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Abstract 

Several studies have found that black patients are more likely than white patients to test 

positive for or be hospitalized with COVID-19, but many of these same studies have found no 

difference in in-hospital mortality. These studies may have underestimated racial differences due 

to reliance on data from a single hospital system, as adequate control of patient-level 

characteristics requires aggregation of highly granular data from several institutions. Further, one 

factor thought to contribute to disparities in health outcomes by race is site of care. Several 

differences between black and white patient populations, such as access to care and referral 

patterns among clinicians, can lead to patients of different races largely attending different 

hospitals. We sought to develop a method that could study the potential association between 

attending hospital and racial disparity in mortality for COVID-19 patients without requiring 

patient-level data sharing among collaborating institutions. We propose a novel application of a 

distributed algorithm for generalized linear mixed modeling (GLMM) to perform counterfactual 

modeling and investigate the role of hospital in differences in COVID-19 mortality by race. Our 

counterfactual modeling approach uses simulation to randomly assign black patients to hospitals 
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in the same distribution as those attended by white patients, quantifying the difference between 

observed mortality rates and simulated mortality risk following random hospital assignment. To 

illustrate our method, we perform a proof-of-concept analysis using data from four hospitals 

within the OneFlorida Clinical Research Consortium. Our approach can be used by investigators 

from several institutions to study the impact of admitting hospital on COVID-19 mortality, a 

critical step in addressing systemic racism in modern healthcare. 
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Introduction 

 Throughout the COVID-19 pandemic, several studies have found that black patients are 

more likely than white patients to test positive for or be hospitalized with COVID-19 [1-5]. 

Many of these studies also found that there was no difference in in-hospital mortality for black 

and white patients after adjusting for patient-level sociodemographic and clinical characteristics 

[1-2, 4-5]. However, those studies may have underestimated racial differences because they 

relied on data from single hospital systems, which might have more homogeneous and less 

broadly representative populations.  A much larger study reflecting data from approximately 

1,200 US hospitals found residual racial differences [10]. That study was possible because of a 

single data source from a large insurance company, but many questions cannot be answered 

without data that are already aggregated and in a sufficiently granular level. 

The challenges of aggregating highly granular data are critically relevant to investigations of 

racial disparities in health care because of the frequent need to control for patient-level 

characteristics.  Those statistical adjustments often reveal mediating pathways because individual 

characteristics that seemingly confound associations by race might themselves be the products of 

past racial injustice.  For example, making statistical adjustments for insurance type, area of 

residence, and comorbidities might seem to allow estimation of isolated effects of race, but if 

those factors are themselves the products of racial discrimination those adjustments can risk 

obscuring racial differences in health outcomes rather than identifying them. 

 Indeed, one factor thought to contribute to disparities in health outcomes by race is site of 

care [6]. Patients of different races tend to live in different areas and so their sources of care and 

referral patterns tend to differ. For example, a study examining hospital-level racial disparities in 

acute myocardial infarction treatment and outcomes found that black patients tend to receive care 
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at different hospitals than white patients [7]. Another study found that black and white patients 

tend to be treated by different physicians, with physicians for black patients possibly less 

qualified and lacking access to critical clinical resources relative to physicians who tend to treat 

white patients [8]. These reported differences are likely associated with a number of differences 

in the black and white patient populations, including access to care, referral patterns among 

clinicians, and susceptibility to harmful social and environmental exposures. Repeatedly, racial 

differences in health outcomes have been attributed to differences in care site. 

 To investigate the potential association between admitting hospital and racial disparity in 

mortality for COVID-19 patients, a counterfactual modeling approach can be used [9]. If we 

assume that black and white patients each attend hospitals according to some underlying 

distribution, then using counterfactual modeling, we can simulate hospital assignments for black 

patients under the hypothetical scenario that they attend hospitals in the same distribution as 

white patients. Assuming the existence of hospital-level effects affecting in-hospital mortality, 

one may hypothesize that simulated mortality rate under this scenario would be lower than 

observed mortality rate for black patients if one assumes hospitals with predominately white 

patients have higher quality of care on average than hospitals with mostly black patients. This 

counterfactual modeling approach can aid in unveiling disparities in health outcomes associated 

with site of care, a crucial first step in addressing systemic racism in modern healthcare.  

