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Abstract 

Recently, Convolutional neural networks (CNN) have shown a growth due to their ability of 

learning different level image representations that helps in image classification in different fields. 

These networks have been trained on millions of images, so they gained a powerful ability of 

extracting the rightful features from input images, which results in accurate classification. In this 

research, we investigate the effects of transfer learning based convolutional neural networks for 

the iris tumor malignancy identification as it is notoriously hard to distinguish an iris nevus from 

an iris tumor. Features are transferred from a CNN trained on a source task, i.e. ImageNet, to a 

target task, i.e. iris tumor datasets. We transfer features learned from AlexNet and VGG-16 that 

are trained on ImageNet, to classify three different iris images types which are: iris nevus 

unaffected, iris cysts, and iris melanocytic tumors.  The employed pre-trained models are modified 

by replacing their feedforward neural network classifier, Softmax, by a support vector machine 

(SVM) that is expected to slightly boost their performance (AlexNet-SVM and VGG16-SVM). 

All employed models are trained (fine-tuned) on a 60% of the available large dataset of iris images 

in order to investigate their power of generalization when trained using large amount of data. The 

networks are also tested on 40% of the data. The best performance was achieved by the VGG16-

SVM which scored a high accuracy of 96.27% and strong features extraction capability as 

compared to the other models. Experimentally, it was seen that adding SVM contributed in 

improving the network performance compared to original models which use a feedforward neural 

network classifier.  
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Introduction: 

Iris tumors have a wide spectrum, starting from nevus to melanoma to metastasis. Few 

comprehensive studies explained this array of iris tumors, which were mostly laboratory pathology 

studies [1,2]. Generally, iris tumors are broadly classified into two main categories: cystic lesions 

and melanocytic tumors of the iris. The cystic lesions or the iris include two main cysts which are 

stromal cysts and iris pigment epithelial (IPE) cysts. Stromal cysts are characterized by a smooth 

surface and a transparent mass on or within the iris stroma. Note that stromal cysts can be either 

congenital or acquired. This tumor can lead to more serious effects such as secondary iritis, 

photophobia, pain and glaucoma.  

The IPE cysts are the lesions arisen from the surface of the iris and they used to be misdiagnosed 

with the ciliary body melanoma due to their similarities in terms of color and pattern. These IPE 

cysts can be sorted into mid-zonal (21%), margin (3%), also peripheral (73%), free floating (<1%), 

and dislodged (3%) [1]. 

The second category of iris tumors is the iris melanocytic tumors which are benign tumors with 

tendency to malignancy transformation. Iris melanocytic tumors consists of the nevus, freckle, 

melanocytoma, and melanoma. Note that these tumors are benign except the melanoma, which is 

considered a malignant tumor. According to many medical reports [3,4] which stated that benign 

iris tumors sometimes transform into iris melanoma, which is malignant iris tumor and hence 

requires an urgent medical interference. 
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Figure 1: Samples of Cystic lesions. Iris cysts (a,b) Iris pigment epithelial (IPE) cyst pupillary margin seen clinically (a) and by 

optical coherence tomography (b), (c) IPE cyst mid-zonal, (d) IPE cyst dislodged and in the anterior chamber angle,   (e) Iris 

stromal cyst in an infant, (f) Iris stromal cyst with hemorrhage in an infant [3] 

The identification of the iris tumor type is still a wearying process for ophthalmologists. Thus, the 

advances in computer systems that aids in diagnosing the iris melanocytic tumors is an 

advancement of dire need. Recently, deep neural networks have been significantly useful in 

solving different types of medical conditions [5,6]. Deep learning is a process in machine learning 

models that consists of a deep structure granting it a great ability in attaining the mid and high 

levels of abstractions from input raw data [7].  

Recently, deep neural networks, in specific convolutional neural networks (CNNs), have gained 

substantial attention by scientists in the medical field, owing to its great efficiency in image 

classification [5,8]. This inspired scientists to transfer the knowledge attained by these deep 

networks when trained on millions of images to address medical image diagnosis and classification 

tasks. Deep learning models are mostly effective when a large training dataset is applied. In the 

medical field, large datasets are not usually available. Hence, transfer learning may be the only 

solution. Transfer learning refers to the use of pre-trained convolutional neural networks that are 

already trained on large datasets such as ImageNet [9], and benefit from their learned parameters, 

in specific weights, to the destination target network model.  
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Those deep networks can lead to the same obstacles and drawbacks as a feedforward neural 

network can do. This is due to the same training algorithm they both use, which is the conventional 

back propagation algorithm. 

