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STRUCTURED ABSTRACT 
● Objectives - To expose the potential impact of residual confounding in common 

observational study designs investigating metformin using a type 2 diabetes cohort; to 
propose a more robust study design for future observational studies of metformin. 

● Design - Retrospective cohort studies using a prevalent user design conducted in two 
distinct cohorts: individuals with type 2 diabetes and individuals with prediabetes. 

● Setting - Insurance claims database for Medicare Advantage beneficiaries in the United 
States, 2018-2019.  An identical analysis of commercial insurance beneficiaries appears 
in the supplement. 

● Participants - 404,765 individuals with type 2 diabetes, 81,791 individuals with 
prediabetes. 

● Main outcome measures - Total inpatient admission days in 2019, total medical spend 
(excluding prescription drugs) in 2019.  Each of these measures is treated as a binary 
outcome: greater than zero inpatient days and top 10% medical spend.   

● Results - We implement a common observational study design and observe a strong 
metformin effect estimate associated with reduced inpatient admissions and reduced 
medical expenditures; we also implement a more robust study design that suggests any 
estimated effect is attributable to residual confounding related to individuals’ overall health. 

● Conclusions - Common observational study designs examining metformin in a type 2 
diabetes population are likely impacted by significant residual confounding.  By 
additionally considering numerous negative control outcomes and a complementary 
prediabetes cohort, the study design proposed here demonstrates efficacy at exposing 
residual confounding related to overall health, nullifying the claim derived from a standard 
study design. 

● Trial registration - Preregistration available at https://osf.io/qf49p.  
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INTRODUCTION 
Metformin (a generic, glucose-lowering medication of the biguanide class) has long been a 
frequent candidate for repurposing as reported by a broad range of observational studies 
examining nondiabetes conditions and events, including postoperative mortality,[1] asthma 
incidence [2] and exacerbations,[3] chronic obstructive pulmonary disease-related emergency 
room visits and hospitalizations,[4] acute kidney injury-related ICU mortality,[5] heart failure 
outcomes,[6] and age-related macular degeneration.[7]  Common observational study designs 
examining metformin compare type 2 diabetes metformin users against nonusers [1,3–6] or 
against insulin users;[2,8] others pool heterogeneous groups of people with or without type 2 
diabetes exposed to metformin versus no metformin.[2,7]  These and other observational studies 
of metformin, with varying levels of preclinical or prospective support, have suggested a host of 
pleiotropic benefits associated with metformin, including cancer treatment and prevention, [9,10] 
anti-aging,[11] neurodegenerative disease prevention,[12] and mitigation of sepsis mortality.[13]   
 
A principal challenge in the study of metformin using common retrospective cohort study designs 
is metformin’s lack of an active comparator.  When used to treat type 2 diabetes, its ubiquitous 
use as a first-line therapy and eventual dropoff with increased disease severity means that it is 
prescribed in a way that a comparison to any other group (e.g., nonusers or insulin users) must 
address significant residual confounding concerns.  The progression toward type 2 diabetes takes 
years, and the current care path defines two distinct states along this trajectory: prediabetes and 
type 2 diabetes.  For individuals with prediabetes who are at high risk for progressing to type 2 
diabetes, treatment with metformin is strongly recommended to prevent or delay the development 
of type 2 diabetes.[14]  For those who receive a diagnosis of type 2 diabetes, the typical 
pharmaceutical treatment plan begins with metformin, may involve the addition of other agents, 
and often transitions to insulin as the disease progresses.[15–17]  This treatment paradigm 
implies that metformin users generally represent the portion of the prediabetes population with 
the most severe disease and the portion of the type 2 diabetes population with the least severe 
disease.  Thus, in two populations where one can expect to observe metformin use, there are 
known differences in disease severity between metformin users and any potential comparison 
group. 
 
To assess whether the most common observational study designs are sufficiently rigorous to 
support so many wide-ranging metformin claims, we design a similar observational study 
investigating the effect of metformin in a type 2 diabetes population on two general healthcare 
outcomes.  We then expand this common study design to include negative control outcomes (i.e., 
outcomes with no direct, mechanistic connection to metformin) and a complementary cohort (i.e., 
prediabetes) where we expect the bias observed in the type 2 diabetes population to be reversed. 
Both strategies provide valuable perspective for assessing the validity of our primary results.  In 
the type 2 diabetes cohort, we demonstrate that metformin users have an advantage across a 
wide range of health outcomes, an advantage that is unattributable to metformin. We show that 
standard metformin study designs can produce misleading results by not sufficiently identifying 
and addressing residual confounding, a challenge we address by presenting a more 
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comprehensive study design that exposes the presence and magnitude of residual confounding 
related to overall health in an observational metformin study. 

METHODS 

Study Design 
The study presented here follows a common retrospective cohort design comparing metformin 
users to insulin users from a type 2 diabetes population (see the comparison of metformin users 
to nonusers in the supplement).  We expand this basic design to include a second cohort in which 
we compare metformin users to nonusers from a prediabetes population, an approach we call the 
complementary cohort design.   

Data and Study Population 

Data 
This study used de-identified administrative claims data for individuals in a research database 
from a single, large US health insurance provider (see supplement for details on the UnitedHealth 
Group Clinical Discovery Database).  The index date for the study was January 1, 2019.  Calendar 
year 2018 represents the historical period of observation for all individuals in the study (i.e., 
pharmacy claims indicating treatment, medical claims documenting comorbidities and utilization, 
and other covariates are all observed in 2018).  Calendar year 2019 is used to observe selected 
outcomes.   

Study Population 
Eligible individuals are 18-89 years old, have both medical and pharmacy coverage through a 
Medicare Advantage plan with 24 months of continuous enrollment spanning 2018-2019, and 
have at least one medical claim with a primary, secondary, or tertiary diagnosis of prediabetes or 
type 2 diabetes in 2018.  The type 2 diabetes cohort served as the primary analysis cohort 
because it represents the majority of metformin users and conforms to the standard practice in 
the literature. Secondary analyses that consider a commercially insured population -- on average, 
a younger group with fewer comorbidities -- in place of the Medicare Advantage population are 
presented in the supplement. 
 
Table 1 contains a summary of the available sample sizes for the type 2 diabetes and prediabetes 
cohorts.  The analysis that follows considers metformin users versus insulin users in the Medicare 
Advantage type 2 diabetes population and metformin users versus nonusers in the Medicare 
Advantage prediabetes population, leaving all other analyses (including metformin users verses 
nonusers in type 2 diabetes) for the supplement.  Expanded definitions providing a precise listing 
of qualifying generic drug names and International Classification of Diseases (ICD-10) codes, as 
well as other claims-based logic, appear in the supplement.   
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Attribute 
Commercially 

Insured 
Prediabetes 

Commercially  
Insured  

Type 2 Diabetes 

Medicare 
Advantage 
Prediabetes 

Medicare 
Advantage 

Type 2 Diabetes 

Cohort Size 17,256 101,826 83,901 926,977 

Metformin User 1,176 36,998 3,086 331,085 

Insulin User 0 6,203 0 73,679 

Nonuser 14,762 22,447 78,705 228,934 

Excluded 1,318 36,178 2,110 293,279 
 
Table 1.  Sample sizes for the various cohorts under study.  Metformin and insulin users met days 
supply and recency requirements for 2018.  Nonusers had no pharmacy claims for any diabetes 
drug in 2018.  Excluded individuals failed to qualify for the metformin, insulin, or nonuser groups 
as defined in the Exposure subsection (insufficient days supply, insufficient recency, and/or 
prescribed both metformin and insulin at some point in 2018).  Pre- and post-adjustment covariate 
balance for these cohorts appears in Figure 1, Figure 2, and in the supplement.   

Outcome, Exposure, and Covariate Definitions 

Outcome 
We show results for two outcomes: inpatient admission days and total annual medical spend 
(excluding prescription drugs). With these outcomes we intentionally avoid any connection to one 
disease or body system over another, allowing our models to rely on a standard set of baseline 
covariates applicable to any type 2 diabetes study. The two example primary outcomes are each 
thresholded: inpatient admission days (binary: >0 days) and total medical spend (binary: ≥90th 
percentile for the respective cohort). The cost outcome includes medical claims only due to the 
significantly different pharmaceutical costs between exposure groups (i.e., insulin cost > 
metformin cost > cost of no diabetes drugs). For each of 50 negative control outcomes (selected 
based on the absence of a well-established direct, mechanistic connection to metformin, e.g., 
toenail fungus and low back pain), the binary outcome of interest is the presence or absence of 
at least one claim documenting a qualifying ICD-10 code for the respective outcome in 2019. 

Exposure 
There are three exposure groups in use in the various cohorts.  Nonusers are individuals who 
have no pharmacy claim for any diabetes drug in 2018.  Metformin users are individuals with a 
cumulative ≥90 day supply of metformin in 2018, a daily supply of metformin lasting to at least the 
final 30 days of 2018, and no supply of any insulin drug in 2018.  Insulin users are individuals with 
a cumulative ≥90 day supply of insulin in 2018, a daily supply of insulin lasting to at least the final 
30 days of 2018, and no supply of metformin in 2018.  Any individual who failed to meet any of 
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these three exposure group definitions was excluded.  Note that these metformin and insulin user 
definitions do not account for the presence or absence of any additional diabetes drug classes 
that might be used differentially among the exposure groups. The analysis presented in the main 
text compares metformin users to insulin users in the type 2 diabetes cohort, while secondary 
analyses that use nonusers as the comparator group are presented in the supplement. All 
analyses of the prediabetes cohort compare metformin users to nonusers. 