 A recent study by Asch et al. (2020) explored the potential connection between admitting 

hospital and racial disparities in COVID-19 using counterfactual modeling, fitting a generalized 

linear mixed model (GLMM) to model log odds of mortality while adjusting for both common 

patient-level fixed effects as well as hospital-specific fixed and random effects [10]. Estimation 

of hospital-specific effects is the key component for counterfactual modeling, allowing for 
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estimating patient-specific mortality risk as if the patient (counterfactually) attended a hospital 

different from the one they truly attended. While effective for this particular study, which 

featured a centralized data repository allowing direct access to all patient data, GLMM is not 

able to be used if data are not centralized. Patient-level data sharing among hospitals is often not 

possible due to regulations protecting patient privacy. If each participating institution can instead 

share only aggregate data, a method allowing for distributed estimation of GLMM is necessary.  

 In this work, we propose a novel application of a recently developed algorithm for 

performing GLMM estimation [11] to study hospital-associated racial disparity in COVID-19 

mortality via counterfactual modeling. We refer to this approach as the distributed penalized 

quasi-likelihood (dPQL) algorithm.  The dPQL is based on the penalized quasi-likelihood (PQL) 

algorithm, an iterative procedure for GLMM estimation [12-13] that has commonly been used to 

fit GLMM due to its ease of computation; it usually achieves convergence in several iterations. 

The dPQL algorithm is a distributed version of PQL, where in each iteration it requires 

participating hospitals to share aggregate, summary-level data rather than patient-level data. The 

result of the dPQL algorithm is lossless, as fixed-effect and random-effect estimates are identical 

to those produced by traditional PQL as if one had access to centralized patient-level data. After 

estimating the fixed and random effects via the distributed algorithm, individual hospitals within 

a multi-site study can further estimate counterfactual mortality risk for each of their own 

patients, quantifying the effect of their patients receiving care at another hospital in the study. 

Counterfactual mortality risk, as will be demonstrated, can also be obtained in a distributed 

manner (without sharing patient-level data). Thus, the above distributed analysis framework 

creates the potential for large-scale, multi-site studies for assessing hospital-associated racial 

disparities when sharing patient-level data is not possible.  
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  The remainder of this work is structured as follows. In the Methods section, we first 

provide an overview of how to estimate patient-specific mortality risk at a given hospital and 

propose using the dPQL algorithm for these purposes. We then describe estimation of 

counterfactual mortality risks for each patient within each hospital before outlining a simulation 

approach which can be used to investigate hospital-associated racial disparities in COVID-19 

mortality vis counterfactual modeling. Lastly, we offer an illustrative example of how our 

proposed application of the dPQL algorithm can be used in practice, using it to analyze patient 

data from four hospitals within the OneFlorida Clinical Research Consortium. In our analysis, 

we sought to determine whether observed 30-day in-hospital mortality rate for Non-Hispanic 

Black (NHB) patients differed from simulated overall mortality risk, calculated under the 

hypothetical scenario that NHB patients attended hospitals in the same distribution as Non-

Hispanic White (NHW) patients. We present results for our proof-of-concept simulation before 

concluding with a discussion on the implications of our work. 

Methods 

Modeling Mortality Risk: Generalized Linear Mixed Model 

 Investigating the association between attending hospital and racial disparities in COVID-

19 mortality via counterfactual modeling requires a statistical modeling approach that accounts 

for hospital-specific effects and is compatible with the data sharing arrangement in place among 

participating hospitals. Suppose 𝐻 hospitals, each with 𝑛! patients, are willing to participate in a 

multi-site analysis. Each hospital has direct access to its own relevant patient-level or hospital-

level covariates 𝑿"! for each patient i at hospital h (𝑿#! , 𝑿$! , … , 𝑿%!!) and outcome of interest 