For a neural network to be effective, it should perform significantly efficient during training and 

testing the datasets. This means that the variance error and bias error should maintain a good 

balance [10]. Otherwise, a problem called underfitting will reveal if a high bias and low variance 

situation occur. It should be noted also that some more complex models may encounter another 

problem called overfitting if a high variance and low bias occur. These two drawbacks are 

considered major problems when training a complex feedforward neural network.  

In order to alleviate these problems, several approaches were proposed [11]. Some of these 

approaches propose that weights pre-training, early training stopping, and dropping out some 

hidden neurons can allow a network to reach a good fit.  

However, in this study we explore whether or not these problems can be avoided by switching the 

Softmax in neural network with a multi-class SVM that is supposed to act as a classifier for both 

the pre-trained models used. Note that this solution was proposed by many other conducted 

[12,13,14] that seek an alternative of Softmax function for classification tasks.  

In this study, we aim to explore the strength of pre-trained models: AlexNet, and VGG16 that are 

modified by replacing their classifier with a support vector machine, which is expected to avoid 

overfitting that can be produced if a feedforward neural network is used.  Note that AlexNet with 

SVM is denoted as AlexNet-SVM while VGG16 with SVM is denoted as VGG16-SVM. The 

networks are all trained and tested on a database for the task of iris melanocytic tumors diagnosis, 

which includes unaffected and tumorous irises. We aim to investigate the generalization power of 

these deep learning approaches when trained and tested on a small database, consists of 1500 iris 

images that represent 3 different categories: iris nevus unaffected, iris cysts, and iris melanocytic 

tumors of all its types.  

It is also our aim to compare the performance of those modified models and the originals networks 

which use neural network classifier in the task of iris tumors classification. This comparison can 

prove whether the use of SVM prevents the drawbacks of using a neural network and helps in 

boosting the performance of the employed deep models.  
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Figure 2: Iris melanocytic tumors (a) Iris nevus (pigmented), (b) Iris nevus (nonpigmented) causing minor corectopia inferiorly, 

(c) Iris melanocytoma, (d) Iris Lisch nodules scattered on the entire iris surface, (e) Iris melanoma involving the anterior 

chamber, (f) Iris melanoma causing corectopia [3] 

 

 

Related works: 

A few numbers of studies were conducted concerning the identification of such medical condition 

i.e., classifying the iris conditions including iris melanocytic tumors. Oyebade et al.,[15] employed 

CNN and deep belief network (DBN) for the identification of iris nevus, which can transform into 

tumor. The authors trained and tested their using different CNN, each with different learning rate. 

Moreover, DBN was trained and tested using different learning rates and number of hidden 

neurons. As a result, authors claimed that DBN outperformed the CNN in terms of accuracy, where 

DBN scored 93.67% while CNN reached 93.35%. 

Another study by Oyebade et al.,[16] was also conducted for the same classification task but using 

different neural networks. This study uses backpropagation neural network (BPNN), support 
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vector machine (SVM), and radial basis function network (RBFN) for the diagnosis of iris nevus. 

Experimentally, networks performed differently during training and testing using same number of 

images. However, the BPNN achieved the highest recognition rate as the authors stated.  

 

Materials and Methods:  

Deep convolutional neural network (DCNN) 

Deep Convolutional Neural Network is a machine learning system that consists of two-

dimensional distinct convolution in image analysis to recreate the human neural system processes, 

which consists of a structure that resembles that of the visual nervous human system. Such type of 

networks was first designed by Rumelhart et al. [17] which employs the back propagation 

algorithm. Also, LeCun et al. [18] deployed a deep structure network while training the network 

parameters using the back propagation algorithm, the said network achieved a significant 

performance with high accuracy in determining handwritten digits. 

Generally, DCNN can be described as a network that includes mathematical operations like 

convolution and subsampling which occurs inside its hidden layers. These processes grant the 

network the ability to learn various features of the networks which results in an automatic 

extraction of deep features and an effective presentation of the input data [19]. However, DCNN 

integrates a local connection structure in adding a weight sharing method in a bid to reduce the 

learning parameters, which invariably reduces the computational time and cost. This said network 

was successful when tested in the fields of computer vision [20], biological computation [21], 

medical images classification [22], etc.     