Covariates 
All adjusted models include observed covariates obtained from 2018 enrollment and medical 
claims data documenting individuals’ sex, age (and age squared and age cubed), urban/suburban 
vs. rural residence (determined by individuals’ postal codes), number of inpatient admission days, 
record of at least one wellness visit, presence of a medical or pharmacy claim for an influenza 
vaccine, Elixhauser Comorbidity Index (in-hospital mortality) score,[18] history of the outcome 
(i.e., at least one instance of a qualifying ICD-10 code for the same outcome in 2018), and the 
seven Diabetes Complications Severity Index (DCSI) [19] component scores: retinopathy (0/1/2), 
nephropathy (0/1/2), neuropathy (0/1), cerebrovascular (0/1/2), cardiovascular (0/1/2), peripheral 
vascular disease (0/1/2), and metabolic (0/1/2).  Inpatient stays and Elixhauser Comorbidity Index 
scores are log transformed (𝑥′ = 𝑙𝑛(𝑥 + 1)). 

Statistical Analysis 
The following procedure explains how we obtain odds ratios and confidence intervals for each of 
the two example outcomes and all of the negative control outcomes in each cohort: 

1. Subset the cohort to only those individuals meeting one of the two exposure definitions 
(e.g., metformin users and insulin users in type 2 diabetes). 

2. Conduct an unadjusted analysis using Fisher’s exact test to obtain an odds ratio between 
the two exposure groups and a corresponding confidence interval. 

3. Estimate the propensity for metformin treatment using logistic regression and all observed 
covariates listed previously. 

4. Trim the sample to only include individuals from the treated and control groups such that 
all individuals have a propensity for metformin treatment greater than or equal to the larger 
of the 1st percentiles of the two exposure groups’ propensity score distributions.   

5. Fit an inverse propensity-weighted (IPW) logistic regression to estimate the treatment 
effect of metformin using all observed covariates listed previously.  

Patient and Public Involvement 
Neither patients nor the public were involved in designing this study, setting its objectives and 
outcome measures, interpreting the study results, or presenting the study findings.   
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RESULTS 

Covariate Balance Diagnostics 
Figure 1 presents a diagnostic covariate balance plot showing the pre- and post-adjustment 
covariate balance achieved in models for the two example outcomes.  Although metformin users 
appear healthier across numerous indicators of health, inverse propensity weighting yields 
acceptable covariate balance, evidenced by the standardized mean differences for all covariates 
having absolute values less than 0.1. 
 

 
Figure 1.  Here we show two overlaid balance plots (one for each outcome) for the type 2 diabetes 
cohort, each depicting both the unadjusted covariate balance and the balance achieved after 
adjustment using inverse propensity weighting (IPW).  Negative values indicate that the metformin 
group has lower averages/prevalence for the indicated covariates (in the case of sex, a higher 
percentage of males).  The unadjusted balance markers indicate that the metformin users have 
spent less time in the hospital, have fewer or less severe comorbidities (lower Elixhauser in-
hospital mortality scores), and score significantly lower on all Diabetes Complications Severity 
Index (DCSI) components.  These are indicators that the metformin exposure group is 
consistently healthier than the insulin user group.  Across both outcomes, the IPW approach 
achieved satisfactory balance after adjusting for every observed covariate of interest. 

Primary Results 
Using covariates, statistical methods, and a study design representative of what is commonly 
found in the literature (in this case, metformin users vs. insulin users) and demonstrating 
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satisfactory balance on the observed covariates, we present promising results in Table 2, 
indicating a beneficial metformin treatment association in the Medicare Advantage type 2 
diabetes population.  These strong effect sizes, extremely small p-values, large E-values1,[20] 
and covariate balance plots all tempt the investigator to craft a plausible story explaining why 
metformin should have these effects.     
 

outcome model log OR (base 2) 95% CI p E-value 

inpatient days unadjusted -1.43 (-1.46, -1.40) <10-323 4.84 

inpatient days IPW logistic -0.74 (-0.78, -0.69) <10-231 2.73 

medical spend unadjusted -1.77 (-1.80, -1.74) <10-323 6.29 

medical spend IPW logistic -0.80 (-0.85, -0.74) <10-201 2.87 
 
Table 2.  Treatment effect estimates for metformin: this study was conducted in a Medicare 
Advantage type 2 diabetes population comparing metformin users to a control group of insulin 
users.  The outcomes represent >0 inpatient admission days in 2019 and a total medical spend 
exceeding the 90th percentile of all type 2 diabetes patient expenditures (>$25,793).  With such 
strong estimated effect sizes and small p-values, metformin appears strongly associated with 
fewer inpatient admission days and lower health care costs, even after adjustment for a range of 
relevant covariates.   

Results in Context 
Before we add another finding to the list of metformin’s many suggested benefits, we consider 
the same results as part of a more robust study design involving negative control outcomes and 
a complementary prediabetes cohort (see “Validation Tools” in the supplement for expanded 
discussion of how we select and implement negative controls and complementary cohorts).  In 
short, the negative control outcomes expose the biases in the primary and complementary 
cohorts.  Instead of focusing exclusively on the result in the primary cohort, we interpret the full 
results of this expanded complementary cohort design.  Figure 1 showed satisfactory observed 
covariate balance for the type 2 diabetes cohort, while Figure 2 shows similarly satisfactory 
balance in the prediabetes cohort; covariate balance plots for all 50 negative control outcomes in 
both cohorts appear in the supplement in Figure S2.  
 

 
1 The E-values represent the strength of association (on the risk ratio scale) an unobserved 
confounder must have with both the exposure and the outcome to nullify the effect estimates. 
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Figure 2.  Here we show two overlaid balance plots, one for each primary outcome in the 
prediabetes cohort.  Negative values indicate that the metformin group has lower 
averages/prevalence for the indicated covariates (in the case of sex, a smaller percentage of 
males).  Across both outcomes, the IPW approach achieved satisfactory balance after adjusting 
for every observed covariate of interest. The observed bias related to overall health and disease 
severity in the unadjusted analysis is mostly nullified in comparison with the type 2 diabetes cohort 
depicted in Figure 1, making the prediabetes population a suitable candidate to be a 
complementary cohort. 
 
Satisfied with the covariate balance achieved in these models, we now look to the forest plots in 
Figure 3 to examine the negative control outcome experiments in the prediabetes cohort (left) and 
the type 2 diabetes cohort (right).  We expect negative experiments to lead to log odds ratios of 
zero on average.  In the type 2 diabetes cohort, metformin users are biased toward lower event 
rates (log odds ratio <0) across a vast number of outcomes spanning many body systems.  This 
finding suggests that, while the observed covariates in Figure 1 are well balanced after 
adjustment, substantial residual confounding related to overall health may be influencing our 
primary result.  In the prediabetes cohort, the metformin users and nonusers were much more 
similar before balancing (see Figure 2), making the groups appear somewhat comparable.  
Nevertheless, this same collection of negative control outcomes exhibits the opposite bias for 
metformin users (i.e., a shift toward higher event rates as seen in Figure 3).  Again, despite our 
best efforts to control for potential confounding, this result highlights the inadequacy of our initial 
efforts to minimize residual confounding related to overall health, and it confirms that the 
prediabetes cohort is biased in the opposite direction of the type 2 diabetes cohort, making it an 
ideal complementary cohort. 
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Figure 3.  Residual Confounding Plot: The left forest plot depicts log odds ratios estimating the 
treatment effect of metformin (control group of nonusers) in 50 negative control outcome 
experiments in a Medicare Advantage prediabetes cohort.  Average log odds ratios for the 
unadjusted and IPW logistic regression models are denoted by vertical orange and blue lines, 
respectively.  While the observed covariates and analytical methods appear to produce a 
distribution of null results in prediabetes, there is still evidence of bias that makes metformin 
appear harmful (i.e., log odds ratios appear on average to be > 0).  The right forest plot depicts 
the treatment effect estimates for metformin (control group of insulin users) in the same 50 
negative control outcome experiments conducted in a type 2 diabetes cohort.  The same modeling 
approach is more clearly insufficient in type 2 diabetes where only residual confounding can 
explain the multitude of significant, left-biased results in a collection of negative control outcome 
experiments.  The outcomes listed on the far right serve as labels for all 50 experiments in each 
cohort and are grouped by body system to demonstrate these findings span a wide range of 
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conditions.  The bottom row depicts column-wise kernel density estimates for each distribution of 
point estimates.  In each cohort, the density estimates for the adjusted odds ratios suggest a shift 
away from the null. 
 
Finally, let us reconsider the primary outcome results in light of these negative control outcome 
experiments in both cohorts, all of which are depicted together in Figure 4 (Figure S3 in the 
supplement provides a brief tutorial on interpreting Figure 4 using various notional results).   
Critically, our conclusions using the combined insights from the negative control outcomes and 
complementary cohort design are different compared to what typical study designs would 
conclude.  For both primary outcomes, inpatient admission days and total medical spend, we 
originally obtained p-values no larger than 10-201 for treatment effect estimates that appear to be 
beneficial.  We even demonstrated excellent covariate balance on a reasonable set of covariates, 
including markers of diabetes severity.  This is where many published studies stop.   
 