𝑦"! for each patient (𝑦#! , 𝑦$! , … , 𝑦%!!). In the context of our study question, suppose this 

outcome is binary. If hospitals agree to share patient-level data across hospitals, allowing for a 
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centralized data repository, a generalized linear mixed modeling (GLMM) approach can be 

implemented using the pooled patient-level data. The mean and variance using GLMM are 

specified as 

E(𝑦"!|𝛼!) = 𝜇"! = ℎ(𝜂"!) = ℎ0𝑿"!&𝜷 + 𝛼!3 (1) 

and

Var(𝑦"!|𝛼!) = 	𝑣(𝜇"!), (2) 

 

where 𝑔 = ℎ'# is the link function that connects the conditional patient-level means 𝜇"( to the 

linear predictor 𝜂"( and 𝑣(⋅) is the variance function. The random effects 𝛼! are assumed to follow 

a normal distribution with mean 0 and variance θ. In our context, the GLMM method allows for 

modeling common fixed effects 𝜷	(𝛽#, 𝛽$, … , 𝛽)) for p covariates at either the patient or hospital 

level as well as hospital-specific random effects 𝜶, such as a random intercept estimated for each 

hospital (𝛼#, 𝛼$, … , 𝛼*). In our modeling below, hospital-specific random intercepts are the only 

random effects modeled. Incorporating additional hospital-specific random effects is possible if 

desired. Estimated fixed and random effects, 𝜷? and 𝜶@, respectively, can then be used to estimate 

mortality risk for each patient in the sample.  

 

Distributed Penalized Quasi-Likelihood (dPQL) algorithm 

In settings where patient-level data cannot be shared, collaborating hospitals in a multi-

site study often agree to conduct a distributed data analysis. When analyzing data distributively, 

patient-level data remain within institution, with each hospital analyzing its own data directly 

before sending aggregate results to a coordinating center. Available methods for performing 

distributed data analysis vary in their accuracy relative to pooled analysis methods and 
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communication required among participating institutions to obtain results. Most distributed 

analysis methods require a lead site to coordinate communication among the collaborating sites 

and aggregate hospital-specific results. 

We propose using a recently developed distributed penalized quasi-likelihood (dPQL) 

algorithm [11] for performing distributed GLMM. Estimation via penalized quasi-likelihood 

(PQL) is one of several possible approaches for fitting a GLMM. The PQL algorithm iteratively 

fits the linear mixed model (LMM) 

𝑦"!∗ = 𝑥"!&𝜷 + 𝛼! + 𝜖"! , 𝜖"! ∼ 𝑁(0,𝑤"!'#) (3) 

 

with the working outcome 

𝑦"!∗ = 𝑥"!&𝜷? + 𝛼H! + (𝑦"! − 𝜇̂"!)𝑔,(𝜇̂"!)	 (4)	 

and the weight 

𝑤"! = 𝑔,(𝜇̂"!)'$𝑣(𝜇̂"!). (5) 

The obtained effect and variance estimates are denoted as (𝜷?, 𝜃O). The dPQL algorithm is a 

distributed version of PQL, where in each iteration participating hospitals are required to share 

only aggregate data with the lead site to fit the LMM. This is done by using a distributed linear 

mixed model (DLMM) algorithm [14]. Since the DLMM algorithm is lossless, resulting in 

estimates identical to those produced by the LMM, the dPQL algorithm also obtains the same 

estimates as those obtained by the PQL algorithm as if all patient-level data are available. The 

dPQL algorithm is summarized below. 
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Distributed Counterfactual Modeling 

Given the distributively estimated fixed effect 𝜷? and random effects 𝛼P! for hospital h, for 

patient 𝑖 who attended hospital ℎ, their estimated mortality risk can be calculated as  

		𝑝̂!(𝑿"!) = logit'#0𝛼P! + 𝑿"!& 𝜷?3.  