Recent trends in in Artificial intelligence has motivated scientists to further improve the 

performance of CNN by making the networks deeper and much more feasible. This prompted 

scientists to create a CNN network which consists of 19 layers, the network was termed VGG-Net 

[23]. Also, a research by Szegedy et al. [24] designed and proposed a deeper network which has 

22 layers, the network is called GoogleNet. GoogleNet was based on the structure of the CNN 

network, but an inception module was added in the structure. Moreover, another network which 

consists of 152 layers named ResNet (ResNet-152) was designed by He et al. [25]. 
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Transfer Learning 

Data availability is a common issue in medicine. Data are usually limited and small which doesn’t 

help the intelligent systems to learn. Training the deep network with little amount of data can lead 

to overfitting which sometimes reduce the generalization capability of networks [21,26,37].  

Transfer learning can be a good solution of that data deficiency issue [22,23,26,27,34]. In this 

research, two different pre-trained CNN models have been employed for the diagnosis of iris 

melanocytic tumors by classifying iris images into three different classes. These two convolutional 

neural networks are: AlexNet and VGG-16. 

AlexNet 

Convolutional neural networks (CNN) originally since its conception according to Fukushima’s 

neocognitron model of 1982 [3], which was popular from Lecun et al. [18] also in Krizhevsky et 

al. [28]. The former used a CNN to come first in the ImageNet Large scale visual recognition 

challenge, thus making CNN’s a favourite amongst scientists for image classification tasks. One 

major advantage of using CNN for image classification is the capability of CNN to perform feature 

extraction of the data set and learn high level features from the dataset without human interference, 

making CNN a top-notch machine learning architecture in the field of image recognition. 

Convolutional neural network has received a wide acceptance in the field of machine vision in 

conducting task such as image classification, semantic segmentation, and object detection. 

Recently, CNN’s have also been deployed in the fields of classification and diagnosis using 2 

dimensional images, images like chest x-rays, retinal images, dermoscopic skin images with 

promising results that goes beyond human classifications [4,5,29,30]. 

Fig. 1 shows the structure of the AlexNet where a Softmax neural network is supplanted by a 

multi-class SVM. 

VGG-16 

The VGG-16 is deep convolutional neural network that was proposed at ILSVRC in 2014 [23] and 

was able to achieve the least error rate. This network consists of 16 main layers, among them 13 

have convolutional layers while the remaining have fully connected layers. Unlike the AlexNet, 
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all layers of the convolutions that exists VGG-16 have the same filter size. Moreover, ReLU layers, 

max pooling layers, fully connected layers, and dropout layers are also used in the VGG-16.  

 

Figure 1: The proposed AlexNet transfer learning network for the classification of iris nevus 

malignancy 

Data 

The four models used are trained and tested with a combination of both healthy and diseased iris 

images collected from two different public databases known as The Eye Cancer Foundation, 

Eye Cancer Network [35] and Miles Research [36]. The first dataset contains images of the 

different irises such as cysts, nevus, melanoma etc…However, the second one contains only 

images of the healthy or nevus unaffected iris images.  Images collected from both datasets were 

rotated through an angular step of 15, 30, and 65 ◦, for the purpose of building a rotational 

invariance capability in the designed system and also obtaining a larger training database that 

would help the deep networks in learning more features of the three iris images types. The images 

of these databases are RGB images of different sizes; hence they were first downsampled to 

227x227 and then to 224x224 pixels to fit in the input layer of the two models: AlexNet and 

VGGNET16, respectively. Overall, a dataset of 1500 images of the three types discussed in this 

work is created.  

Figure 2 shows a sample of the iris images used for training and testing the re-trained models. 
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Figure 2: Sample of the databases training and testing images, (a) shows the nevus unaffected 

images, (b) shows the iris cysts images, while (c) shows the iris melanocytic images. 

 

Results:  

Training of Pre-trained models 

The pre-trained models used in this research were trained and tested on a ratio of 60% of the 

available data. The performance of each of the networks was then evaluated with a held-out test 

set of the remaining 40% of the data.  