If we go a step further and consider a few or even 50 negative control outcomes, we might 
convince ourselves that the observed effect is stronger than nearly all the negative control effects 
(see Figure 4 type 2 diabetes subplots), indicating that while bias is clearly present, there is still 
hope of a real treatment effect.  Proceeding to the complementary cohort, we see a result that 
strongly contradicts what we observe in the primary cohort. If metformin is believed to have an 
effect irrespective of a person’s type 2 diabetes severity, we should find similar results in the type 
2 diabetes and prediabetes cohorts.  Only when we take this additional step of considering the 
treatment in the complementary cohort do we realize the impact of health-related residual 
confounding on our primary result and question the validity of the finding.   
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Figure 4.  Colored vertical lines indicating the treatment effect estimates for unadjusted and 
adjusted models are overlaid on distributions of treatment effect estimates obtained for negative 
control outcomes using identical modeling approaches.  For both outcomes (inpatient admission 
days and total medical spend), the estimated treatment effect of metformin in the type 2 diabetes 
population appears strong, exceeding the benefit observed for the vast majority of negative 
control outcomes.  While that suggests the effect might be real, the effect estimates for inpatient 
admission days and total medical spend are both substantially reversed in the complementary 
prediabetes cohort.  These observations suggest that there is either a heterogeneous treatment 
effect or significant residual confounding in the type 2 diabetes cohort, the prediabetes cohort, or 
both.  An exploration of these possibilities is absent in much of the published observational study 
literature.   
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DISCUSSION 

Statement of principal findings 
We show that conventional observational study designs may lead to strong results suggesting 
that metformin use may lead to a meaningful reduction in inpatient admissions and healthcare 
expenditures; we then (1) expand the conventional study design to include numerous negative 
control outcomes for the purpose of exposing potential bias, and (2) replicate the primary cohort 
analysis in a complementary cohort carefully selected to remove or reverse the bias identified in 
the primary cohort.  Using this more comprehensive study design we find that primary results 
using a standard metformin study design may be unreliable and must be further validated with 
negative control experiments and complementary cohorts.   

Strengths and weaknesses of the study 
A notable strength of this study is the deliberate inclusion of a complementary cohort 
(prediabetes) in which the exposed group of metformin users is expected to be less healthy than 
its comparison group.  Instead of relying on covariate adjustments to balance the comparison 
groups from a position that favors the exposure, we test the ability of these same covariate 
adjustments to offset an expected health disadvantage.  This complementary cohort approach 
serves a fundamentally different purpose than simply replicating the same design in different 
data sets where a flawed design might lead to the same issues with residual confounding.  
Others have described approaches similar to the study design presented here, most notably in 
the description of triangulation for epidemiology provided by Lawlor, et al.[21]  We incorporate 
many of the same principles by generating multiple lines of evidence to evaluate a hypothesis 
using different populations and different control groups (e.g., multiple data sets: commercially 
insured vs. Medicare Advantage; multiple control groups: metformin users vs. insulin users OR 
metformin users vs. nonusers), conducting numerous negative control experiments, and 
examining the treatment effect in a complementary cohort (similar to the idea of a cross-context 
study) with presumably different biases or confounding structures.   
 
Despite the advantages of this study design, this study suffers from other characterized 
limitations common to claims-based studies, such as only including individuals with qualifying 
health insurance, selective capture of variables associated with or incentivized by financial 
reimbursement, and missingness of key elements of diabetes severity such as diabetes 
duration.[22,23]  Additionally, the proposed design relies on a qualitative assessment of 
diagnostic plots presenting distributions of potentially dependent effect estimates (e.g., the 
negative control outcomes include related pulmonary conditions and related musculoskeletal 
conditions).  Treating these distributions as if they represented independent events is 
inappropriate, and they should not be considered a valid null distribution for assessing the 
significance of the primary result.  Also, by implying that a real effect must also be observed in 
the disadvantaged complementary cohort, we recognize the potential to be biased toward a type 
2 error (i.e., a false negative), incorrectly rejecting a real effect that is masked by bias. 
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Strengths and weaknesses in relation to other studies  
Although negative control experiments are recommended as best practice by leading 
collaboratives such as OHDSI, negative control experiments are not commonly reported in 
observational drug-repurposing studies.[23]  Numerous negative control experiments are even 
rarer.  Challenges to a primary result by triangulation with a complementary cohort are virtually 
nonexistent.  The importance of these extra validation steps stems from the inadequacy of the 
observable health status variables readily available in claims data to produce an unbiased 
estimate of the metformin treatment effect.   
 
Some claims-based study limitations are addressed in other types of study designs, such as 
prospective observational studies, registry-based studies, and randomized controlled trials.  
Additionally, deriving baseline comorbidity profiles, medication exposure histories, or other key 
variables of interest can be accomplished using alternative strategies such as joining claims 
data to EHR data, clinical notes, or patient-reported data to obtain a more accurate view of an 
individual’s overall health.  However, such strategies often come at the expense of sample size, 
and even when executed well, may still exhibit similar biases. 

Meaning of the study: possible explanations and implications 
for clinicians and policymakers 
Despite our best efforts to eliminate residual confounding according to best practices in the 
metformin and observational study literature, we acknowledge and in fact demonstrate that our 
efforts have fallen short.  This is precisely why we should collectively be concerned.  We can 
either continue to accept the findings of conventional observational study designs at face value, 
or we can demand more comprehensive work be done to expose residual confounding if it 
exists.  We believe it always exists, and in situations where there is any doubt about the 
comparability of various exposure groups, additional steps like those shown here must be 
carried out.  Observational studies can motivate randomized controlled trials, influence clinical 
practice in settings where gold-standard prospective evidence is sparse, and get amplified by 
media outlets to the general public, so the cost of overvaluing a poorly designed observational 
study can lead to wasted research funds and even put participants’ and patients’ health at 
unnecessary risk. 

Unanswered questions and future research 
The challenge associated with the complementary cohort design lies in the identification of a 
suitable complementary cohort.  There are other diseases with a progressive trajectory; some 
have a predisease diagnosis as well as a clinical disease stage, and others are defined in multiple 
stages (e.g., chronic kidney disease).  Applying this framework to those settings would be a 
natural extension; however, extending this framework to settings involving a primary cohort with 
one disease and a complementary cohort with a different disease would most likely introduce 
additional challenges. 
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What is already known on this topic 
● Metformin has been associated with wide-ranging pleiotropic benefits in many 

observational studies; these studies commonly compare metformin users to nonusers or 
to insulin users. 

● Metformin users as a group tend to represent the least healthy prediabetes individuals, 
yet they represent the healthiest portion of the type 2 diabetes population. 

● Observational studies of metformin focus primarily on the type 2 diabetes population 
where metformin is widely used, but they rarely attempt to quantify or depict the degree 
to which residual confounding related to metformin users’ overall better health may be 
responsible for favorable study findings. 

What this study adds 
● This study demonstrates that residual confounding is a lurking culprit among published 

metformin claims relying solely on observational study designs and that the more 
comprehensive study design executed here is capable of exposing hard-to-quantify 
residual confounding related to overall health. 
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SUPPLEMENTARY MATERIAL 

Data Sources 

Standardization of Data Entry and Data Structure  

Medical and pharmacy claims data are captured, predominantly electronically, from sites of care 
seeking third-party reimbursement for both Medicare and commercial plans using the industry 
standard data collection forms HCFA/CMS-1500 for facility claims, UB04/CMS-1450 for 
professional services and outpatient claims, and NCPDP for pharmacy claims or their electronic 
equivalents. Structured data from these standardized forms are coded using the International 
Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM), National Drug 
Codes (NDC), Current Procedural Terminology (CPT) codes, and Logical Observation Identifiers 
Names and Codes (LOINC) codes, and Diagnosis Related Groups (DRG). This nomenclature 
ensures consistency of data collection across geographic regions, health systems, and payers 
throughout the United States. 

Methods to Control for Errors in Sampling and Data Collection  

Claims that do not adhere to the form or coding standards described above are rejected from 
reimbursement, minimizing the risk that inappropriately structured data are included in the 
database.  

Data Relevance and Accuracy 

Data are transferred into the UnitedHealth Group R&D Data Platform, where a dedicated team 
pursues data management to ensure accurate matching of source data to an individual. This 
protocol uses unique identifiers to match them to existing identifiers in the UHG R&D Data 
Platform to determine whether the individual already exists in the platform. A unique identification 
number is generated for each individual so that data from multiple sources can be linked back to 
that identification number. Individuals that fail to meet the matching criteria are excluded from the 
UHG R&D Data Platform to reduce the risk of erroneous linkage of records. Those whose claims 
do not fulfill basic standardized data structure requirements described previously are also 
excluded. During this, all member protected data are stored in a separate database that is only 
accessible by a designated engineering team. In addition to a persistent identifier being generated 
for each member, a de-identified primary key is also generated. The de-identified primary key is 
recycled every 6 months, at which time each member is assigned a new de-identified primary 
key. Data that are made available for research through the UHG R&D Clinical Research Database 
use the de-identified primary key as the link across data tables. All protected information has been 
removed, ensuring any research performed is limited to retrospective analysis of de-identified 
data and accessed in accordance with Health Insurance Portability and Accountability Act 
regulations. 
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Other Drugs for Type 2 Diabetes Treatment 
Beyond metformin, there are many other drug classes used to treat type 2 diabetes.  The places 
in therapy for these pharmacologic treatment options are well characterized in randomized 
controlled trials, with treatment recommendations largely standardized among national and 
international diabetes care organizations.[15–17]  Notably, diabetes guidelines typically 
recommend using pharmacologic therapies additively, rather than substitutively, and differential 
recommendations for second-line diabetes drug classes exist for certain subpopulations of people 
with type 2 diabetes, including for people with or at high risk for atherosclerotic cardiovascular 
disease (ASCVD), those with heart failure, and those with chronic kidney disease.[15–17]  While 
the variety of available diabetes drug class options may give an appearance of a suite of active 
comparators for consideration in observational studies, this conclusion ignores the connections 
to disease severity that certain drug classes may have, as well as the consistency of metformin 
as a guideline-recommended, first-line therapy in the background of most treatment regimens as 
other drugs are added over time.  A full list of diabetes medications appears in Supplemental 
Table S6. 

