predictor of cancer metastasis, 138

these conclusions are very significant because they imply that deep learning-based 139

technologies could be used to identify the risk of uveal melanoma metastasis in patients 140

simply based on the presence of BAP1 mutations. 141
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Fig 4. ROC curve representing the maximum AUC value achieved by the
model. The mean AUC score across all training/testing splits was 0.86.

Table 1. Classification summary report for predictions based on the optimal
cutoff value of 0.3306.

Classification Summary Report
Precision Recall F1-Score

BAP1-Negative 1.0000 0.8000 0.8889
BAP1-Positive 0.6667 1.0000 0.8000

Accuracy 0.8571 0.8571 0.8571
Macro Avg. 0.8333 0.9000 0.8444

Weighted Avg. 0.9048 0.8571 0.8635

Discussion 142

Because up to 50% of uveal melanoma patients who experience metastasis die within 10 143

years, it is of the utmost importance for medical professionals to be able to accurately 144

predict whether their patients will likely experience metastasis in a non-invasive manner 145

in order for the most effective patient-based treatment plans to be developed and 146

implemented. While such approaches are not universally possible in the present day, 147

future technologies could be developed using a deep learning prediction tool such as the 148

one developed in this project. 149

In fact, such tools are already in development for other eye-related diseases; for 150

example, researchers at Google Health are developing a novel AI-based tool that is able 151

to non-invasively perform an eye scan and predict whether signs of diabetic retinopathy 152

are present with 90% accuracy in a process that lasts less than 10 minutes [12]. If 153

applied to uveal melanoma, oncologists would be able to discover the presence of BAP1 154

mutations in their patients in a non-invasive, rapid manner, maximizing the amount of 155

potential treatment opportunities while minimizing harm to the patient. Such 156

technological innovations would be especially useful in low-resource settings where 157

hospitals and health clinics may lack the necessary resources (specialized medical 158

personnel, medical equipment, etc.) to be able to collect and analyze histopathological 159
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images from patients to aid in disease detection. 160

The BAP1 gene should also be explored as a potential therapeutic target for future 161

treatments being developed for uveal melanoma. If a drug is developed that allows 162

patients with BAP1 mutations whose tumors are still localized to regain BAP1 gene 163

function, future metastasis could be avoided, promoting the likelihood of favorable 164

treatment outcomes. Such a drug would likely be most effective if given to 165

BAP1-negative patients before metastasis occurs, emphasizing the importance of 166

non-invasive deep learning-based tools that allow for the detection of BAP1 mutations 167

in patients as early as possible, ultimately minimizing the need for more invasive 168

methods like enucleation in order to analyze physical ocular tissue and conduct a 169

pathology analysis. 170

One major limitation of this study was the relatively small dataset of 80 uveal 171

melanoma WSIs I had access to through the TCGA program. With a larger dataset, my 172

model would be able to analyze more obscure intricacies of WSI features and make 173

much more accurate predictions regarding the presence of BAP1 mutations in patients, 174

minimizing the false positive rate and maximizing the true positive rate as much as 175

possible. While my AUC score of 0.86 is promising, it could be improved upon by 176

fine-tuning the model by training on more images, thereby improving the accuracy of 177

the model’s classification ability. 178

Although my analysis was focused on the relationship between BAP1 genetic 179

mutations and uveal melanoma WSI features, I acknowledge and plan to explore the 180

numerous available opportunities to expand my findings from this project. Engaging in 181

a computational pathology-based study of the impact of BAP1 mutations across all 33 182

cancers in the TCGA program, for example, would allow me to discover whether such 183

mutations affect other cancers in a similar manner to their effects on uveal melanoma 184

progression. Within the scope of uveal melanoma, exploring other commonly mutated 185

genes as I did with BAP1 could lead to an enhanced understanding of how other genetic 186

mutations affect physical tumor development. Both of these approaches ultimately serve 187

to open the door to and lay the foundation for rapid, non-invasive, mutation-based 188

cancer detection as well as targeted therapy and treatment development. 189
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Supporting information 190

S1 Fig. Breakdown of vital status for the 80 uveal melanoma patients in 191

the 80-patient TCGA-UVM dataset. At the time of data collection, 71.2% of uveal 192

melanoma patients were alive, while the remaining 28.7% were dead. 193

194

S2 Fig. Gender distribution for each patient age range represented in the 195

80-patient TCGA-UVM dataset. Taking into account the presence of slightly more 196

male patients than female patients in the dataset, both genders were relatively evenly 197

distributed across all represented age ranges. 198

199
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S3 Fig. Vital status distribution for each patient age range represented in 200

the 80-patient TCGA-UVM dataset. The fatality rate for younger patients seemed 201

to be relatively lower than that of older patients, which could be a result of more 202

advanced cancer progression in elderly patients who have had uveal melanoma for a 203

greater length of time than younger patients. However, further research is needed to 204

verify this trend. 205

206

S4 Fig. Cancer clinical stage distribution for each patient age range 207

represented in the 80-patient TCGA-UVM dataset. Stage IIB and IIIA are the 208

most prevalent cancer stages among the 80 patients, and more advanced stages seem to 209

be more prevalent in more elderly patients. 210

211
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S5 Fig. Cancer region of origin distribution for each patient age range 212

represented in the 80-patient TCGA-UVM dataset. For all age ranges, the large 213

majority of patients have tumors that originated in the choroid, with the other two 214

possible regions of origin (ciliary body and OLEA/overlapping lesion of eye and adnexa) 215

relatively evenly distributed across all age ranges. 216

217
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