We refer to this as the factual mortality risk for patient 𝑖. Our primary interest for this analysis is 

to investigate the association between attending hospital and in-hospital mortality differences for 

Non-Hispanic Black (NHB) and Non-Hispanic White (NHW) patients. To do this, we use a 

counterfactual modeling approach to study whether the observed in-hospital mortality rate for 

NHB patients differs from their simulated in-hospital mortality rate given they (hypothetically) 

attended hospitals in the same distribution as NHW patients [9]. Counterfactual mortality risk 

estimates differ from the factual mortality risk estimates defined above in that they are purely 

hypothetical, with estimates calculated using an estimated random intercept for a hospital that a 

The dPQL algorithm 
1. Initialization: The lead site sends an initial value for the fixed effects 𝜷(.) and random effects 

𝜶(.) = 0 to all participating sites ℎ = 1, 2, . . . , 𝐻 (including the lead site).  
2. For iteration 𝑠	 = 	0, 1, … , 𝑆 and within each site ℎ = 1, 2, … , 𝐻:  
2.1. Site h calculates the working outcome 𝑦!∗ = 𝜂!(0) + (𝑦"! − 𝜇!(0))𝑔′(𝜇!(0)), linear predictor 

𝜂!(0) = 𝑋!𝛽(0) + 𝛼!(0), and weights 𝑊! = 𝑑𝑖𝑎𝑔{𝑔′(𝜇!(0))'$𝑣(𝜇!(0))}. 
2.2. Site h calculates the following aggregated data, communicating each measure to the lead 

site:  
-  𝑝 × 𝑝 matrix: 𝑆!1 = 𝑋!&𝑊!𝑋! 
- 𝑝-dimensional vector: 𝑆!12 = 𝑋!&𝑊!𝑦!∗  
- scalars: 𝑠!2 = 𝑦!∗

&𝑊!𝑦!∗  and sample size 𝑛! 
2.3. Lead site fits weighted DLMM algorithm based on aggregated data from 2.2. to obtain 

updated 𝜷(03#) and 𝛂(03#), returning these to the collaborating sites to replace initial values. 
3. 2.1. through 2.3. are repeated until convergence, e.g. ||	𝜂(03#) − 𝜂(0)|| / || 𝜂(0) || < 1e-6. The 

final estimates are 	𝜷? = 𝜷(4), 𝜶c = 	𝛂(4) and 𝜃O, all obtained in the final iteration S. 
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given patient did not truly attend. The difference between factual and counterfactual mortality 

risk estimates and how they are calculated are detailed in Figure 1. While	𝑝̂!(𝑿"!) denotes the 

factual mortality risk estimate for patient 𝑖 at hospital ℎ, we can calculate counterfactual 

mortality risk estimates for all patients as if they attended any of the hospitals participating in the 

study, denoting counterfactual mortality estimates using 	𝑝̂!(𝑿"!∗) where ℎ ≠ ℎ∗. Using this 

notation, h denotes the hypothetical attending hospital, the hospital contributing the estimated 

random intercept, while h* denotes the hospital that patient truly attended.  

 

Figure 1. Schematic diagram demonstrating how to calculate both factual and counterfactual mortality risk for 
patients as if they (hypothetically) attended each hospital. Each row depicts how patient data within a given hospital 
can be used to estimate mortality risks as if their patients had attended any hospital in the study. The first column 
features factual mortality risk estimates, calculated using common fixed effect estimates, the random intercept 
estimate for that given hospital, and the patient data for that hospital. The last two columns provide examples for 
computable counterfactual mortality risks, which use random intercept estimates for hospitals different from those 
that patients truly attended.  
 

 We next quantify racial disparity by conducting a simulation to investigate the 

counterfactual mortality rate of black patients had they been admitted to hospitals in the same 

distribution as white patients while retaining their sociodemographic and clinical characteristics. 
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Our simulation procedure is depicted at a high level in Figure 2. Suppose the number of black 

patients at each hospital h, ℎ = 1,… ,𝐻, is 𝑛!5. Each hospital shares the number of white 

patients at their respective hospitals, 𝑛!6 = 𝑛#6 , 𝑛$6 , … , 𝑛*6, with the coordinating center. 

These are used to determine the relative proportion of total white patients at each hospital, 𝑤@! =

	𝑤#e,𝑤@$, … , 𝑤@*, which are communicated to each hospital. Next, for replicate 𝑠 = 1,… , 𝑆 of the 

simulation within hospital h, a multinomial distribution with probabilities equal to 𝑤@#, 𝑤@$, … , 𝑤@* 

is used to assign each black patient to a hospital in the study. Assume patient 𝑖 is assigned to 

hospital ℎ∗. Hospital assignments may be factual if ℎ = ℎ∗ or counterfactual if ℎ ≠ ℎ∗. Using 

these hospital assignments, (counter)factual mortality risk estimates are calculated for each 

patient 𝑖 as		𝑝̂!∗(𝑿"!).  