Validation Tools 

Covariate Balance Diagnostics 
Observational studies often attempt to demonstrate that acceptable covariate balance has been 
achieved between the exposure groups.  Whether it comes through matching, inverse propensity 
weighting, or some other method seeking covariate balance, a demonstration that balance has 
been achieved is necessary to convince the reader that two groups that are clearly different (as 
expected by their different prescribed treatments) have been manipulated in such a way that a 
weighted or reduced sample shows similar covariate distributions on a set of covariates deemed 
important for minimizing confounding.  Figure 1 presents a diagnostic plot showing the pre- and 
post-adjustment covariate balance achieved in models for the two example outcomes; acceptable 
covariate balance generally requires the standardized mean differences for all covariates to have 
absolute values <0.1. 
 

Negative Control Experiments 
A negative control experiment is one where there exists no causal relationship between the 
treatment and the outcome.[24]  In particular, negative control outcomes, also known as 
falsification endpoints, preserve the same treatment/control group designations as the primary 
outcome for each individual in the study, but they are outcomes that cannot reasonably be 
impacted by the exposure.  In our metformin study, outcomes like dry eye syndrome and low back 
pain are candidate negative control outcomes because there is no known mechanism by which 
metformin could directly impact these events.  Importantly, negative control outcomes should be 
subject to the same residual confounding as the primary outcomes, which our study assumes to 
be exclusively related to overall health.   
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By looking at a wide range of outcomes with no direct, mechanistic connection to the treatment, 
we seek to expose differences in overall health not accounted for by the treatment or the other 
observed covariates.  For a comparison of metformin and insulin users in a type 2 diabetes cohort, 
a pattern of nonzero treatment effects for metformin on the negative control outcomes is evidence 
that we have not adequately controlled for the underlying differences in the overall health status 
of these two groups.   

Negative Control Outcome Criteria 
 
The objective in a negative control outcome experiment is to detect significant relationships 
between the treatment of interest (e.g., metformin) and a mechanistically unrelated outcome (e.g., 
low back pain); detecting such a relationship raises serious concerns about residual confounding 
related to the study design.  Importantly, these negative control outcomes should be evaluated 
against these five criteria: 
 

1. There is no mechanistic connection to the treatment under investigation (i.e., no 
established mechanism of action for this treatment to affect the negative control outcome). 

2. Negative control outcomes must be reasonably prevalent; the statistical power associated 
with the negative control experiment increases as the prevalence of the outcome 
increases in the population under study.  As a rule of thumb, consider giving preference 
to negative control outcomes at least as prevalent as the primary outcome.  A rare 
negative control outcome will likely be less informative, typically returning a null result even 
in the presence of significant residual confounding.  The noisy results of a large collection 
of rare negative control outcomes can still be informative, however, even if an individual 
outcome occurs too rarely to confidently estimate a treatment effect. 

3. Negative control outcomes are suspected of being subject to the same residual 
confounding as the primary outcome under investigation (e.g., does not require a different 
level of health care access, health insurance benefit design, etc.).  This is unverifiable due 
to the nature of residual confounding, but the point is that whatever may introduce bias in 
the outcome of interest should be a potential source of similar bias (expected to be the 
same direction and magnitude) for the negative control outcome. 

4. (Optional) There is no causal relationship to disease severity (e.g., not a known indicator 
of disease severity for the disease indicating this medication). 

5. (Optional) The negative control outcome is not an indicator of health-seeking behavior 
(e.g., some of the most common recorded “diagnoses” in claims data are screenings or 
exams that could be sex-specific or age-specific).  Exceptions are appropriate when the 
primary outcome is a health-seeking behavior. 

 
Of these five criteria, (1), (2), and (3) are required, and (4) and (5) are desirable in order to further 
distance the negative outcomes from obvious group differences in disease severity or health care 
utilization.  The entire collection of negative control outcomes will be used to identify meaningful 
ways in which the comparison groups differ even after adjustments are made for observed 
covariates. Negative control experiments -- well-accepted and commonly recommended -- remain 
infrequently conducted components of observational study designs.[23]  One explanation for the 
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lack of widespread adoption is that identifying the perfect negative control experiment is often 
quite challenging. In practice, however, a wide range of negative control experiments do not have 
to individually be perfect to collectively reveal the residual confounding we seek to expose.  For 
this reason, one might empirically determine a host of acceptable negative control outcomes by 
reviewing the most frequently observed diagnoses among individuals in the cohort.  The focus of 
this approach is using the collective body of evidence from many possibly imperfect negative 
experiments rather than relying on any single negative experiment’s ability to survive heavy 
scrutiny.   

Negative Control Outcome Selection Algorithm 
 
In a randomized trial, thoughtful selection of negative controls is necessary because that data 
must be intentionally collected, possibly at significant cost.  In an observational study, we must 
draw candidate negative controls from data that has already been collected as acquiring new data 
on the selected individuals is highly unlikely.  To find outcomes present in our data that meet the 
criteria for negative controls, we proceed as follows (example results depicted in Table S1): 

1. Identify the 500 most common diagnosis codes in 2018 in terms of affected individuals in 
the primary cohort, ignoring multiple diagnoses for the same condition for the same 
individual.  Repeat for the complementary cohort. 

2. Filter the observed diagnoses to only retain diagnoses observed in both cohorts. 
3. Rank the diagnosis codes in each cohort and then sum the ranks for a composite rank 

sum (e.g., low back pain is #13 in prediabetes and #15 in type 2 diabetes for a rank sum 
of 28). 

4. Order the diagnosis codes by rank sums from smallest to largest. 
5. Take the top 10/20/50/etc. outcomes that meet the criteria for negative control outcomes.  

This requires domain expertise to individually consider each outcome for potential 
mechanistic connections to the treatment, disease severity, and health-seeking behavior.  
Additionally, a power analysis can help establish a prevalence minimum. 

It is likely that these negative control outcomes will span a variety of body systems and will not all 
be highly correlated, reducing the impact of a single negative control outcome in the group that 
may have an unrecognized connection to the drug or disease under investigation.  Other 
approaches to identifying negative control outcomes have been developed, including the ATLAS 
tool created by the Observational Health Data Sciences and Informatics (OHDSI) organization, 
which also uses a combination of automated discovery and expert review to identify 50-100 
negative controls.[23] 
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Observed Condition Empirical Prevalence Expert Review 

ICD 
Code ICD Code Description T2D 

Rank 
T2D Total 

Cases 
Prediabetes 

Rank 
Prediabetes 
Total Cases 

Prediabetes 
and T2D 
Ranks 

Summed 

well-established 
mechanistic 

connection to 
metformin 

impacted by 
diabetes 
severity 

general health-
seeking 
behavior 

negative 
control 

candidate 

i10 essential (primary) 
hypertension 2 1419426 2 146023 4 N Y N N 

e785 hyperlipidemia 
unspecified 3 755895 4 90418 7 N Y N N 

z0000 

encounter for general 
adult medical 
examination without 
abnormal findings 

4 679139 3 124587 7 N N Y N 

z23 encounter for 
immunization 5 575125 5 83550 10 N N Y N 

e782 mixed hyperlipidemia 7 479440 7 55719 14 N Y N N 

z1231 

encounter for 
screening 
mammogram for 
malignant neoplasm 
of breast 

8 369026 6 68582 14 N N Y N 

e039 hypothyroidism 
unspecified 10 301838 9 36737 19 N N N Y 

r05 cough 12 271000 14 30625 26 N N N Y 

e7800 
pure 
hypercholesterolemia 
unspecified 

17 248728 11 34292 28 N Y N N 

m545 low back pain 15 262643 13 31102 28 N N N Y 

Table S1.  Negative control outcomes were selected through an automated generation of 
candidate outcomes followed by an expert review.  Prevalence of outcomes in both the primary 
and complementary cohorts is emphasized in this approach, resulting in an ordering of candidates 
from which experts can identify the first 10/20/50/etc. candidates that satisfy multiple negative 
control outcome criteria.  Here we find three acceptable negative control outcomes in the 10 most 
common diagnoses.  We found 50 suitable negative control outcomes in the ~100 most prevalent 
diagnoses in our data set. 

Complementary Cohorts 
Complementary cohorts provide a second tool to stress test the primary results by nullifying or 
reversing any overall health advantage the treatment group has in the primary cohort.  If we 
suspect the treatment group may be healthier in some unmeasurable way than the comparison 
group (aside from the possible effect of the treatment), we construct another cohort in which the 
treatment group is expected to be less healthy than the comparison group (aside from the possible 
effect of the treatment). The construction of this cohort requires relevant domain expertise in order 
to satisfy the following criteria: 
 

1. The primary treatment of interest must be reasonably prevalent in the complementary 
cohort.  If there are too few users of the primary treatment in the complementary cohort, 
there will be limited power to detect an effect. 
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2. If treatment is concentrated among the healthiest members of the primary cohort (in both 
measurable and unmeasurable ways), use of the treatment in the complementary cohort 
should be concentrated among individuals with worse overall health relative to the rest of 
the cohort, and vice versa.  This creates a mirror image of the primary cohort and is critical 
if the goal is to nullify or reverse the overall health advantage (or disadvantage) suspected 
in the treated group in the primary cohort. 