AlexNet is the first pre-trained model architecture we used, a convolutional neural network 

winning in the ILSVRC 2012 competition [28]. As shown in Figure 1, the network mainly consists 

of 5 convolutional layers denoted as CONV (CONV1 to CONV5) followed by 3 fully connected 

layers denoted as FC (FC6 to FC8), in addition to a Softmax activation function in the output layer 

(multinomial logistic regression). 
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Note that the openly accessible weights of the network that was trained against the ILSVRC12 was 

used in this transfer learning based research. As we are using a pre-trained model, its final fully 

connected layer FC8 was removed and a new layer was added, and it has two output neurons 

conforming to the three iris conditions classes. Note that the weights of this layer are modified at 

random. On the other hand, the other five convolutional layers are remained in the network, but 

their weights were frozen to act as a feature extractor. These weights are already pretrained on 

millions of images to extract high level features from the input data. For training, a batch size of 

60 images for each iteration is used via stochastic gradient descent [31]. Also, the learning rates 

for the fully connected FC6, FC7, and FC8 layers were fixed at 0.001, 0.001, and 0.01, respectively 

during training. Consequently, this allows the network to learn much quicker to be used by the 

fully connected layer (FC8). Moreover, the network is fine-tuned using 60% of the available data, 

and 150 epochs are set to train the network. 

Table 1: Models learning parameters 

AlexNet VGG-16 AlexNet-SVM VGG16-SVM 

Learning parameters Values  Values Values Values 

Training ratio 60% 60% 60% 60% 

Learning rates (FC6, 

FC7, FC8) 

0.001, 0.001, 

0.01 

0.001, 0.001, 

0.01 

- - 

Number of epochs 150 250 50 70 

Training accuracy 93.5% 95.6% 94.13% 96.27% 

Training time 2 hours 3.5 hours 1.5 hours 1 hours 

Achieved mean square 

error (MSE) 

0.097 0.035 0.076 0.0175 

 

Table 1 shows the learning parameters of the AlexNet model. It can be seen that the network has 

achieved a training accuracy of 94% in approximately 2 hours and 150 epochs.   
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Figure 3: Learning curves for AlexNet 

 

The second employed pre-trained model in this study is the VGG16 network. As discussed earlier, 

this convolutional neural network is deeper than AlexNet as it consists of 13 convolutional layers 

denoted as CONV (CONV1 to CONV13), and 3 fully connected layers denoted as FC (FC14 to 

FC16), as shown in Fig.1. Note that this is also followed by a Softmax classifier as in AlexNet. 

Similarly, the weights of the convolutional layers of VGG-16 are fixed as they are already well 

trained on ImageNet to extract the higher-level abstractions of input images during ILSVRC14. 

Hence, only the final fully connected layers (FC14 to FC16) weights are trained, by initiating them 

randomly.  

For training, this network is trained on 60% of the available dataset with a batch size of 65 images 

per iterations, which is selected to be greater than that of AlexNet, for VGG16 is deeper.  

Moreover, this network is trained with learning rates of 0.001, 0.001, and 0.01 for FC6, FC7, and 

FC8 layers, respectively. Table 1 shows the learning parameters of VGG-16. From this table, it is 

seen that the VGG-16 network has achieved a training accuracy of 95.9% with 250 epochs and in 

3.5 hours as training time. It is also noticed that this network reached a lower mean square of 0.035 

which is lower than that achieved by AlexNet. Figure 4 shows the learning curves of the VGG-16 

network.  
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Figure 4: Learning curves of VGG16 

 

Similarly, the modified networks are trained and tested on the same images other networks used. 

The features extraction of these networks was handled in the same manner in the previous 

networks; however, the classification part here is different. An SVM is placed by taking inputs 

from the first fully connected layer (FC6 in AlexNet, and FC6 in VGG-16 trained to classify those 

features into 3 different iris categories. 

As seen in table 1 these two networks are respectively trained and tested using 60% and 40% of 

the data. It is seen that AlexNet-SVM and VGG16-SVM required 50 and 70 epochs to reach 

minimum square errors of 0.076 and 0.0175, respectively. Moreover, it is noted that those networks 

achieved relatively higher training accuracies (94.13% and 96.27%) compared to other networks 

which used neural network classifier. 
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Discussion 

Original models performance discussion  

Upon training, both AlexNet and VGG-16 pre-trained models are tested on the same number of 

data, i.e. 40% of the total available data. Table 2 illustrates the performances metrics of each model 

during training. As shown, AlexNet achieved 93.5% accuracy, while VGG-16 was capable of 

achieving a higher recognition rate of 95.6%. Also, AlexNet required 150 epochs to attain such 

accuracy, which is lower than that needed for VGG-16 to achieve its higher accuracy. Moreover, 

it is noted that VGG-16 reached a lower mean square error (MSE) (0.035) than that achieved by 