To preserve patient privacy, individual patient mortality risk estimates are averaged 

within hospital h as  	

𝜋P0! =
∑ 𝑝̂(𝑿"!)
%!#
"7#
𝑛!5

 

and communicated to the coordinating site. Simulated overall mortality risk 𝜋P0 is then calculated 

using the following:  

𝜋P0 =
∑ 𝑛!5 ∗ 𝜋P0!*
!7#

∑ 𝑛!5*
!7#

. 

Since we are interested in whether hypothetical hospital assignment affects mortality risk for 

black patients, in each iteration of the simulation, we calculate the difference between observed 

black patient mortality rate 𝜋P. and simulated black patient mortality risk 𝜋P0. The mean difference 

across iterations can be reported along with an empirical 95% confidence interval (using the 2.5th 

and 97.5th percentiles of 𝜋P. − 𝜋P0, 𝑠 = 1,… , 𝑆) to quantify uncertainty in the resulting difference. 
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Figure 2. Schematic overview of our simulation procedure for calculating simulated mortality risk estimates using 
counterfactual modeling. In each iteration of the simulation, within each hospital, a multinomial distribution with 
probabilities equal to the proportion of total white patients at each hospital (𝑤"$, 𝑤"%, … , 𝑤"&) is used to assign each 
black patient to a hospital. Hospital assignments can be factual (denoted by darker colors) or counterfactual (denoted 
by lighter colors). Hospital assignments are then used to calculate mortality risk estimates for each black patient as if 
they attended the assigned hospital. Refer to Figure 1 to see how mortality risk estimates are calculated. Each 
hospital then averages their patient-level mortality risk estimates and communicates them to the coordinating center, 
where overall simulated mortality risk estimate 𝜋&' is obtained for each simulation replicate. Multinomial hospital 
assignment and resultant calculation of (counter)factual mortality risk estimates is performed in each simulation 
replicate. 
 
Illustrative Example Using Multi-Hospital Real-World Data 

 We illustrate our application of the dPQL algorithm to study hospital-associated racial 

disparities in COVID-19 mortality using data from the OneFlorida Clinical Research 

Consortium, a centralized data repository comprising data for over 74% of Floridians. 

OneFlorida data include records from Medicaid and Medicare claims, cancer registries, and 

electronic health records from various clinical partners in the state of Florida. As a proof-of-

concept analysis, we conducted a counterfactual modeling simulation using patient data from 

four hospitals in the OneFlorida Clinical Research Consortium. Patients included in the analysis 

were required to be hospitalized with COVID-19 and have index hospitalization dates between 
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3/1/20 and 2/28/21 to ensure 30 days of follow up for each patient. Using the dPQL algorithm, 

we distributively modeled the log odds of 30-day COVID-19 in-hospital mortality as a function 

of various patient characteristics, including age, gender, a collection of nine comorbidities, and 

index quarter, defined as one of four three-month intervals when a given patient was admitted. 

Definitions for each quarter, as well as further details concerning the included comorbidities and 

descriptive statistics for each hospital, are presented in Table 1.  
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Hospital A Hospital B Hospital C Hospital D Total 
(N=2232) (N=1915) (N=1047) (N=565) (N=5759) 