3. There should be no unnecessary differences in the cohort-identifying disease.  This is 
easiest to satisfy in diseases with a commonly diagnosed “predisease” stage (e.g., 
prediabetes/type 2 diabetes, albuminuria/chronic kidney disease, osteopenia/ 
osteoporosis), a framework that best ensures that any residual confounding present in the 
complementary cohort will be of the same nature as that of the primary cohort (i.e., related 
to overall health).  Introducing a complementary cohort from a completely different disease 
is still possible, but it may introduce complicated disease differences that must be 
addressed. 

 
In a study of individuals diagnosed with type 2 diabetes, there is a natural complementary cohort 
in the population of individuals diagnosed with prediabetes.  Critically, the drug metformin is 
prescribed to individuals in both cohorts -- extensively in type 2 diabetes and more modestly in 
prediabetes.  What makes this primary/complementary cohort specification ideal is where the 
concentration of metformin users exists in each cohort.  In the American Diabetes Association’s 
(ADA) published “Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care 
in Diabetes—2020,” metformin monotherapy is recommended as the first-line treatment for type 
2 diabetes along with comprehensive lifestyle modifications.[15]  If comorbidities like 
atherosclerotic cardiovascular disease, heart failure, or chronic kidney disease are present, other 
drugs may augment or replace metformin.  If metformin and/or other drugs cannot effectively 
control blood glucose, an individual may ultimately be prescribed insulin.  Thus, individuals with 
a metformin claims history, but no history of insulin use, are earlier in the spectrum of type 2 
diabetes severity than those who have progressed to using insulin.   
 
In prediabetes, the ADA Standards of Medical Care recommend considering treatment with 
metformin for individuals at risk for developing type 2 diabetes, particularly for high-risk 
individuals, including those with a history of gestational diabetes, BMI >= 35 kg/m2, or age less 
than 60 years old.[14]  Whereas the metformin users were the least severe cases in the type 2 
diabetes cohort, they hold the opposite position in the prediabetes cohort.  As depicted in Figure 
S1, prediabetes thus presents an ideal complementary cohort by eliminating or potentially 
reversing any metformin exposure group advantage that could be attributable to overall patient 
health in the primary cohort. 
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Figure S1. Based on guideline-driven treatment recommendations, metformin users diagnosed 
with prediabetes are assumed to be on the opposite end of their respective diabetes severity 
spectrum compared to metformin users diagnosed with type 2 diabetes.  The prediabetes cohort 
thus reverses the overall health advantage enjoyed by the metformin users in the type 2 diabetes 
cohort, which makes it an ideal candidate for a complementary cohort aiming to expose residual 
confounding related to overall health. 
 
The role of this complementary cohort is to validate whether the covariate selections and method 
choices in the primary cohort analysis are indeed effective at addressing confounding related to 
disease severity and overall health. If they are, we should expect to reproduce the primary cohort 
finding in the complementary cohort.  Conflicting findings suggest that the result in the primary 
cohort may be a result of residual confounding and not a true treatment effect. Other explanations 
exist for conflicting findings, specifically a heterogeneous treatment effect, a possibility that goes 
unexplored when the entire focus is on the primary cohort.   

Negative Controls in Complementary Cohorts 
Negative control outcome results may reveal residual confounding in the primary cohort (e.g., 
through a pattern of protective associations between the treatment and the negative control 
outcomes), which further motivates the use of a complementary cohort to test the primary result.  
These same negative control outcomes must also test the selection of the complementary cohort, 
ensuring it exhibits the most desired quality of a complementary cohort: no residual confounding-
induced advantage in negative control outcome experiments.  The strength of a complementary 
cohort is defined by how much the negative control outcome associations are nullified or reversed 
in comparison with the primary cohort results. Larger reversals indicate that the complementary 
cohort provides a more robust validation of the initial results.  If the pattern of bias (i.e., nonzero 
negative control outcome effect sizes) is similar in the two groups, then the second analysis has 
little to add aside from validating the result in another population. 
 
When adequately powered, null results across all negative control outcome experiments in both 
the primary and complementary cohorts are a good indication that residual confounding may be 
fairly minimal in the identified cohorts and the results are likely trustworthy. When the primary and 
complementary cohorts yield conflicting results across a host of negative control outcomes, we 
attribute that difference to a difference in residual confounding in the two cohorts -- this is exactly 
what we hope to uncover if it exists.  In Figure 3, we capture these residual confounding 
differences in an easily digestible diagnostic plot; it is this diagnostic plot that provides the 
necessary backdrop to interpret a study’s primary result from a more informed position. 
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Covariate Balance in Negative Control Outcome Experiments 
Covariate balance was demonstrated for the primary outcomes in the primary and 
complementary cohorts in the main text.  In Figure S2 we show that acceptable covariate 
balance was achieved using IPW for 50 negative control outcome experiments conducted in 
both cohorts. 

 
Figure S2.  Here we show 50 overlaid balance plots for the Medicare Advantage type 2 diabetes 
cohort (panel A) and the prediabetes cohort (panel B) where the only covariate changing from 
one negative control outcome experiment to the next is the history of each respective outcome.  
The fact that adjusted balance changes negligibly with the exception of outcome history suggests 
that the sample under analysis (after propensity trimming) is largely the same from one 
experiment to the next.  The noticeable leftward shift in unadjusted balance in panel A reflects the 
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healthier nature of the metformin group in the type 2 diabetes cohort (fewer inpatient days, lower 
Elixhauser in-hospital mortality score, lower prevalence of diabetes complications in every DCSI 
dimension despite being slightly older as a group).  In panel B, we see better unadjusted balance 
that appears to meaningfully reduce the metformin advantage.  Across both cohorts, the IPW 
approach achieved satisfactory balance after adjustment for every observed covariate of interest. 

Final Results Plot Interpretation 
 
Figure 4 in the main text (as well as Figure S7, Figure S11, and Figure S15 in the supplement) 
depicts the primary and complementary cohorts results for a primary outcome against a 
backdrop of negative control outcome experiment results.  The discussion surrounding these 
figures presents an interpretation for each figure, but not all possible scenarios were observed 
in the real data example.  In Figure S3 we explore a more comprehensive set of possible 
findings that may appear in a main results figure, and we provide a recommended interpretation 
for each set of results.  The interpretation of each scenario centers on examining each cohort’s 
primary result in the context of its negative control outcome distribution; we then check for 
agreement between the cohorts. 
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Figure S3.  Possible Primary Outcome Results: In each of these scenarios, a primary cohort is 
depicted with a blue bar identifying the result for the primary outcome, and a light blue distribution 
of negative control outcome results appears behind it.  The complementary cohort results are 
depicted in the same manner.  The discussion in the supplement text examines each row A-F for 
the level of evidence it provides to support a claim of a beneficial treatment effect. 
 
In Figure S3 row A, we see a strong primary result and no pattern of bias in the negative control 
outcome experiments.  With no evidence of bias, there is no requirement to have a 
complementary cohort, and we have reason to trust the primary result.  We would similarly trust 
a result indicating harm the farther right it is from the null.  Our confidence in either result would 
decrease as it moves toward the null.   
 
In Figure S3 row B, we observe a strong primary result, but there is a clear pattern of bias in the 
negative control outcome experiments, which weakens the evidence supplied by the primary 
result.  In the complementary cohort (validated by observed bias reversal), we see a more modest 
primary result, but it is quite strong compared to the negative control outcome experiments.  Taken 
together, all the evidence from both cohorts points to a beneficial treatment effect.  In this case, 
the complementary cohort analysis strengthened our confidence in the primary cohort result. 
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In Figure S3 row C, a strong primary result is nullified by the negative control outcome 
experiments.  An unfavorable result in the complementary cohort is also nullified by negative 
control outcome experiments.  Taken together, there is no strong evidence of any effect. 
 
In Figure S3 row D, we see a modest primary result in the primary cohort, and this result exceeds 
a large majority of the negative control outcome experiments.  In the complementary cohort, 
everything is reversed such that the primary result is now harmful and exceeds a similarly large 
majority of the negative control outcome experiments.  Taken together, these conflicting findings 
present no strong evidence of any effect.  In this case, the complementary cohort analysis erased 
our confidence in the primary cohort result. 
 
In Figure S3 row E, a modest primary result in the primary cohort actually appears harmful 
compared to the distribution of negative control outcome experiments.  In the complementary 
cohort, the result indicating harm is worse than a large majority of the negative control outcome 
distribution.  Taken together, these results suggest there may be a harmful effect.  In this case, 
the complementary cohort analysis strengthened our confidence in the primary cohort result. 
 
In Figure S3 row F, a strong primary result in the primary cohort exceeds a large majority of the 
negative control outcome results, indicating a potentially beneficial treatment effect.  In the 
complementary cohort, a result indicating harm is squarely in the middle of the negative control 
outcome results, effectively indicating a null effect.  Taken together, these results are 
inconclusive.  There’s some evidence supporting benefit and other evidence suggesting no effect.  
In this case, the complementary cohort analysis lessened our confidence in the primary cohort 
result.  
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Supplementary Analyses 
The main text focused on a comparison group of insulin users, but nonusers are also a frequent 
comparison group in studies of metformin and other drugs.  Nonusers are a difficult group to 
conceptualize when virtually every stage of treatment for a condition involves prescription 
medication (as seen in the type 2 diabetes treatment recommendations).  The “nonuser” 
population can also be hard to describe when the drug under investigation is available 
inexpensively without using insurance (e.g., metformin).  Since metformin is so widely prescribed 
in the type 2 diabetes population, there is a reasonable chance that some “nonusers” are taking 
metformin; they are simply purchasing it outside the visibility of their insurance plans, making 
them only appear as nonusers in our study despite obtaining the medication through alternate 
means such as cash pay.  This has the effect of biasing any effect estimate toward the null and 
was the primary reason we selected insulin users as the comparison group for the main analysis.   
 