AlexNet (0.097); however, this required longer training time. Figures 3 and 4 show the learning 

curves of the models. Those figures show the error variations with respect to the Epochs increasing 

during training of both networks, AlexNet and VGG-16, respectively. It can be seen that both 

networks performed well during training; however, the expansion of profundity of VGG-16 makes 

it increasingly hard to train, i.e. it needed longer time and more iterations to strike a good mean 

square error (MSE) and high performance metrics values. On the other hand, it is noteworthy that 

this difference in time and epochs number of VGG-16 ended up with a lower MSE than that 

reached by AlexNet.  

For more understanding of the networks learning performance and to have comprehension into the 

various levels features learned by the used models, we sought to visualize the learned kernels or 

features in the convolutional layers.  
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Figure 5: Learned features of AlexNet 

 

Figure 5 shows the learned features of AlexNet, fine-tuned to classify irises into 3 different 

conditions. From Figure 5(a), it is seen that different levels of features are extracted at the 

convolutional layer 5. Figure 5(b) shows an example of one iris cyst image’s example that was 

investigated to visualize the activations of AlexNet in specific channels. Each square of the image 

on the right is an activation which is an output of a channel in the convolutional layer 1. Positive 

activations in this image are represented by white pixels, while black pixels depict negative or poor 

activations.  Note that a mostly gray channel does not activate as strongly on the input image.  

Figure 6 shows the visualizations of extracted features of one iris tumor by the VGG-16 pre-trained 

model. It is seen that different levels of abstractions are extracted during each layer which helps 

the network in learning the exact and appropriate features that discriminate the 3 different classes 

of iris images discussed in this study.  
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Figure 6: Learned features of VGG16 

 

Table 2 shows the accuracies achieved by the employed pre-trained models for the identification 

of iris malignancy. Note that the networks are tested in 40% of the data.  Moreover, the accuracy 

is calculated as in Equation 1, explained in the previous section. The table shows that VGG-16 

achieved higher iris malignancy classification accuracy during testing, than that obtained by 

AlexNet. It is important to denote that the VGG-16 was expected to perform better than AlexNet 

due to the difference in depth of both networks, which allows the VGG-16 to extract more useful 
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features than the AlexNet, and consequently this yields in a better performance. In addition, VGG-

16 has achieved a lower MSE compared to that of AlexNet; but this wasn’t achieved without cost, 

it required a longer training time and more iterations. Furthermore, from Figure 5, it is seen that 

AlexNet learned some unrelated background features and information, in contrast to VGG-16. 

Note that this usually has negative effects on the final prediction [29,30,32].  

Table 2: Original networks performance 

AlexNet  VGG-16 

Training accuracy 93.5% 95.6% 

Testing accuracy 89%, 93.2% 

MSE 0.097 0.035 

 

 

Modified models performance discussion 

Table 3 shows the comparison of AlexNet-SVM and VGG16-SVM performances in terms of 

accuracy and mean square error (MSE). It is seen that VGG16-SVM outperformed the AlexNet as 

it achieved a higher training and testing accuracy of 91.34% and 94.13% respectively. As these 

two networks use the same classifier, it seems that this outperformance is due to the deeper 

architecture of the VGG16 network and the smaller kernel size that it uses compared to that of 

AlexNet. The small kernel sizes result in multiple non-linear layers and this consequently increases 

the depth of network, which gives it the power of extracting more complex features.   

Table 3: Modified networks performance 

 AlexNet-

SVM 

VGG16-

SVM 

Training accuracy 94.13% 96.27% 

Testing accuracy 91.34% 94.13 

MSE 0.076 0.017 
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Comparison between modified and original models performance  

In this work, the fusion of pre-trained models (AlexNet and VGG-16) and SVM classifier was 

used for comparison. The combination of AlexNet and VGG-16 with SVM is more than sufficient, 

where AlexNet and VGG-16 perform the high-level feature extraction while SVM carried out the 

classification. From tables 4, it is seen that adding SVM contributed to boosting the performance 

of the AlexNet and VGG-16. This slight boost was not only terms of accuracy; however, SVM 

allows networks to converge in shorter time while reaching smaller errors.  