Age      
[18,65) 1005 (45.0%) 1111 (58.0%) 566 (54.1%) 198 (35.0%) 2880 (50.0%) 
>= 65 1227 (55.0%) 804 (42.0%) 481 (45.9%) 367 (65.0%) 2879 (50.0%) 
Gender      
Female 1249 (56.0%) 1082 (56.5%) 574 (54.8%) 313 (55.4%) 3218 (55.9%) 
Male 983 (44.0%) 833 (43.5%) 473 (45.2%) 252 (44.6%) 2541 (44.1%) 
Race      
Non-Hispanic White 1432 (64.2%) 892 (46.6%) 485 (46.3%) 331 (58.6%) 3140 (54.5%) 
Non-Hispanic Black 800 (35.8%) 1023 (53.4%) 562 (53.7%) 234 (41.4%) 2619 (45.5%) 
Congestive Heart Failure      
Yes 347 (15.5%) 428 (22.3%) 195 (18.6%) 138 (24.4%) 1108 (19.2%) 
No 1885 (84.5%) 1487 (77.7%) 852 (81.4%) 427 (75.6%) 4651 (80.8%) 
Myocardial Infarction      
Yes 109 (4.9%) 184 (9.6%) 66.0 (6.3%) 56.0 (9.9%) 415 (7.2%) 
No 2123 (95.1%) 1731 (90.4%) 981 (93.7%) 509 (90.1%) 5344 (92.8%) 
Peripheral Vascular Disease      
Yes 223 (10.0%) 344 (18.0%) 134 (12.8%) 86.0 (15.2%) 787 (13.7%) 
No 2009 (90.0%) 1571 (82.0%) 913 (87.2%) 479 (84.8%) 4972 (86.3%) 
Cerebrovascular Disease      
Yes 197 (8.8%) 255 (13.3%) 100 (9.6%) 56.0 (9.9%) 608 (10.6%) 
No 2035 (91.2%) 1660 (86.7%) 947 (90.4%) 509 (90.1%) 5151 (89.4%) 
Dementia      
Yes 239 (10.7%) 125 (6.5%) 99.0 (9.5%) 54.0 (9.6%) 517 (9.0%) 
No 1993 (89.3%) 1790 (93.5%) 948 (90.5%) 511 (90.4%) 5242 (91.0%) 
Chronic Pulmonary Disease      
Yes 480 (21.5%) 538 (28.1%) 215 (20.5%) 149 (26.4%) 1382 (24.0%) 
No 1752 (78.5%) 1377 (71.9%) 832 (79.5%) 416 (73.6%) 4377 (76.0%) 
Diabetes      
Yes 734 (32.9%) 682 (35.6%) 307 (29.3%) 222 (39.3%) 1945 (33.8%) 
No 1498 (67.1%) 1233 (64.4%) 740 (70.7%) 343 (60.7%) 3814 (66.2%) 
Diabetes w/ Chronic Complication      
Yes 350 (15.7%) 437 (22.8%) 192 (18.3%) 128 (22.7%) 1107 (19.2%) 
No 1882 (84.3%) 1478 (77.2%) 855 (81.7%) 437 (77.3%) 4652 (80.8%) 
Any Malignant Tumor      
Yes 161 (7.2%) 183 (9.6%) 94.0 (9.0%) 46.0 (8.1%) 484 (8.4%) 
No 2071 (92.8%) 1732 (90.4%) 953 (91.0%) 519 (91.9%) 5275 (91.6%) 
Index Quarter      
Quarter 1 (3/20 - 5/20) 123 (5.5%) 182 (9.5%) 59.0 (5.6%) 20.0 (3.5%) 384 (6.7%) 
Quarter 2 (6/20 - 8/20) 861 (38.6%) 711 (37.1%) 504 (48.1%) 166 (29.4%) 2242 (38.9%) 
Quarter 3 (9/20 - 11/20) 444 (19.9%) 268 (14.0%) 164 (15.7%) 97.0 (17.2%) 973 (16.9%) 
Quarter 4 (12/20 - 2/21) 804 (36.0%) 754 (39.4%) 320 (30.6%) 282 (49.9%) 2160 (37.5%) 
30-Day In-Hospital Mortality      
Deceased 168 (7.5%) 211 (11.0%) 59.0 (5.6%) 119 (21.1%) 557 (9.7%) 
Alive 2064 (92.5%) 1704 (89.0%) 988 (94.4%) 446 (78.9%) 5202 (90.3%) 

Table 1. Summary of patient-level characteristics for patients hospitalized with COVID-19 at four hospitals within 
the OneFlorida Clinical Research Consortium.  
 
  Our primary analysis in this proof-of-concept study concerned calculating the difference 

between observed mortality rates and average simulated mortality risk estimates for all non-

Hispanic black (NHB) patients across the four hospitals. We also performed a series of 

secondary analyses stratified by index quarter; four sub-analyses were conducted, with each only 
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including patients with an index date for COVID-19 hospitalization in a particular quarter. Due 

to the rapid changes in the COVID-19 landscape as the pandemic progressed, including potential 

improvements in patient care and increasing prevalence of rare variants, we were interested in 

exploring whether the difference between observed and simulated mortality varied by quarter 

and if a trend in either direction was evident. 