In Tables S2-S4 and Figures S4-S115 we show three supplemental analyses not presented in 
the main text.  Each of the three analyses is presented in one results table and four figures.  Table 
S2, Figure S4, Figure S5, Figure S6, and Figure S7 present a metformin analysis in the Medicare 
Advantage population with a comparison group of nonusers (different comparison group from the 
main text).  Table S3, Figure S8, Figure S9, Figure S10, and Figure S11 present a metformin 
analysis in the commercially insured population with a comparison group of insulin users (different 
population from the main text).  Table S4, Figure S12, Figure S13, Figure S14, and Figure S15 
present a metformin analysis in the commercially insured population with a comparison group of 
nonusers (different population and comparison group from the main text).  Each four-figure group 
shows two Love plot figures (one for the example outcomes and one for the 50 negative control 
outcome experiments) depicting acceptable covariate balance, a residual confounding plot, and 
finally the primary outcome results plotted on a distribution of negative control outcome effect 
estimates in both the primary and complementary cohorts.  We see bias in the same direction 
emerge in the distributions of negative control outcome effect estimates in every combination of 
population and comparison group definition.  In summary, none of the populations and 
comparison groups we explored appear immune to a concerning amount of residual confounding. 
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Medicare Advantage Beneficiaries (metformin users vs. nonusers) 
 
Examining the nonuser comparison group in the Medicare Advantage population produced 
favorable results supporting a metformin benefit (see Table S2).  The large Medicare Advantage 
population makes these conservative results highly confident.  The pre-adjustment covariate 
balance in Figure S4 and Figure S5 indicates a slightly healthier metformin user population, and 
Figure S6 confirms once again through the negative control outcome experiments that a strong 
bias exists favoring metformin in type 2 diabetes while also showing a weaker bias against 
metformin in the prediabetes cohort.  Interestingly, Figure S7 shows that the example outcome 
effect estimates in type 2 diabetes are at best as strong as those seen for an average negative 
control outcome experiment, but they are far worse than an average negative control outcome 
experiment in the prediabetes cohort.  Thus, while Table S2 may indicate a favorable treatment 
effect estimate, no such conclusion can be supported by the total evidence supplied by the 
complementary cohort design. 
 

outcome model log OR (base 2) 95% CI p E-value 

inpatient days unadjusted -0.39 (-0.41, -0.36) <10-216 1.94 

inpatient days IPW logistic -0.09 (-0.12, -0.06) <10-10 1.33 

medical spend unadjusted -0.55 (-0.58, -0.53) <10-323 2.30 

medical spend IPW logistic -0.17 (-0.20, -0.14) <10-23 1.50 
 
Table S2.  Treatment effect estimates for metformin: this study was conducted in a Medicare 
Advantage type 2 diabetes population comparing metformin users to a control group of 
nonusers.  The outcomes represent >0 inpatient admission days in 2019 and a total medical 
spend (insurance payouts to health care providers) exceeding the 90th percentile of all type 2 
diabetes patient expenditures (>$25,793).  Metformin appears associated with fewer inpatient 
admission days and lower health care costs, even after adjustment for a range of relevant 
covariates. 
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Figure S4.  Covariate Balance in Example Outcomes: Medicare Advantage Beneficiaries 
(metformin users vs. nonusers).  This is a different comparison group compared to Figure 1, and 
in both the prediabetes and type 2 diabetes cohorts, there appears to be a slight health advantage 
among the metformin users (pre-adjustment standardized mean differences <0).  In all cases, the 
post-adjustment balance is excellent. 
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Figure S5.  Covariate Balance in Negative Control Outcome Experiments: Medicare Advantage 
Beneficiaries (metformin users vs. nonusers).  This is a different comparison group compared to 
Figure S2, and in both the prediabetes and type 2 diabetes cohorts, there appears to be a slight 
health advantage among the metformin users (pre-adjustment standardized mean differences 
<0).  In all cases, the post-adjustment balance is excellent. 
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Figure S6.  Residual Confounding Plot: Medicare Advantage Beneficiaries (metformin users vs. 
nonusers of any diabetes drug).  This is a different comparison group compared to Figure 3 in the 
main text.  The residual confounding again appears consistent with the primary analysis, strongly 
favoring metformin users in the type 2 diabetes cohort while maintaining a smaller bias against 
metformin in the prediabetes cohort. 
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Figure S7.  Primary Outcome Results: Medicare Advantage Beneficiaries (metformin users vs. 
nonusers of any diabetes drug).  This is a different comparison group compared to Figure 4 in the 
main text.  We see adjusted treatment effect estimates that are at best on par with an average 
effect size for a negative control outcome in type 2 diabetes and considerably worse in 
prediabetes; together, these observations should elicit doubt about any claims of a real effect in 
the primary analysis.  
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Commercial Insurance Beneficiaries (metformin users vs. insulin users) 
 
In an alternate population of commercially insured beneficiaries, we see strong results in Table 
S3 favoring metformin usage that are quite confident despite the much smaller population under 
study.  Figure S8 and Figure S9 show excellent covariate balance, but we continue to see in 
Figure S10 negative control outcome effect estimates biased in favor of metformin in the type 2 
diabetes population and biased against metformin in the prediabetes population.  Interestingly, 
while the adjusted effect estimates for the example outcomes indicate a potential treatment 
effect that appears relatively strong compared to the negative control outcome effect estimates 
in Figure S11, one effect goes to 0 while the other substantially reverses in the prediabetes 
population.  Together, these results suggest that the findings in Table S3 are likely products of 
significant residual confounding. 
 

outcome model log OR (base 2) 95% CI p E-value 

inpatient days unadjusted -1.49 (-1.62, -1.36) <10-106 5.07 

inpatient days IPW logistic -0.71 (-0.89, -0.52) <10-13 2.65 

medical spend unadjusted -1.51 (-1.63, -1.40) <10-134 5.15 

medical spend IPW logistic -0.65 (-0.82, -0.48) <10-13 2.51 
 
Table S3.  Treatment effect estimates for metformin: this study was conducted in a 
commercially insured type 2 diabetes population comparing metformin users to a control group 
of insulin users.  The outcomes represent >0 inpatient admission days in 2019 and a total 
medical spend (insurance payouts to health care providers) exceeding the 90th percentile of all 
type 2 diabetes patient expenditures (>$21,433).  Metformin appears strongly associated with 
fewer inpatient admission days and lower health care costs, even after adjustment for a range of 
relevant covariates. 
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Figure S8.  Covariate Balance in Example Outcomes: Commercially Insured Beneficiaries 
(metformin users vs. insulin).  This is a different population compared to Figure 1.  In the type 2 
diabetes cohort, the metformin users have a noticeable health advantage that essentially 
disappears in the prediabetes population.  In both the prediabetes and type 2 diabetes cohorts, 
the post-adjustment balance is excellent. 
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Figure S9.  Covariate Balance in Negative Control Outcome Experiments: Commercial Insurance 
Beneficiaries (metformin users vs. insulin users).  This is a different population compared to 
Figure S2.  Here we show 50 overlaid balance plots for the type 2 diabetes cohort (panel A) and 
the prediabetes cohort (panel B) where the only covariate changing from one negative control 
outcome experiment to the next is the history of each respective outcome.  Excellent post-
adjustment covariate balance is achieved for all negative control outcome experiments. 
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Figure S10.  Residual Confounding Plot: Commercially Insured Beneficiaries (metformin users 
vs. insulin users).  This is a different population compared to Figure 3 in the main text.  The 
residual confounding again appears consistent with the primary analysis, strongly favoring 
metformin users in the type 2 diabetes cohort while appearing to work against metformin users in 
the prediabetes cohort. 
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Figure S11.  Primary Outcome Results: Commercially Insured Beneficiaries (metformin users vs. 
insulin users).  This is a different population compared to Figure 4 in the main text.  We see 
adjusted treatment effect estimates that exceed a large majority of the estimated effect sizes from 
the negative control outcome experiments in type 2 diabetes.  In prediabetes, however, these 
effect estimates become null in one case and substantially reverse in the other, which together 
should elicit some doubt about any claims in the primary analysis.  
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Commercial Insurance Beneficiaries (metformin users vs. nonusers) 
 
In an alternate comparison group of nonusers of any diabetes drugs among the commercially 
insured, we see more conservative results favoring metformin usage in Table S4.  While the 
nonusers may be hard to completely explain, we can be relatively confident they are not insulin 
users (and thus more advanced type 2 diabetes cases) due to the generally high list price of 
insulins.  Figure S12 and Figure S13 show excellent covariate balance, but we continue to see 
in Figure S14 negative control outcome effect estimates biased in favor of metformin in the type 
2 diabetes population and biased against metformin in the prediabetes population.  Interestingly, 
while the adjusted effect estimates for the example outcomes indicate a potential treatment 
effect with varying levels of confidence, neither type 2 diabetes effect estimate is stronger than 
even half of the negative control outcome effect estimates in Figure S15.  This observation 
strongly challenges the results in Table S4 as nothing more than products of significant residual 
confounding. 
 