Table 4: Modified and original models’ performance 

AlexNet VGG-16 AlexNet-SVM VGG16-SVM 

Training accuracy 93.5% 95.6% 94.13% 96.27% 

Testing accuracy 89%, 93.2% 91.34% 94.13 

MSE 0.097 0.035 0.076 0.017 

 

Table 5 shows the accuracies achieved by all the employed networks when classifying 3 different 

abnormalities in the irises. Note that all experiments were performed by taking the same division 

of images into train and test sets of 60:40 ratio for all abnormalities. 

Table 5: Networks performance of all the classes 

 Networks 

Classes AlexNet VGG-16 AlexNet-SVM VGG16-SVM 

Nevus Unaffected 93.56% 94.55% 95.18% 97.65% 

Iris Cysts 87.95% 89.65% 92.68% 90.47% 

Iris Melanocytic 

Tumors 

74.25% 72.23% 88.32% 89.63% 

 

Performance Evaluation Metrics 

 

Confusion matrix is one the most common and effective metrics to evaluate the performance of deep 

networks, in classification tasks [13]. Metrics that can be derived from the confusion matrix are 

accuracy, sensitivity, and specificity.  Accuracy is the number of correctly predicted classes over all 
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other predictions. It is a good measure to show that whether or not data are closely balanced. 

Sensitivity indicates the proportion of correctly classified positive data points with respect to all other 

positive data points; Specificity shows the proportion of correctly classified negative data points with 

respect to all other negative data points. 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
(𝑻𝑷 + 𝑻𝑵)

𝑻𝑵 + 𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵
 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

 

Table 6: Performance evaluation metrics 

Network Model AlexNet VGG-16 AlexNet- 

SVM 

VGG16-SVM 

Accuracy 89% 93.2% 91.34% 94.13% 

Sensitivity 91% 95% 94% 95% 

Specificity 84% 89% 87% 90% 

 

Comparison  

A comparison of the developed networks employed in this work with some earlier works is shown 

in Table 5. Firstly, it is seen that the employed pre-trained CNNs with SVM achieved higher 

accuracies during testing, compared to various deep networks tested, which might be owed to their 

powerful efficiency in extracting the important features from input images. The convolutional 

neural networks (CNNs) employed within this work achieved higher accuracies than other earlier 

work that used a BPNN features, which achieved highest comparison compared to SVM and 

RBFN [16]. Furthermore, it is important to note that our employed networks gained a better 

generalization capability compared to those other networks employed for iris melanocytic tumor 

classification such as DBN [15].  
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Parameters AlexNet VGG-16 AlexNet- 

SVM 

VGG16-

SVM 
CNN 

[15] 

DBN 

[15] 

Testing Accuracy 89%, 93.2% 91.34% 94.13 93.3% 93.67% 

 

Conclusion:  

In this research, transfer learning which is based on neural networks were employed. AlexNet and 

VGG-16 are both used. Their features learned on a source task are transferred to a new task, eyes 

dataset, in order to determine the classification of iris cases into three different classes: Unaffected 

nevus, iris cysts, and iris melanocytic tumors which include different types of eye tumors. Results 

showed that VGG-16, a well-designed and deeper architecture of adequate complexity, was 

capable of achieving considerably higher classification accuracy when distinguishing between 

three different classes, as compared to that of AlexNet. Furthermore, VGG-16 network learned 

features visualization demonstrates that mid and high-level features are learned effectively by the 

model.  

It can be concluded that transfer of knowledge learned by a well-trained convolutional network to 

learn a new classification task is possible, regardless of small margins of errors when trained using 

a relatively small database. Moreover, it is important to conclude that depth of the convolutional 

networks can help in a better understanding and analysis of the images, which helps in extraction 

different levels of abstraction through the network’s convolutions and pooling layers. Furthermore, 

it is found that replacing Softmax neural network with SVM contributes to a slight boosting of the 

network performance and reducing its training time.  Lastly, our results can show that applying 

deep pre-trained CNN models combined with SVM instead of Softmax, for the problem of iris 

melanocytic tumors analysis, its favorable in a way that related or confusing iris images can be 

recognized or correctly classified with good recognition rates. Convolutional neural networks 

benefit from the hierarchical learning and representations of data which have been found to 

contribute to obtain superior performances in various applications and therefore in this research. 
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