In Figure 3, we depict the relative distributions of non-Hispanic white (NHW) and NHB 

patients across the four hospitals, both within specific quarters and overall. Overall and in each 

quarter except for Quarter 1, Hospital A was the most well-attended, with the percentage of 

NHW patients attending Hospital A ranging from 38% in Quarter 1 to 52.5% in Quarter 3. For 

NHB patients, Hospital B was attended most overall and in each quarter except for Quarter 3. 

The percentage of NHB patients attending Hospital B ranged from 31.7% in Quarter 3 to 49.7% 

in Quarter 1. While NHW and NHB patients differed in this respect, the distributions of hospitals 

attended for each set of patients was largely similar. Distributions of hospitals attended across 

quarters were also similar, indicating that the racial makeup of the patient population at each 

hospital remained relatively constant throughout the twelve months of the COVID-19 pandemic 

studied in this analysis (March 2020 to February 2021).  
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Figure 3. Bar plots depicting relative distributions of Non-Hispanic White (NHW) and Non-Hispanic Black (NHB) 
patients across hospitals, both within each index quarter and overall. Percentages above each bar represent the 
relative percentage of the total number of either NHW or NHB patients who attended each hospital. Dates are in the 
format “month/year”. 
 

To conduct our simulation for both our primary and secondary (stratified) analyses, we 

first obtained the proportions of total NHW patients at each of the four hospitals, depicted in 

Figure 3. Then, within each hospital, we randomly assigned patients to one of the four hospitals 

using a multinomial distribution with probabilities equal to the four proportions found above. 

Simulated hospital assignments were used to calculate patient- and hospital-specific 

(counter)factual mortality risk estimates. Since OneFlorida data are centralized, we were able to 

average all mortality risk estimates from each hospital to calculate 𝜋P0 without needing to 

communicate risk estimate averages from each hospital to a coordinating center. However, if 

data were not centralized, identical results could be obtained by following the procedure outlined 
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in the previous subsection. We conducted 𝑆 = 500 iterations of the simulation for each of the 

five analyses, reporting the average difference in observed mortality rate and mean simulated 

mortality risk across iterations along with a corresponding 95% empirical confidence interval.  

Results 

Boxplots summarizing results from each of our simulation studies are presented in Figure 

4. Recall that the results presented here are intended to be the product of a proof-of-concept 

analysis to demonstrate the utility of this simulation method for performing counterfactual 

modeling. These results therefore should not be interpreted as having clinical significance. Using 

the complete set of patient data across all index dates, the mean difference across 500 iterations 

between observed in-hospital mortality rate (𝜋P. = 0.092) and simulated mortality risk (𝜋P0 = 

XXX) for NHB patients was 0.0069, reflecting a hypothetical absolute decrease in mortality rate 

of 0.69% (95% confidence interval (CI): (0.55%, 0.84%)). In our stratified analyses done by 

index quarter, results varied substantially. In Quarter 1, which included patients with index dates 

between March 1, 2020 and May 31, 2020, the average difference between observed mortality 

rate (𝜋P. = 0.092) and simulated mortality risk was significantly greater at 0.0161, reflecting a 

hypothetical absolute decrease in mortality rate of 1.61% (95% CI: (1.51%, 1.70%)). The 

difference found in Quarter 2 (index dates between June 1, 2020 and August 31, 2020) was 

closer to the overall difference, with simulated mortality risk lower than observed mortality rate 

(𝜋P. = 0.096) by 0.0051 on average (0.51% absolute difference, 95% CI: (0.35%, 0.67%)). No 

statistically significant difference in mortality rate was found for Quarter 3 (index dates between 

September 1, 2020 and November 30, 2020), with an average difference between observed 

mortality rate (𝜋P. = 0.071) and simulated mortality risk of -0.0015 (-0.14% absolute difference, 

95% CI: (-0.56%, 0.26%)). In Quarter 4 (index dates between December 1, 2020 and February 
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28, 2021), the difference between observed mortality rate (𝜋P. = 0.096) and simulated mortality 

risk was similar to that found in Quarter 1 with a mean difference of 0.0131 (1.31% absolute 

difference, 95% CI: (1.04%, 1.59%)). Differences between observed and simulated mortality 

rates across iterations varied most in Quarter 3 and least in Quarter 1. 