outcome model log OR (base 2) 95% CI p E-value 

inpatient days unadjusted -0.39 (-0.49, -0.29) <10-13 1.95 

inpatient days IPW logistic -0.15 (-0.26, -0.04) <0.01 1.45 

medical spend unadjusted -0.26 (-0.35, -0.17) <10-7 1.69 

medical spend IPW logistic -0.09 (-0.19, 0.01) 0.08 1.33 
 
Table S4.  Treatment effect estimates for metformin: this study was conducted in a 
commercially insured type 2 diabetes population comparing metformin users to a control group 
of nonusers.  The outcomes represent >0 inpatient admission days in 2019 and a total medical 
spend (insurance payouts to health care providers) exceeding the 90th percentile of all type 2 
diabetes patient expenditures (>$21,433).  Metformin appears strongly associated with fewer 
inpatient admission days and lower health care costs, even after adjustment for a range of 
relevant covariates. 
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Figure S12.  Covariate Balance in Example Outcomes: Commercial Insurance Beneficiaries 
(metformin users vs. nonusers).  This is the same analysis as Figure 1 in the main text, but it 
considers a different population and comparison group.  Compared to Figure 1, the unadjusted 
balance in the type 2 diabetes population indicates metformin users are much more comparable 
to nonusers than insulin users.   
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Figure S13.  Covariate Balance in Negative Control Outcome Experiments: Commercial 
Insurance Beneficiaries (metformin users vs. nonusers).  This is a different population and 
comparison group compared to Figure S2.  The type 2 diabetes metformin users and nonusers 
are considerably better balanced pre-adjustment here compared to Figure S2, but that is not 
enough to eliminate the bias we see in Figure S14. 
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Figure S14.  Residual Confounding Plot: Commercial Insurance Beneficiaries (metformin users 
vs. nonusers of any diabetes drug).  This is the different population and comparison group 
compared to Figure 3 in the main text.  The effect sizes are more conservative with this 
comparison group (though still biased to favor metformin in type 2 diabetes and oppose metformin 
in prediabetes), possibly due to the number of metformin users mixed into the nonuser population. 
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Figure S15.  Primary Outcome Results: Commercial Insurance Beneficiaries (metformin users vs. 
nonusers of any diabetes drug).  This is a different population (commercially insured) compared 
to Figure 4 in the main text, and it considers a different type 2 diabetes comparison group: 
nonusers.  In this population and comparison group setting, the adjusted effect estimates in the 
type 2 diabetes setting are not even as favorable as what we observe for an average negative 
control outcome, which is an immediate indicator that the observed association may be spurious.   
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Deviations from Preregistration 
 
The preregistered analysis plan for this study can be found at https://osf.io/qf49p. 
 
Deviations from this plan are listed and explained below: 
 

1. Covariates - The preregistration states that “health-seeking behavior will be indicated by 
the presence of at least one immunization (typically a flu shot).”  We instead used only flu 
shots because of the widespread eligibility and anticipated annual frequency of flu shots 
not common to all vaccinations. 

2. Outcomes - We did not specify any primary outcomes for the example analysis in the 
preregistration.  We realized after conducting all the negative control experiments that we 
were missing the opportunity to illustrate interpreting a real result.  We only ever tried two 
example outcomes, and both are reported in the four analyses spanning the main text and 
supplement.   
As the stated criteria in the supplement state, the negative control outcomes should not 
be known indicators of type 2 diabetes severity.  We thus removed “essential (primary) 
hypertension” and “hyperlipidemia/hypercholesterolemia” from our list of negative control 
outcomes due to their known association with cardiovascular comorbidities, an index 
component of the Diabetes Complications and Severity Index.  We replaced those two 
negative control outcomes with the two next-most prevalent outcomes satisfying our 
criteria: “syncope and collapse” and “unspecified asthma uncomplicated.”  
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Supplementary Tables to Support Replication 
 
Table S5. Cohort Criteria 
 

Cohort ICD-10 Codes 

Prediabetes R73% 

Type 2 Diabetes E11% 

 
Table S6. Drug Class Members 
 

Medication Class Generic Name 

Biguanides (metformin)  alogliptin-metformin hcl, canagliflozin-metformin hcl, dapagliflozin-metformin hcl, 
empagliflozin-metformin hcl, ertugliflozin-metformin hcl, glipizide-metformin hcl, glyburide-
metformin, linagliptin-metformin hcl, metformin hcl, pioglitazone hcl-metformin hcl, 
repaglinide-metformin hcl, rosiglitazone maleate-metformin hcl, saxagliptin-metformin hcl, 
sitagliptin-metformin hcl 

Insulins insulin aspart, insulin aspart (with niacinamide), insulin aspart protamine & aspart 
(human), insulin glulisine, insulin lispro, insulin lispro protamine & lispro,insulin lispro-
aabc, insulin nph isophane & reg (human), insulin reg (human) buffered,insulin regular, 
insulin regular (human), insulin regular (human) in sodium chloride, insulin regular (pork), 
insulin degludec, insulin degludec-liraglutide, insulin detemir, insulin glargine, insulin 
glargine-lixisenatide, insulin isophane, insulin isophane (pork), insulin nph (human) 
(isophane), insulin zinc, insulin zinc (human), insulin zinc (pork), insulin zinc extended 
(human) 

Other Diabetes Drugs pioglitazone hcl/glimepiride, glyburide, chlorpropamide, glipizide, glimepiride, tolbutamide, 
tolazamide, pioglitazone hcl, rosiglitazone maleate, miglitol, acarbose, pramlintide acetate, 
bromocriptine mesylate, sitagliptin phosphate, linagliptin, alogliptin benzoate, saxagliptin 
hcl, ertugliflozin/sitagliptin, dapagliflozin/saxagliptin hcl, empagliflozin/linagliptin, alogliptin 
benz/pioglitazone, dulaglutide, exenatide microspheres, lixisenatide, exenatide, 
albiglutide, liraglutide, semaglutide, nateglinide, repaglinide, empagliflozin, canagliflozin, 
dapagliflozin propanediol, ertugliflozin pidolate 

 
Table S7. Covariate Logic 
 

Covariate Logic 

Influenza Vaccination American Hospital Formulary Service (AHFS) therapeutic class code 80120000 and 
generic name containing “flu” (pharmacy claims) 
-OR- 
any of the following procedure codes: 90630, 90653, 90656, 90662, 90673, 90674, 
90682, 90685, 90686, 90687, 90688, 90756, Q2039, Q2035, Q2037 (medical claims) 

Physician Visit / Wellness Visit either of the following health care encounter service type descriptions: “physician visits” or 
“wellness visits” (medical claims) 

Elixhauser In-hospital Mortality 
Score 

The Elixhauser In-Hospital Mortality Score follows the guidelines presented by Moore et 
al.[18] 

Diabetes Complications Severity 
Index (DCSI) 

The DCSI component scores follow logic presented by Glasheen et al. (appendices A1-
A7, B).[19]  In addition to standard insurance claims data, the database used for the study 
also had the necessary lab results to compute the nephrology component score per the 
indicated reference. 
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Table S8. Negative Control Outcomes (50 total) 
 
Number ICD Code(s) Condition 

1 b351 tinea unguium 

2 d485 neoplasm of uncertain behavior of skin 

3 e039 hypothyroidism unspecified 

4 f329 major depressive disorder single episode unspecified 

5 f419 anxiety disorder unspecified 

6 g8929 other chronic pain 

7 h04123 dry eye syndrome of bilateral lacrimal glands 

8 i517 cardiomegaly 

9 j0190 acute sinusitis unspecified 

10 j029 acute pharyngitis unspecified 

11 j069 acute upper respiratory infection unspecified 

12 j209 acute bronchitis unspecified 

13 j309 allergic rhinitis unspecified 

14 j449 chronic obstructive pulmonary disease unspecified 

15 j45909 unspecified asthma uncomplicated 

16 k219 gastro-esophageal reflux disease without esophagitis 

17 k5730 diverticulosis of large intestine without perforation or abscess without bleeding 

18 k5900 constipation unspecified 

19 k635 polyp of colon 

20 l570 actinic keratosis 

21 l814 other melanin hyperpigmentation 

22 l821 other seborrheic keratosis 

23 m170 bilateral primary osteoarthritis of knee 

-- m1711 unilateral primary osteoarthritis right knee 

-- m1712 unilateral primary osteoarthritis left knee 

24 m1990 unspecified osteoarthritis unspecified site 

25 m25511 pain in right shoulder 

-- m25512 pain in left shoulder 

26 m25561 pain in right knee 

-- m25562 pain in left knee 

-- m25569 pain in unspecified knee 

27 m47816 spondylosis without myelopathy or radiculopathy lumbar region 

28 m5136 other intervertebral disc degeneration lumbar region 

29 m5416 radiculopathy lumbar region 

30 m542 cervicalgia 
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31 m545 low back pain 

32 m6281 muscle weakness (generalized) 

33 m79671 pain in right foot 

-- m79672 pain in left foot 

34 m7989 other specified soft tissue disorders 

35 m810 age-related osteoporosis without current pathological fracture 

36 n390 urinary tract infection site not specified 

37 r002 palpitations 

38 r05 cough 

39 r0600 dyspnea unspecified 

40 r0789 other chest pain 

41 r109 unspecified abdominal pain 

42 r300 dysuria 

43 r42 dizziness and giddiness 

44 r51 headache 

45 r531 weakness 

46 r5383 other fatigue 

47 r55 syncope and collapse 

48 r600 localized edema 

49 r918 other nonspecific abnormal finding of lung field 

50 r9431 abnormal electrocardiogram [ecg] [ekg] 
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STROBE Statement 

Checklist of items that should be included in reports of cohort studies 

  Item 
No 

Recommendation 

 Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the 
abstract - The abstract and subtitle state that a retrospective cohort study will 
be presented. 

(b) Provide in the abstract an informative and balanced summary of what was 
done and what was found - The general approach (negative controls and 
complementary cohorts) is introduced in the context of a drug-repurposing 
study, and the presented methodology is said to possibly change our 
interpretation of study findings. 

Introduction 

Background/rationale 2 Explain the scientific background and rationale for the investigation being 
reported - The literature is full of drug-repurposing studies that fail to fully 
consider the role of residual confounding in their published results. This is 
especially true in drug-repurposing studies of metformin in the type 2 
diabetes population. We sought a way to expose the role of residual 
confounding in such studies. 

Objectives 3 State specific objectives, including any prespecified hypotheses - We 
believed that metformin users are a healthier subset of the type 2 diabetes 
population, especially when compared to individuals taking insulin, a group 
that frequently serves as a comparison group for metformin users. We sought 
to expose the residual confounding that exists in this study design by 
conducting a similar study in a prediabetes population using nonusers as a 
healthier comparison group for the more advanced prediabetes cases 
warranting metformin use. We expected to find that metformin users would 
be associated with a wide range of unwarranted protective associations for 
negative control outcomes in the type 2 diabetes population, and we expected 
the reverse -- a wide range of unwarranted harmful associations -- in the 
prediabetes population.  Our objective was to highlight the inadequacy of 
standard methods and covariate sets attempting to account for known 
differences in disease severity. 
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Methods 

Study design 4 Present key elements of study design early in the paper - The paper begins 
with a focus on the study design elements we plan to use (negative control 
outcomes and complementary cohorts) before formally introducing the actual 
study design.  We also describe how the rest of our design intentionally 
follows commonly observed study designs in the literature. 

Setting 5 Describe the setting, locations, and relevant dates, including periods of 
recruitment, exposure, follow-up, and data collection - We document the time 
period and data sources for all included individuals (2018-2019 commercially 
insured and Medicare Advantage beneficiaries with both medical and 
pharmacy benefits). 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of 
participants. Describe methods of follow-up - We state the ages, diagnosis 
history (prediabetes and type 2 diabetes), and exposure requirements that 
encompass the inclusion/exclusion criteria for this study. 

(b) For matched studies, give matching criteria and number of exposed and 
unexposed - NA 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, 
and effect modifiers. Give diagnostic criteria, if applicable - The “Study 
Definitions” section of the manuscript provides definitions for all these 
variables.  The supplement provides tables containing the specific drug 
names, ICD codes for various conditions (cohort assignment and negative 
control outcomes), and logic for other covariates.  References are provided 
containing the logic for both the Diabetes Complications Severity Index 
components and the Elixhauser in-hospital mortality score. 

Data sources/ 
measurement 

8*  For each variable of interest, give sources of data and details of methods of 
assessment (measurement). Describe comparability of assessment methods if 
there is more than one group - We describe in the main text and in the 
supplement how the presence of certain values (typically ICD codes) in an 
individual’s claims history allows for observation of our covariates of 
interest.  Additionally, a description of the database's quality control methods 
is included in the supplement. 

Bias 9 Describe any efforts to address potential sources of bias - The purpose of this 
paper is to show that bias remains even after addressing potential sources of 
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bias with conventional methods.  First, we observed and adjusted for relevant 
covariates in a propensity score model.  We then used inverse propensity-
weighted logistic regression with the outcome model again adjusting for a 
range of relevant covariates.  As revealed in the residual confounding plots, 
these steps were insufficient.  We show this residual bias by interpreting the 
primary results in the context of a distribution of negative control outcome 
results and then repeating the analysis in a complementary cohort. 

Study size 10 Explain how the study size was arrived at - As a retrospective cohort study, 
we selected every individual in the claims database who met the study 
definitions (age, prediabetes/type 2 diabetes diagnosis in 2018, fully insured 
with medical and pharmacy coverage for all of 2018-2019). 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 
applicable, describe which groupings were chosen and why - Elixhauser in-
hospital mortality scores and number of inpatient admission days were both 
log transformed.  This serves to compress the distributions toward 0 with 
greater compression applied to larger numbers.  We believe this is appropriate 
because, for example, the difference between a patient with zero inpatient 
days and another patient with seven inpatient days seems more important than 
the difference between a patient with 100 inpatient days and another with 107 
inpatient days.  Primary outcomes (inpatient days > 0 and total medical 
spend) were thresholded to produce binary outcomes that could use the exact 
same modeling approaches applied to all the negative control outcomes.  This 
facilitated easy interpretation of all results on the same scale. 

Statistical methods 12 (a) Describe all statistical methods, including those used to control for 
confounding - We describe in the Methods Description our use of Fisher’s 
exact test, propensity scores, and inverse propensity-weighted logistic 
regression.  We document the confounders used in both the propensity and 
outcomes models. 

(b) Describe any methods used to examine subgroups and interactions - NA 

(c) Explain how missing data were addressed - Lack of presence of a claim 
(medical or pharmacy) due to procurement outside of a health plan is a 
limitation of all claims database studies.  If there is no claim for a certain 
diagnosis, we assume that condition is not present.  We describe in the 
supplement the implications this has for defining a nonuser population for an 
inexpensive generic drug.  We attempted to minimize missingness of data by 
enforcing continuous medical and pharmacy coverage during the study period 
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to maximize our certainty that we captured all available, relevant healthcare 
interactions.  

(d) If applicable, explain how loss to follow-up was addressed - NA 

(e) Describe any sensitivity analyses - The purpose of this paper is to present 
a study design that automatically includes a sensitivity analysis using 
negative control outcomes and a complementary cohort to identify residual 
confounding.  This process is demonstrated in its entirety in an observational 
study of metformin. 

Results 

Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers 
potentially eligible, examined for eligibility, confirmed eligible, included in 
the study, completing follow-up, and analysed - Table 1 reports the total 
cohort sizes and the sizes of the groups meeting our exposure group 
definitions. 

(b) Give reasons for non-participation at each stage - Participants who failed 
to meet an exposure group definition were excluded. 

(c) Consider use of a flow diagram - We do not feel this figure would 
contribute to the main goals of the paper and have prioritized results figures. 

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, 
social) and information on exposures and potential confounders - These are 
observable in the Love plots that depict the covariate balance before and after 
inverse propensity weighting. 

(b) Indicate number of participants with missing data for each variable of 
interest - We relied on variables commonly present in claims databases, 
including diagnosis codes, procedure codes, and pharmacy fills, and thus 
assume no missing data. 

(c) Summarise follow-up time (eg, average and total amount) - NA 

Outcome data 15* Report numbers of outcome events or summary measures over time - Time is 
not considered for our outcome events.  We simply look for total qualifying 
activity in the year 2019.  We report odds ratios to reflect the point estimates 
for the treatment effect. 
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Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 
estimates and their precision (eg, 95% confidence interval). Make clear which 
confounders were adjusted for and why they were included - Covariates used 
for adjustment are listed in the Study Definitions.  Unadjusted and 
confounder-adjusted estimates (with confidence intervals) are provided in 
results tables and figures. 

(b) Report category boundaries when continuous variables were categorized 
- This is explained for both example outcomes (>0 inpatient admission days 
and >90th percentile total medical spend), and appropriate thresholds are 
reported based on the data source presented in each results table. 

(c) If relevant, consider translating estimates of relative risk into absolute risk 
for a meaningful time period - The purpose of the paper is not to make claims 
about actual treatment effects, but rather to point on the inadequacy of the 
process used to estimate them.  For this reason, we intentionally avoid adding 
any emphasis or interpretability to the results since they should not be trusted. 

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and 
sensitivity analyses - NA 

Discussion 

Key results 18 Summarise key results with reference to study objectives - We do show that 
metformin users are substantially healthier on average than insulin users 
among type 2 diabetes patients, and this leads to unwarranted benefit across 
a range of negative control outcomes.  As expected, this advantage reverses 
in prediabetes, revealing the direction and degree of residual confounding that 
may be present. 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias 
or imprecision. Discuss both direction and magnitude of any potential bias - 
The point of the study was to highlight the existing bias that favors metformin 
users in type 2 diabetes studies in almost every measurable outcome.  This 
limitation is our main result and the motivation for presenting a study design 
that reveals it. 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 
limitations, multiplicity of analyses, results from similar studies, and other 
relevant evidence - The results are what we expected: biased.  Our objective 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.15.21263634doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.15.21263634
http://creativecommons.org/licenses/by-nc/4.0/


56 

was to demonstrate this possibility and a method for exposing it.  Every 
unique analysis we ran led to the same conclusion. 

Generalisability 21 Discuss the generalisability (external validity) of the study results - The 
results of this study should not be expected to generalize to any other 
populations as they are believed to be heavily biased by residual confounding.  
There is, however, some generalizability for the study design we propose.  
Medications taken for diseases that progress in severity are the best 
candidates, but one could also consider medications taken for different 
conditions of varying severity. 

Other information 

Funding 22 Give the source of funding and the role of the funders for the present study 
and, if applicable, for the original study on which the present article is based 
- The study was funded in part by OptumLabs, the research and development 
arm of UnitedHealth Group, and the authors Drs. Clark and Hart are full-time 
employees of UnitedHealth Group. These authors played an active role in all 
aspects of study development, including the design and conduct of the study; 
collection, management, analysis, and interpretation of the data; preparation, 
review, or approval of the manuscript; and decision to submit the manuscript 
for publication.  Mike Powell is funded by the US Army.  Anton Alyakin is 
funded by D3M program of the Defense Advanced Research Projects Agency 
(DARPA).  Joshua Vogelstein is funded by Microsoft Research and Fast 
Grants.  No funder participated in any phase of this research or impacted its 
findings beyond providing blanket financial support to the researchers. 

  
*Give information separately for exposed and unexposed groups. 
  
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and 
published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely 
available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at 
http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is 
available at http://www.strobe-statement.org. 
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