 

Figure 4. Boxplots depicting results from our five simulation studies, with index date for COVID-19 hospitalization 
on the x-axis (by index quarter and for all months) and the percent reduction in 30-day in-hospital mortality 
(observed mortality rate – simulated mortality risk) on the y-axis. For each boxplot, each circle represents the result 
from one replicate of the simulation. Blue diamonds in the center of each boxplot denote the mean difference across 
500 replicates of the simulation.  
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Discussion 

 In this work, we presented a novel application of a method for performing distributed 

generalized linear mixed modeling, the dPQL algorithm, to study the association between 

attending hospital and racial disparities in COVID-19 mortality. In real-world multi-site studies 

where hospitals are not able to share patient-level data with one another, this approach can be 

used to perform counterfactual modeling resulting in the exact same estimates that could be 

obtained if patient data were centralized, owing to the dPQL algorithm being lossless relative to 

traditional PQL. By not requiring patient-level data sharing, our proposed application could be 

used to study hospital-associated racial disparities using larger, more heterogeneous collections 

of patient data, allowing for more generalizable and clinically impactful conclusions. Our 

counterfactual modeling approach via simulation is also generalizable, able to be used in a 

variety of applied contexts beyond the application studied here. This approach could be used to 

investigate the association between any particular grouping of patients (e.g. at the hospital, state, 

or country level) and a non-continuous outcome of interest, with multinomial group assignments 

based on some exposure of interest. 

 Our real-world analysis of patient data from OneFlorida, while illustrative of our 

counterfactual modeling approach as a proof-of-concept analysis, is limited in several respects. 

Despite finding a slight improvement in mortality rate under the hypothetical scenario that NHB 

patients attend hospitals in the same distribution as NHW patients, we analyzed patient data from 

four Florida hospitals whose relative distributions of NHW and NHB patients did not differ 

substantially. The lack of patient heterogeneity among participating hospitals limited the ability 

of the GLMM fit by the dPQL algorithm to capture meaningful hospital-level differences with 

respect to in-hospital mortality risk. Our proposed application of the dPQL algorithm is best 
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suited for real-world studies featuring large, heterogeneous collections of hospitals spanning a 

large geographic area, such as the study conducted in Asch et al. 2020 which included over 

44,000 patients admitted to over 1,100 hospitals from 41 states [10]. Additionally, since our 

analysis was intended to be an illustrative example, there were no inclusion or exclusion criteria 

for covariates included in our fitted GLMM. In practice, if many candidate predictors are 

available, a variable section procedure should be used together with clinical expertise to select 

the final model and model fit should be assessed. Due to the limitations of our applied analysis, 

results presented should not be interpreted clinically. Rather, they are meant to illustrate the type 

of analysis that can be performed using our counterfactual modeling approach with multi-site 

data. 

 In future work, it would be worthwhile to compare different approaches for distributed 

generalized linear mixed modeling to counterfactually model in-hospital mortality. The dPQL 

method is one approach, but more are likely to become available in the near future. It could also 

be beneficial to continue to investigate whether the association between attending hospital and 

racial disparities in mortality has changed over time. Our limited analysis did not suggest a trend 

in either direction, but analysis of a more complete, heterogeneous collection of patient data 

would provide more convincing conclusions in this regard. 

Despite the limitations of our own real-world analysis, we believe this novel application 

of the dPQL algorithm can be used by researchers as a tool for identifying hospital-level 

inequities in patient outcomes associated with race. In the event that inequities are present and 

thought to be related to quality of care, hospital-level interventions may be needed to help close 

gaps in performance between predominately white and predominately black hospitals. While this 
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would likely take considerable time to accomplish, we hope our method can help to highlight 

underlying disparities and aid in the process of addressing systemic racism in healthcare. 
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